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was	to	bring	all	WiSHFUL	testbeds	up	to	FED4FIRE	federation	standards.	It	is	shown	that	all	testbeds	
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framework	 on	 F4F	 compliant	 testbeds.	 This	 deliverable	 is	 concluded	 by	 describing	 two	 tools	 to	
facilitate	SDR	and	sensor	experiments,	as	well	as	tools	to	enable	generic	measurement	visualization	
and	simple	spectrum	sensing.	
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Executive Summary 
This	 month	 24	 deliverable	 reports	 on	 the	 status	 of	 FED4FIRE	 compliance	 of	 all	 WiSHFUL	
infrastructures	 and	 the	 tools	 that	 are	 provided	 to	 the	 experimenters.	 All	 of	 the	 testbeds	 have	
reached	full	FED4FIRE	compliancy,	meaning	they	can	all	be	accessed	using	the	same	tools:	

• w-iLab.t	at	IMEC	
• ORBIT	at	RUTGERS	
• FIBRE	Island	at	UFRJ	
• IRIS	at	TCD	
• TWIST	at	TUB	
• Portable	Testbed	

Most	of	the	WiSHFUL	testbeds	support	the	use	of	jFed	for	the	provisioning	of	resources.	This	allows	
experimenters	to	use	the	same	tool	and	only	one	certificate	to	access	all	testbeds	in	WiSHFUL.	The	
OMF6	 framework	 allows	 experimenters	 to	 do	 uniform	 experiment	 control	 on	 WiSHFUL	
infrastructure,	 while	 the	 OML	 instrumentation	 tool	 offers	 a	 generic	 software	 framework	 for	 the	
collection	of	measurements.		

Installation	scripts	for	the	tools	mentioned	above	are	provided	in	the	form	of	Ansible	playbooks	and	
are	 available	 in	 the	 ExperimentationTools	 repository	 in	 the	 WirelessTestbedsAcademy	 GitHub	
account.	Sample	configuration	files	for	jFed,	OMF	and	OML	can	be	found	in	the	same	repository.		

This	deliverable	also	lists	the	extensions	that	were	made	to	WiSHFUL	testbeds.	The	w-iLab.t	reports	
the	addition	of	new	wireless	nodes	to	increase	the	capacity	of	the	testbed	as	well	as	the	support	for	
802.11ac,	LTE	and	the	Adant	RAS	antenna.	In	addition,	a	secondary	testbed	location	of	the	w-iLab.t	
was	 equipped	with	 44	 new	wireless	 nodes	 supporting	 802.11n,	 802.11ac,	 802.15.4	 and	 Bluetooth	
4.0.	The	IRIS	testbed	reports	the	addition	of	two	digital	TV	tuners.	The	nodes	 in	the	TWIST	testbed	
were	extended	with	a	second	WiFi	interface,	as	well	as	a	WiSpy	spectrum	sensor	for	every	node.	The	
ORBIT	testbed	reports	the	addition	of	a	number	of	LTE	base	stations	and	clients	as	well	as	an	increase	
in	the	number	of	SDR	platforms.	

To	allow	for	an	easy	integration	of	WiSHFUL	UPIs	into	the	testbeds,	Ansible	playbooks	are	provided	
to	 the	 experimenter	 to	 facilitate	 the	 installation	 of	 all	 necessary	 software	 on	 any	 testbed	 in	 the	
federation.	 Furthermore,	 when	 the	 experimenter	 makes	 use	 of	 the	 Ansible	 support	 in	 jFed,	
inventory	files	can	be	automatically	generated	to	serve	as	input	for	the	WiSHFUL	Global	Monitoring	
and	Configuration	Engine	(MCE).	This	way	the	experimenter	can	create	logical	groups	of	nodes	in	his	
experiment	and	configure	every	group	according	 to	his	own	wishes.	Using	 this	approach,	WiSHFUL	
experiments	can	easily	be	re-run	on	different	testbeds	without	having	to	modify	the	Global	MCE.	

To	conclude	this	deliverable,	several	tools	are	described	that	can	be	used	by	the	experimenter	to	do:	

• SDR	research	using	GNUradio	and/or	IRIS.	
• in-depth	debugging	of	sensor	experiments	using	the	Logic	Analyser.	
• easy	visualization	of	measurement	data.	
• simple	spectrum	sensing	using	Wi-Spy	or	USRP	B200-mini	hardware.	
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List of Acronyms and Abbreviations 
AM	 Aggregate	Manager	

AMQP	 Advanced	Message	Queuing	Protocol	

CBTM	 Cloud	Based	Testbed	Management	

EC	 Experiment	Controller	

FRCP	 Federated	Resource	Control	Protocol	

F4F	 Fed4FIRE	

GCF	 GENI	Control	Framework	

GENI	 Global	Environment	for	Network	Innovations	

GUI	 Graphical	User	Interface	

HTTP	 Hypertext	Transfer	Protocol	

MCE	 Monitoring	and	Configuration	Engine	

OEDL	 OMF	Experiment	Description	language	

OMF	 cOntrol	and	Management	Framework	

OML	 (Orbit)	Measurement	Library	

OMSP	 OML	Measurement	Stream	Protocol	

RC	 Resource	Controller	

RAM	 Random	Access	Memory	

Rspec	 Resource	Specification	

SDR	 Software	Defined	Radio	

SFA	 Slice-based	Federation	Architecture	

SSH	 Secure	SHell	

TCP	 Transmission	Control	Protocol	

UPI	 Unified	Programming	Interface	

XML Extensible	Mark-up	Language 
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1 Introduction	
This	deliverable	reports	on	the	work	done	in	WP5	“Fed4FIRE	compliance”	and	gives	an	overview	of	
the	tools	that	are	offered	as	part	of	the	first	experimentation	toolset.	

The	 document	 first	 gives	 an	 overview	 of	 all	 WiSHFUL	 testbeds	 and	 their	 status	 of	 Fed4FIRE	
compliance.	As	shown	in	the	overview	table	 in	chapter	2,	all	of	the	testbeds	have	now	reached	full	
Fed4FIRE	 compliance,	 namely	 w-iLab.t,	 ORBIT,	 FIBRE	 Island	@	UFRJ,	 IRIS,	 TWIST	 and	 the	 Portable	
Testbed.		

Chapter	 3	 can	 be	 used	 as	 a	 guideline	 for	 experimenters.	 It	 contains	 information	 about	 all	 the	
necessary	steps	to	run	an	experiment	on	WiSHFUL	infrastructure,	including	the	use	of	the	Fed4FIRE	
tools.	 All	 WiSHFUL	 testbeds	 aim	 to	 support	 the	 use	 of	 jFed	 or	 MySlice	 for	 provisioning	 of	 the	
resources.	 The	 OMF6	 and	 OML	 frameworks	 are	 supported	 on	 most	 of	 the	 testbed	 and	 allow	
experimenters	 to	 do	 uniform	 experiment	 control	 and	 measurement	 collection	 on	 WiSHFUL	
infrastructure.	 Install	 scripts	 for	 the	 tools	 mentioned	 above	 are	 provided	 in	 the	 form	 of	 Ansible	
playbooks	and	are	available	in	the	ExperimentationTools	repository	in	the	WirelessTestbedsAcademy	
GitHub	account	[2].		

The	 next	 chapter	 (chapter	 4)	 lists	 all	 the	 changes	 that	 were	 made	 to	 the	 hardware	 of	 WiSHFUL	
testbeds	during	Y2	of	the	project.	While	the	w-iLab.t	shows	an	increase	in	the	total	number	of	nodes	
and	wireless	technologies,	the	IRIS	testbed	reports	the	addition	of	two	Digital	TV	tuners.	To	conclude	
the	chapter,	the	TWIST	testbed	describes	their	extension	by	the	addition	of	a	second	WiFi	interface	
and	WiSpy	spectrum	sensors	to	all	nodes.	The	ORBIT	testbed	reports	the	addition	of	a	number	of	LTE	
base	stations	and	clients	as	well	as	an	increase	in	the	number	of	SDR	platforms.	

The	final	chapter	 in	 this	deliverable	 (chapter	5)	 is	dedicated	to	the	 integration	of	WiSHFUL	UPI’s	 in	
testbeds	 (see	 section	5.1)	and	 the	 integration	of	 tools	 to	 support	 SDR	and	 sensor	experiments.	 The	
integration	 of	 WiSHFUL	 UPIs	 in	 testbeds	 is	 based	 on	 the	 support	 for	 Ansible	 in	 jFed.	 Using	 this	
feature,	the	experimenter	is	able	to	divide	the	nodes	in	his	experiment	into	different	logical	groups.	
This	 separation	 into	 groups	 can	 be	 used	 by	 frameworks	 like	 Ansible,	 OMF6	 and	 WiSHFUL	 to	
respectively	 install	 software,	do	advanced	experiment	 control,	 or	do	advanced	WiSHFUL	 radio	and	
network	control.	To	conclude	the	chapter,	two	tools	are	detailed	which	allow	the	experimenter	to	do	
generic	 measurement	 visualization	 and	 simple	 spectrum	 sensing	 using	Wi-Spy	 or	 USRP	 B200-mini	
hardware.	
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2 Fed4FIRE	compliance	of	WiSHFUL	testbeds	
This	chapter	gives	an	overview	of	all	WiSHFUL	testbeds	and	their	status	of	Fed4FIRE	compliance.	As	
can	be	 seen	 in	 Table	 1,	 all	WiSHFUL	 testbeds	 are	 fully	 FED4FIRE	 compliant.	 The	 following	 sections	
give	 more	 detailed	 information	 per	 testbed.	 To	 limit	 duplication,	 this	 document	 only	 mentions	
testbeds	 for	 which	 the	 level	 of	 Fed4FIRE	 compliance	 changed	 during	 Y2	 of	 the	 project.	 For	 other	
testbeds,	this	document	refers	to	D5.1	and	D5.2.	

Table	1:	F4F	compliance	of	WiSHFUL	testbeds	

	 w-iLab.t	
(IMEC)	

ORBIT	
(Rutgers)	

FIBRE	
Island	
@UFRJ	

IRIS	
(TCD)	

TWIST	
(TUB)	

Portable	
testbed	

Discovery	 SFA	
(GENI	
AMv3)	

XML	

SFA	Planned	

(GENI	AMv3)	

SFA	(GENI	
AMv2)	

SFA	
(GENI	
AMv3)	

RESTful	/	
SFA	
(GENI	
AMv3)	

SFA	
(GENI	
AMv3)	

Requirements	 SFA	
(GENI	
AMv3)	

XML	

SFA	Planned	

(GENI	AMv3)	

SFA	(GENI	
AMv2)	

SFA	
(GENI	
AMv3)	

RESTful	/	
SFA	
(GENI	
AMv3)	

SFA	
(GENI	
AMv3)	

Instant	
Reservation	

SFA	
(GENI	
AMv3)	

Web	based	
(XML)	

SFA	(GENI	
AMv2)	

SFA	
(GENI	
AMv3)	

Web	based	/	
SFA	
(GENI	
AMv3)	

SFA	
(GENI	
AMv3)	

Provisioning	 SFA	
(GENI	
AMv3)	

custom	
(reservation	
based	
exclusive	
access)	

SFA	(GENI	
AMv2)	

SFA	
(GENI	
AMv3)	

custom	
(reservation	
based	
exclusive	
access)	/	
SFA	
(GENI	
AMv3)	

SFA	
(GENI	
AMv3)	

Experiment	
Control	

SSH	or	
FRCP	
(OMF6)	

SSH	or	FRCP	
(OMF5.5	+	
OMF6.0)	

SSH	or	
OMF	5.4	

SSH	or	
FRCP		

SSH/Custom	 SSH	
FRCP	
(OMF6)	

Facility	
Monitoring	

Zabbix	
+OML		

OpenNMS	+	
OML	

ZenOSS	 OML		 cacti	+	
collected	

None	

Connectivity	 Public	IPv4	
for	AM	
Public	IPv6	
for	
resources	

Public	IPv4	+	
Firewalled	
IPv4/IPv6	

Public	
IPv4	for	
AM	
Tunnel	to	
private	
IPv4	for	
resources	

Public	IPv4	
for	AM	
Tunnel	to	
private	
IPv4	for	
resources	

Public	IPv4	
for	AM,	SSH	
Tunnel	to	
private	IPv4	
for	
resources	

Depending	
on	location	
of	
installation	

Documentation	 OK	 OK	 OK	 OK	 OK	 OK	

Policies	 OK	 ORBIT+GENI	 OK	 OK	 OK	 	 OK	

Federation	
Level	

Fully	F4F	
compliant	

GENI	 Fully	F4F	
compliant	

Fully	F4F	
compliant	

Fully	F4F	
compliant	

Fully	F4F	
compliant	
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2.1 w-iLab.t	(IMEC)	
The	w-iLab.t	testbed	is	fully	F4F	compliant.	Detailed	information	can	be	found	in	D5.1	section	2.6.		

	

2.2 ORBIT	(RUTGERS)	
The	 ORBIT	 testbed	 is	 fully	 compliant	 with	 GENI.	 Detailed	 information	 can	 be	 found	 in	 D5.1	
section	2.5.	

	

2.3 FIBRE	Island	@	UFRJ	
The	FIBRE	Island	@	UFRJ	is	fully	F4F	compliant	by	the	use	of	SFA	AMv2.	Detailed	information	can	be	
found	in	D5.1	section	2.4.		

	

2.4 IRIS	(TCD)	
The	 IRIS	 testbed	 is	deployed	at	 the	CONNECT	centre	 in	Dunlop/Oriel	House,	Trinity	College	Dublin,	
Ireland.	 It	offers	virtualized	radio	hardware	and	software	to	support	the	experimental	 investigation	
of	 advanced	 research	 concepts	 in	 radio	 communication.	 The	 IRIS	 testbed	 combines	 flexible	
computational	hardware	and	software	resources	with	various	hypervisors	in	the	form	of	open	source	
software	radio	frameworks	such	as	 IRIS,	GNU	Radio,	and	srsLTE	(an	open	source	version	of	the	LTE	
standard	developed	by	CONNECT	researchers)	to	support	the	realisation	of	advanced	radio	research	
configurations.	A	high-level	overview	of	the	IRIS	testbed	is	depicted	in	Figure	1.	

	
Figure	1	The	functional	layers	of	the	IRIS	testbed	
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There	are	four	logical	layers	used	in	the	IRIS	testbed.	The	bottom	layer	consists	of	physical	resources	
such	as	servers,	N210	Universal	Software	Radio	Peripherals	(USRPs),	networking	equipment,	storage,	
and	 so	 forth.	 These	 resources	 can	 be	 controlled	 by	 one	 of	 multiple	 hypervisor	 layers.	 The	 radio	
hypervisor	 layer	 offers	 SDR	 capabilities	 by	providing	 support	 for	 either	 srsLTE,	 IRIS,	 or	GNU	Radio.	
Additionally,	the	virtualised	testbed	layer	consists	of	virtual	machines	that	are	connected	to	physical	
radio	units.	Next,	 the	 experiment	 layer	 sits	 at	 the	 top	 and	utilises	 the	 resources	of	 the	underlying	
layers.	These	layers	provide	the	capabilities	to	construct	a	broad	range	of	flexible	radio	systems.		

	
Figure	2	IRIS	radio	grid	at	TCD’s	CONNECT	Centre		

	

The	 IRIS	 testbed	consists	of	16	USRP	N210s	ceiling	mounted	 (see	Figure	2)	and	equipped	with	SBX	
daugtherboards	 that	 can	 reach	 frequencies	 of	 between	 40	 MHz	 and	 4	 GHz	 as	 underlying	 radio	
resources.	All	16	USRPs	can	be	used	for	experiments.	A	typically	experimentation	unit	is	composed	of	
Ubuntu	 16.04,	 srsLTE	 supporting	 real-time	 radio	 reconfigurability,	 and	 a	 USRP	 for	 wireless	
communication.	These	units	also	include	the	following	capabilities:	

• virtual	machine	with	2	cores	and	4GB	RAM;		
• a	USRP	N210	SBX120	
• up	to	20	MHz	of	Bandwidth	per	end-point	
• carrier	frequency	from	400	MHz	to	4.4	GHz	
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Figure	3	IRIS	SFA	2.0	compliant	testbed	

	

2.4.1 SFA	
The	 IRIS	 testbed	 Aggregate	 Manager	 is	 fully	 SFA	 2.0	 compliant.	 It	 uses	 a	 custom	 wrapper	
implementation	of	the	GENI	AG	v3	API	based	on	the	reference	GCF	AG	offered	by	geni-tools	[1].	This	
resource	 runs	 on	 the	 IRIS	 testbed	Gateway	 server.	 jFed	 clients	 communicate	 directly	with	 the	AM	
process	 for	 authentication,	 resource	 discovery,	 and	 provisioning.	 It	 interacts	with	 the	 IRIS	 testbed	
Cloud	 Based	 Testbed	Management	 (CBTM)	 process	 to	 set	 up	 Experimentation	Units.	 The	 gateway	
server	 also	 runs	 a	 legacy	 reservation	 system,	which	 is	 currently	used	by	TCD	 staff	 and	 students	 to	
reserve	 testbed	 resources,	 which	 accesses	 the	 CBTM	 directly.	 A	 general	 view	 of	 the	 IRIS	 AG	 is	
available	 in	 Figure	 3.	 This	 diagram	 also	 shows	 a	 high-level	 view	 of	 interaction	 with	 the	 testbed	
infrastructure.	

	
Figure	4	Sample	IRIS	RSpec	file	

	

2.4.2 Cloud	Based	Testbed	Management	(CBTM)	
The	CBTM	v2.0	 is	a	flexible	resource	that	uses	 libvirt	to	 interact	with	the	KVM	hypervisor	to	create	
virtual	machines	where	experimenters	can	run	experiment	specific	 software.	The	CBTM	protocol	 is	
responsible	 for	 interactions	 between	 the	 Aggregate	 Manager	 and	 CBTM	 resource	 supporting	 the	
allocate,	 delete,	 renew,	 shutdown,	 status	 checking,	 and	 so	 forth	 of	 experimental	 units	 based	 on	
RSpecs	received.	A	sample	IRIS	RSpec	file	can	be	found	in	Figure	4.		

	

2.4.3 Provisioning	Process	
The	IRIS	testbed	has	several	different	Ubuntu	operating	system	images	available	–	depending	on	the	
requirements	of	the	experimenter.	These	include:	
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• Plain	-	Run	your	own	software	
• IRIS	-	Framework	to	develop	SDR	
• GNU	Radio	-	Framework	to	develop	SDR	
• srsLTE	-	Open-source	LTE	library	for	SDR	UE	and	eNodeB	

Based	on	criteria	specified	in	the	RSpec	received	from	the	experimenter,	the	provisioning	workflow	
works	as	follows:	

• Install	operating	system	image	specified	by	the	rspec	
• Start	and	configure	VM	
• Add	experimenter	to	VM	i.e.,	the	users	public	key	
• After	slice	expires,	delete	the	VM	and	release	resources.	

	

2.5 TWIST	(TUB)	
The	TWIST	testbed	is	fully	F4F	compliant.	Detailed	information	can	be	found	in	D5.2	section	2.5.		

	

2.6 Portable	testbed	
The	portable	testbed	is	fully	F4F	compliant.	Detailed	information	can	be	found	in	D5.2	section	2.6.		
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3 Deployment	and	extension	of	existing	Fed4FIRE	tools	
Fed4FIRE	tools	make	use	of	three	federation	protocols:	SFA,	FRCP	and	OMSP.	These	protocols	were	
described	in	detail	in	D5.1	chapter	3.	For	every	federation	protocol,	a	testbed	can	choose	to	support	
one	of	the	client	tools	that	implement	these	protocols.	The	table	below	shows	all	WiSHFUL	testbeds	
and	lists	the	tools	that	are	supported	on	the	testbed.	

	

	 w-iLab.t	
(IMEC)	

ORBIT	
(Rutgers)	

FIBRE	Island	
@UFRJ	

IRIS	
(TCD)	

TWIST	
(TUB)	

Portable	
testbed	

SFA	 jFed	 XML/	jFed	
planned	

MySlice	/	jFed	
planned	

jFed	 jFed	 jFed	

FRCP	 OMF6	 OMF6	 OMF5.4	 OMF6		 SSH/Custom	 OMF6	

OMSP	 OML	 OML	 OML	 OML		 Custom	
measurements	

OML	

	

For	SFA,	most	testbeds	make	use	of	the	jFed	tool.	FRCP	is	supported	on	most	testbeds	by	the	use	of	
OMF6.	Nearly	all	testbeds	provide	OMSP	support	by	using	OML.	For	every	testbed	a	simple	example	
is	shown	for	every	tool.	This	document	can	serve	as	a	guideline	for	experimenters.	

Based	on	feedback	from	open	call	experimenters,	other	tools	might	be	chosen	or	modifications	will	
be	made	to	the	existing	tools.	

Example	 configuration	 files	 for	 the	 tools	 listed	 in	 this	 chapter	 (jFed,	 OMF6,	 OML)	 are	 available	
through	the	WirelessTestbedsAcademy	GitHub	account,	in	the	ExperimentationTools	repository	[2].	

	

3.1 W-iLab.t	(IMEC)	
All	F4F	 tools	are	supported	by	 the	w-iLab.t	 testbed.	This	has	been	extensively	documented	 in	D5.2	
section	3.1.	

	

3.2 ORBIT	(Rutgers)	
Usage	of	OMF	&	OML	is	described	in	D5.2	section	3.2.		

	

3.3 FIBRE	Island	(UFRJ)	
Usage	of	MySlice,	OMF	&	OML	is	described	in	D5.2	section	3.3.	

	

3.4 IRIS	(TCD)	
The	 IRIS	 testbed	 is	 fully	 SFA	2.0	 compliant.	 To	 run	an	experiment,	users	need	 to	 register	 for	a	F4F	
account	with	the	iLab.t	authority	[3].	The	facility	at	TCD	accepts	all	valid	F4F	certificates.	Certificates	
issued	 by	 a	 F4F	 authority	 can	 access	 all	 testbeds	 in	 the	 federation.	 Experimenters	 can	 use	 the	
following	Fed4FIRE	tools	to	conduct	an	experiment	on	the	IRIS	testbed:		

• Provision	an	experiment	using	jFed	or	jFed-cli	tool	(see	section	3.4.1).	 
• Experiment	control	can	be	done	using	SSH	or	OMF6	(see	section	3.4.2).	 
• Measurement	collection	with	OML	(see	section	3.4.3). 



	 H2020	-	GA	No.	645274	 D5.4	
 

   13	

	

	

3.4.1 Provisioning:	jFed	
jFed	 provides	 resource	 provisioning	 functionality	 in	 a	 drag	 and	 drop	 interface.	 TCD	 provides	
resources	in	the	form	of	experimentation	units,	which	consist	of	computational	support	and	flexible	
radio	 hardware.	 Users	 have	 the	 ability	 to	 select	 a	 particular	 radio	 node	 and	 computational	 disk	
image.	Once	resources	are	provisioned,	users	will	be	able	to	double	click	an	experimentation	unit	to	
gain	SSH	access.	

The	 IRIS	 testbed	 uses	 the	 same	 provisioning	 process	 as	 IMEC,	 outlined	 in	 D5.2	 section	 3.1.1.	 The	
following	steps	describe	how	to	use	the	IRIS	testbed	with	jFed.	

• Go	to	http://jfed.iminds.be	
• Install	the	jFed	Experimenter	GUI	
• Start	the	jFed	Experimenter	GUI.	Provide	the	user	certificate	created	when	registering	for	a	

jFed	account	
• Click	New.	
• Drag	 two	 generic	 nodes	 onto	 the	 canvas.	 Double	 Click	 these	 nodes	 for	 additional	

configurations.		
• Select	Testbed:	Iris	TCD.	
• In	disk	image,	select	plain,	iris,	gnuradio,	or	srslte.			
• Experimenter	can	click	“Run”	to	start	the	experiment.	Enter	a	unique	name	for	the	slice.	Click	

“Start	Experiment”	
• Once	 resources	are	provisioned,	double	 clicking	 the	node	 in	 jFed	will	 open	a	 terminal	 that	

gives	full	user	SSH	access	to	the	nodes	created.	

An	 experiment	 tutorial	 that	 uses	 the	 IRIS	 testbed	 is	 available	 in	 [4].	 In	 this	 tutorial	 two	 virtual	
machines,	one	for	transmission	and	another	for	reception,	are	used.	Two	stages	for	this	tutorial	will	
be	 considered,	 one	 where	 a	 simple	 sinusoid	 wave	 is	 transmitted	 and	 observed	 over	 the	 air,	 and	
another	where	an	OFDM	signal	is	transmitted	using	the	GNU	Radio	software.		

	

3.4.2 Experiment	Control:	OMF6	
Experiment	 control	 can	 be	 achieved	 with	 SSH.	 OMF	 support	 is	 also	 available	 with	 the	 OMF6	
framework	 (OMF	EC,	 RC	 and	AMQP	 server).	OMF	Resource	Controller	 is	 preinstalled	 on	 all	 nodes.	
Any	 node	 can	 act	 as	 an	 OMF	 Experiment	 Controller.	 Instructions	 to	 install	 the	 OMF	 Experiment	
Controller	are	available	on	[5].	The	install	guides	for	the	OMF	Experiment	Controller	are	available	at	
[5].	 All	 communication	 is	 achieved	 by	 the	 AMQP	 messaging	 server,	 which	 is	 accessible	 at	
amqp://134.226.55.214.	All	experimenters	are	required	to	use	OEDL	file	for	experiment	specification.		

	

3.4.3 Measurements:	OML	
The	 IRIS	 Testbed	 supports	 OML	 by	 offering	 a	 publicly	 available	 OML	 server	
(tcp:134.226.55.214:3003).	All	testbed	nodes	are	preinstalled	with	the	OML	client	library.		

	

3.5 TWIST	(TUB)	
The	 specific	 implementation	details	of	 the	F4F	 tools	on	 the	TWIST	 testbed	have	been	described	 in	
D5.2	section	3.5.	
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The	 TWIST	 testbed	 received	 the	 following	 improvements	 in	 the	 support	 of	 federation	protocols	 in	
Year	2.	

• Easy	selection	for	testbed	supported	disk	images	for	all	platforms.	It	is	now	possible	to	select	
desired	image	directly	from	jfed.	Testbed	currently	supports:	

o [NUC]	An	ubuntu	xenial	(16.04)	
o [NUC]	An	ubuntu	precise	(12.04)	(as	part	of	the	Open	Call	support)	
o [NUC]	A	'wishful	enabled'	ubuntu	xenial	(16.04)	
o [TPLink]	An	OpenWRT	Chaos	Calmer	

• Documentation	 has	 been	 extended	 with	 a	 tutorial	 how	 to	 build	 own	 custom	 images	
supported	by	the	testbed.	

• Jfed	support	to	reboot	nodes	on	user	demand	
• Graylog	 log	 message	 collection	 server	 has	 been	 deployed	 to	 store	 full	 information	 about	

testbed	operations	from	all	servers	and	nodes	in	the	testbed.	
• Various	bug	and	stability	improvements	in	the	internal	functioning	of	the	testbed.	

	

3.5.1 Creating	custom	disk	images	
One	of	the	most	requested	feature	by	open	call	experimenters	was	the	ability	to	use	their	own	kernel	
version	 and	 system	 for	 experiments.	 That	 also	 adds	 a	 requirement	 to	 not	 only	 provide	 ability	 to	
deploy	 such	 image,	 which	 was	 already	 supported	 in	 TWIST	 since	 initial	 Fed4FIRE	 compliance	
development,	 but	 also	 ability	 to	 prepare	 the	 own	 images	 by	 experimenters.	 Such	 image	 needs	 to	
fulfil	 two	sets	of	 requirements.	First,	 it	needs	to	be	compatible	with	deployment	and	configuration	
strategies	of	the	TWIST	testbed.	Second,	it	needs	to	be	customized	to	experimenter	requirements.	

Usage	of	 custom	 images	 indicates	already	advanced	 requirements	 from	 the	experimenter.	 In	most	
cases,	it	is	enough	to	install	additional	software	just	before	running	the	experiments,	for	example	by	
using	Ansible	to	automate	experiment	deployment	phase.	

We	provide	instructions	[6]	and	preparation	scripts	[7]	for	two	platforms:	

• TP-Link	TL-WDR4300	Routers,	where	the	main	operating	system	is	OpenWRT.	In	this	case	we	
propose	 to	 compile	 the	whole	 system	 from	 scratch.	We	provide	 configuration	 files	 for	 the	
OpenWRT	system	and	kernel.	

• Intel	 NUC	 Embedded	 PCs,	 where	 the	 default	 operating	 system	 is	 Ubuntu.	 We	 provide	 a	
debootstrap	based	method	to	prepare	new	system	configuration.	Default	one	is	based	on	
Ubuntu	16.04,	which	is	the	newest	long	term	support	release	of	the	system.	We	also	provide	
configuration	 for	 12.04	 (precise)	 release,	 which	 was	 requested	 by	 one	 of	 the	 open	 call	
experiment	partners.	

In	fact,	the	same	scripts	are	used	for	preparation	of	default	images.	In	order	to	make	the	whole	build	
system	more	robust	we	use	Ansible	as	a	general	build	tool.	In	order	to	use	it	experimenters	need	to	
have	Ansible	up	and	running	on	the	build	machine.	Those	Ansible	playbooks	take	care	of	collecting	
necessary	 source	 code,	 building	 the	 image,	 configuring	 it	 and	 in	 the	 end	 delivering	 ready	 to	 use	
compressed	 image	 file.	 For	 usage	 in	 the	 testbed	 such	 image	 has	 to	 be	 posted	 on	 the	 publicly	
available	 HTTP	 server.	 Link	 to	 the	 image	 has	 to	 be	 provided	 in	 the	 jfed	 configuration.	 Note,	 that	
services	 like	 Dropbox	 allow	 for	 public	 sharing	 of	 the	 files,	 which	 make	 them	 a	 possible	 hosting	
service.	

We	 provide	 more	 details	 on	 how	 to	 build	 custom	 images	 in	 the	 testbed	 documentation	 and	
repository	with	Ansible	playbooks	(that	are	both	publicly	available).	
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3.5.2 Testbed	logging	functionalities	
TWIST	 testbed	 has	 been	 extended	with	 graylog	 [8]	 based	 log	management	 service.	 It	 is	 a	 testbed	
internal	function,	but	provides	great	help	in	debugging	and	management	of	the	whole	testbed	with	
multiple	nodes.	It	collects	all	logging	data	from	all	servers	and	nodes	in	the	testbed	in	one	place	and	
allows	for	further	automatic	analysis	and	processing.		

Figure	 5	 shows	 example	 screen	 from	 TWIST	 instance	 of	 graylog.	 In	 this	 example	 we	 see	 only	
messages	indicating	failures	in	the	deployment	process.	Those	messages	are	automatically	filtered	by	
the	server	and	thus	don’t	require	user	interaction.	Those	messages	are	also	automatically	forwarded	
to	a	testbed	management	team,	allowing	them	to	react	accordingly.	

	

	
Figure	5	Example	graylog	output	

	

With	 the	 help	 of	netconsole kernel	module	 it	 is	 even	 possible	 to	 stream	 low	 level	 system	 boot	
logging	information,	even	before	usual	file	systems	are	mounted.	This	functionality	requires	support	
for	UDP	based	syslog	data	collection,	as	usually	the	TCP	stack	is	not	yet	fully	loaded	in	the	kernel.	It	
allows	 to	 get	 information	 from	 the	 initial	 booting	 sequence	 and	 is	 extremely	 important	 while	
preparing	 a	 new	 kernel	 or	 image	 versions	 for	 remote	 and	 embedded	 devices	 that	 normally	 don’t	
have	a	 screen	connected.	Without	netconsole	 support	 it	would	not	be	possible	 to	 remotely	debug	
kernel	 boot	 failures	 as	 there	would	 be	 no	 ssh	 access	 to	 the	 device.	Merging	 both	 netconsole	 and	
graylog	 functionalities	 allows	 for	 such	 remote	 debugging.	 This	 functionality	 is	 now	 deployed	 and	
available	in	TWIST	testbed	for	both	OpenWRT	based	routers	and	Ubuntu	based	devices.	

Collecting	 all	 logging	 information	 in	 one	 place	 greatly	 improves	 the	 experience	 of	 debugging	 the	
testbed	as	a	whole.	Current	graylog	instance	in	TWIST	testbed	is	logging	and	analysing	over	10k	log	
messages	per	hour.	

	



	 H2020	-	GA	No.	645274	 D5.4	
 

   16	

3.6 Portable	testbed	
All	 F4F	 experimentation	 tools	 are	 supported	 by	 the	 Portable	 testbed.	 This	 has	 been	 extensively	
documented	in	D5.2	section	3.6.	
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4 FED4FIRE	compliant	testbed	extensions	
This	chapter	describes	the	hardware	extensions	that	were	made	to	WiSHFUL	testbeds	during	the	last	
year.		

	

4.1 W-iLab.t	(IMEC)	
Before	the	start	of	the	WiSHFUL	project,	several	wireless	technologies	were	available	in	the	w-iLab.t	
testbed.	 Below	 is	 a	 short	 summary	 of	 the	 testbed	 hardware	 and	 the	 wireless	 technologies	 they	
enable.	

• 60	embedded	nodes	(ZOTAC/DSS)	
o 2x	802.11a/b/g/n	
o 1x	Bluetooth	2.0	
o 1x	802.15.4	(RM090)	

• 17	mobile	nodes	(DSS)	
o 1x	802.11a/b/g/n	
o 1x	802.11ac	
o 1x	Bluetooth	2.0	
o 1x	802.15.4	(RM090)	
o 1x	LTE	usb	stick	

• 2	LTE	femtocells	
• SDR	hardware	

o 8x	USRP	
o 3x	WARP	

Figure	6	gives	an	overview	of	the	available	hardware	in	the	w-iLab.t	testbed	prior	to	the	extensions.		

	

	
Figure	6:	w-iLab.t	hardware	before	extensions	

	

Based	on	feedback	from	experimenters,	some	extensions	were	installed	in	the	w-iLab.t	testbed.	The	
goal	of	these	extensions	was	to	 increase	the	number	of	wireless	nodes,	as	well	as	to	support	more	
different	technologies.	Below	is	a	short	summary	of	the	hardware	that	was	added	to	the	testbed	as	
part	of	the	extension.	

• 40	embedded	nodes	(APU)	
o 2x	802.11ac	
o 1x	802.15.4	(Zolertia	Re-Mote)	
o 2	wired	Ethernet	interfaces	(can	be	used	as	private	network	by	the	experimenter)	
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o 1x	LTE	usb	stick	(10	in	total)	
o 1x	Adant	RAS	antenna	(result	of	OC1)	

§ 20	nodes	are	equipped	with	2.4GHz	RAS	antenna	
§ 20	nodes	are	equipped	with	5GHz	RAS	antenna	

• 14	embedded	nodes	(ALIX)	
o 1x	802.11b/g	(Broadcom	cards	to	support	CNIT	Wireless	Mac	Processor	)	

• 15	 mobile	 nodes	 were	 equipped	 with	 smartphones	 (Android	 Nexus	 6P)	 to	 support	 LTE	
experiments	(see	Figure	8).	

	

	
Figure	7:	APU	node	with	Adant	RAS	antenna	

	

	
Figure	8:	Smartphone	deployed	on	mobile	node	in	w-iLab.t	
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Figure	9:	w-iLab.t	hardware	including	extensions	

	

Because	 of	 the	 intensive	 usage	 of	 the	 w-iLab.t	 testbed,	 a	 secondary	 location	 was	 equipped	 with	
wireless	hardware.	This	new	testbed	was	deployed	in	the	data	centre	(30x12m)	of	the	iGent	building	
in	Ghent,	Belgium.	Below	is	a	short	summary	of	the	hardware	that	was	installed.	Figure	10	shows	the	
topology	of	the	deployed	nodes	in	pink.	

• 44	new	embedded	nodes		
o Intel	NUC	D54250	(similar	to	the	Portable	testbed	nodes)	

§ Intel	i5-4250U	(2.6GHz),	8GB	DDR3	RAM,	1x	Gigabit	LAN	
o 1x	802.11a/b/g/n	(2x2	MIMO)	+	Bluetooth	4.0	(BLE)	
o 1x	802.11ac	(3x3	MIMO)	
o 1x	802.15.4	(Zolertia	Re-Mote)	

	

	
Figure	10:	w-iLab.t	deployment	at	data	centre	iGent	

	

This	new	deployment	of	the	w-iLab.t	testbed	is	fully	Fed4FIRE	compliant,	as	it	supports	all	federation	
protocols	like	SFA,	FRCP	and	OMSP	and	thus	supports	the	F4F	experimentation	tools	like	jFed,	OMF6	
and	OML.		
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Figure	11:	w-iLab.t	iGent	wireless	nodes	

	

	
Figure	12:	w-iLab.t	iGent	close-up	
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4.2 ORBIT	(Rutgers)	
In	the	second	year,	relevant	extensions	to	the	ORBIT	testbed	include:	

• LTE	deployment	in	ORBIT	SandBox	
• Outdoor	LTE	base	stations	deployment	
• Development	of	massive	MIMO	rack	
• Development	of	cloud	RAN	extension	

Examples	of	experiments	to	be	supported	by	the	new	LTE	capability	 include	evaluation	of	WiFi/LTE	
coexistence	in	dense	environments,	or	the	study	of	content	delivery	techniques	to	LTE-based	devices	
in	 both	 emulated	 and	 real-world	 settings.	 	 The	 introduction	 of	 radio	 cloud	 upgrade	 is	 focused	 on	
supporting	new	classes	of	experiments	including	cooperative	spectrum	sensing,	distributed		MIMO	or	
similar	 cooperative	 processing	 functions,	 centralized	 radio	 resource	management	 and	 low-latency	
cloud	processing.	

	

4.2.1 LTE	Deployment	
During	the	last	year	significant	effort	was	invested	in	expanding	the	experimentation	capabilities	with	
LTE	 radio	 technology	 which	 is	 becoming	 ubiquitous	 as	 the	 next-generation	 radio	 air	 interface	 for	
cellular	 systems	 worldwide.	 In	 addition	 to	 platforms	 that	 were	 previously	 available	 for	 LTE	
experimentation,	the	testbed	was	expanded	with	a	number	of	production	grade	small	and	medium	
coverage	 basestations.	 The	 two	models	 	 (deployed	 as	 part	 of	 GENI	Wireless	 project),	 the	 Airspan	
AirHarmony	1000	and	Airspan	AirSynergy	2000	(Figure	13)	were	deployed	in	sandbox	4	and	outdoor	
domains.	

	
Figure	13:	AirSpan	LTE	Basestations	and	Client	Devices	

	

a. Sandbox	(SB4)	LTE	Deployment	
Two	AirHarmony	1000	basestations	were	deployed	 in	ORBIT	sandbox	4	 (Figure	14)	 	 to	support	LTE	
experiments.	Given	that	these	are	fairly	high	output	power	units	meant	for	outdoor	installation,	the	
two	antenna	ports	are	each	passed	 through	30dB	50	Watt	attenuators	before	 the	combiner	which	
connects	to	an	RF	switch.	The	switch	allows	the	user	to	select	between	having	a	basestation	(LTE	or	
WiMAX)	or	a	node	connected	to	the	JFW	attenuator	matrix.	
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Figure	14:	ORBIT	Sandbox	4	

	

Of	the	9	RF	capable	nodes	in	sandbox	4,	up	to	four	can	be	“replaced”	by	the	experimenter	with	LTE	
or	WiMAX	base	stations	as	desired.	For	example,	the	testbed	can	be	reconfigured	easily	as	9	nodes,	8	
nodes	and	an	LTE	base	station,	or	5	nodes	and	2	WiMAX	and	2	LTE	base	stations.	The	configuration	is	
done	via	a	simple	REST	call	to	the	instrumentation	service	(OMF	AM	service)	which	will	 instruct	the	
network	 connected	 RF	 switch	 to	 toggle	 one	 (or	more)	 of	 its	matrix	 attenuator	 facing	 ports	 to	 be	
connected	to	either	a	node	or	a	base	station.	This	allows	for	an	experimenter	to	change	the	topology	
of	 the	 testbed	 in	 terms	of	 combinations	of	nodes	and	base	 stations	without	necessitating	physical	
modification	of	the	testbed.	Since	the	configuration	of	the	RF	switches	is	handled	programmatically,	
not	 only	 can	 the	 topology	 of	 a	 sandbox	 be	 easily	 customized	 but	 it	 can	 also	 be	 reconfigured	mid	
experiment	by	coordinating	the	capabilities	of	the	JFW	matrix	attenuator.	

	

b. Outdoor	LTE	Deployments	
As	part	of	larger	GENI	wireless	deployment,	project	one	Airsynergy	2000	base	station	was	deployed	
on	 each	 of	 the	 two	 Rutgers	 campuses	 that	 are	 part	 of	 ORBIT	 outdoor	 deployment.	 The	 two	 base	
stations	were	deployed	with		2.3-2.7GHz	90deg	17dBi	Dual	X-Polar	Antennas.		

	

4.2.2 ORBIT	Massive-MIMO	Extension	
The	ORBIT	massive-MIMO	extension	design	is	based	on	the	concept	of	wheeled	mini-rack	with	four	
racks	 deployed	 in	 four	 corners	 of	 the	 grid.	 This	 allows	 for	 easy	 reconfiguration	 of	 the	 setup	 to	
support	experiments	with	varying	number	of	antennas	as	well	as	varying	number	of	array	locations	
at	the	expense	of	wiring	infrastructure.		

This	 four	 racks	deployment	 is	enabling	a	number	of	 interesting	 topological	combinations	 including:	
a.)	 one	 corner	 with	 large	 number	 of	 antennas,	 b.)	 two	 corners	 with	modest	 number	 of	 antennas	
aimed	at	experimentation	with	point-to-point	massive-MIMO	type	of	 systems,	and	c.)	 four	corners	
with	smaller	number	of	antennas	each	for	system	testing.	Number	of	existing	SDR	units	that	are	part	
of	 the	 ceiling	 nodes	 are	 intended	 to	 be	 used	 as	 clients.	 Each	 rack	 is	 connected	by	 2	 RF	 cables	 for	
timing	synchronization,	16	duplex	multimode	fibers	for	backhaul	to	the	SDRs,	2	cat6	Ethernet	 jacks	
for	management,	and	a	20A	120v	circuit	for	power.	Installed	timing	cabling	is	equal	length,	others	are	
asymmetric	length	as	needed.	Quantity	of	cables	run	depends	on	corner,	as	one	corner	has	support	
for	all	4	racks,	one	has	support	for	2	racks,	and	the	remaining	two	support	a	single	rack	each.	All	of	



	 H2020	-	GA	No.	645274	 D5.4	
 

   23	

the	 64	 higher-end	 SDR	 units	 in	 ORBIT	 can	 now	 be	 fully	 synchronized	 with	 a	 newly	 introduced	
reference	clock	distribution	system	that	is	based	on	Ettus	Octoclock	hardware	(Figure	15).	

	
Figure	15:	RF	Synchronization	Subsystem	

	

4.2.3 Mini-rack	Massive	MIMO		
The	 Massive-MIMO	 setup	 is	 based	 on	 a	 concept	 of	 mini-rack.	 That	 contains	 8	 Ettus	 USRP	 X310	
software	defined	radios	outfitted	with	two	UBX	160	radio	daughterboards	each	as	shown	 in	Figure	
16.	Unlike	USRPs	in	the	main	20x20	Grid	which	are	directly	attached	to	individual	nodes,	each	USRP	
in	the	mini-rack	is	connected	via	2x	10G	Ethernet	fiber	to	the	top-of-the-mimo	switch	that	is	in	turn	
directly	connected	to	the	top	ORBIT	aggregation	switch.	PPS	and	10MHz	synchronization	signals	are	
distributed	among	the	USRPs	 in	each	rack	via	an	Octoclock	based	timing	distribution	system.	Equal	
length	cables	are	used	to	ensure	minimum	timing	deviation	within	and	between	the	racks	allowing	
for	all	USRPs	across	the	four	racks	to	by	synchronized.	Additional	hardware	is	present	in	each	rack	to	
allow	for	power-cycling	and	"imaging"	of	the	USRPs	in	a	similar	manner	to	standard	nodes.	
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Figure	16:	ORBIT	Massive	MIMO	Mini	Rack	

	

4.3 FIBRE	Island	@	UFRJ	
No	changes	are	reported	for	the	FIBRE	testbed	at	UFRJ	during	Y2.	

	

4.4 IRIS	
The	IRIS	testbed	received	the	following	hardware	extensions	in	Year	2.	

• External	HDs	and	USB	Connector	for	backing	up	rack	servers	
• Power	Adapters	to	support	WiSHFUL	Demos	
• Two	TERRATEC	Cinergy	S2	USB	-	Digital	TV	tuners	

o Connections:	 1	 x	 USB,	 Included	 Accessories:	 Remote	 control,	 Cables	 Included:	 1	 x	
USB	 cable,	OS	Required:	Windows	XP	 SP3,	Windows	Vista	 (32/64	bits),	Windows	7	
(32/64	bits)	SP1,	8	(32/64	bits).	
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Figure	17	TERRATEC	Cinergy	S2	USB	-	digital	TV	tuner	

	

4.5 TWIST	(TUB)	
Second	Wi-Fi	 interface	 based	 on	 Qualcomm	 Atheros	 AR928X	 chipset	 with	 external	 antennas	 was	
added	to	all	NUC's.	That	means	that	currently	Intel	NUC	devices	are	equipped	with	two	cards,	where	
each	 allows	 for	 operation	 in	 2.5GHz	 and	 5GHz	 bands.	 For	 practical	 reasons	 one	 card	 is	 using	 an	
internal	antenna	and	the	second	custom	mounted	external	antennas	 (two	per	card).	This	has	been	
achieved	by	drilling	new	antenna	holes	 in	 the	standard	 Intel	NUC	box,	which	didn’t	 require	adding	
additional	enclosures.	

Furthermore,	 all	 Intel	 NUC	 devices	 have	 been	 equipped	with	Metageek	Wi-Spy	 2.4x	 devices,	 that	
allow	for	easy	spectrum	monitoring.	

	

4.6 Portable	testbed	
The	 hardware	 extensions	 to	 the	 portable	 testbed	 are	 documented	 in	 D6.4	 and	 are	 therefore	 not	
repeated	here.	
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5 Development	&	Fed4FIRE	compatibility	of	new	tools	

5.1 Tools	for	the	integration	of	WiSHFUL	UPIs	in	testbeds	
This	chapter	describes	 the	 tools	 that	are	used	 to	allow	easy	 integration	of	WiSHFUL	software	onto	
the	FED4FIRE	compliant	testbeds.	Several	major	modifications	were	made	to	the	approach	proposed	
in	 D5.2,	 based	 on	 valuable	 feedback	 from	 the	 experimenters.	 To	 be	 able	 to	 describe	 the	 entire	
experiment	 flow	 and	 the	 integration	 of	 the	WiSHFUL	UPIs	 into	 this	 flow,	 some	of	 the	 information	
from	D5.2	is	repeated	in	these	sections.		

Conceptually,	the	integration	can	still	be	seen	as	depicted	in	Figure	18.		

	

	
Figure	18	WiSHFUL	UPIs	in	testbeds	

	
Because	all	Fed4FIRE	compliant	testbeds	have	a	specific	 implementation	(e.g.	Rspec	extensions)	for	
the	Fed4FIRE	interfaces	(SFA,	FRCP,	OMSP),	testbed	adaptation	tools	need	to	be	developed	that	offer	
a	generic	interface	to	the	global	monitoring	and	configuration	interface.		

The	following	abbreviations	are	used	below:	

• Global	MCE:	Global	Monitoring	&	Configuration	Engine	
• Local	MCE:	Local	Monitoring	&	Configuration	Engine	

The	 following	 requirements	were	 identified	 as	 being	 crucial	 for	 successful	 integration	 of	WiSHFUL	
UPIs	in	testbeds:	

• Node	discovery	(see	section	0):	The	Global	MCE	requires	knowledge	on	the	number	and	type	
of	 nodes	 that	 are	 part	 of	 an	 experiment.	 This	 information	 should	 not	 require	 manual	
interaction	 from	the	experimenter.	Note	 that	 the	 testbed	node	discovery	 is	 supplementary	
to	the	WISHFUL	framework	node	discovery	and	offers	the	global	MCE	a	view	on	the	available	
testbed	nodes	which	might	not	all	be	required	to	conduct	the	WiSHFUL	experiment.		

• Experiment	setup	(see	section	5.1.2):	The	 installation	of	Global	and	Local	MCE’s	on	testbed	
nodes	should	be	automated.	

• WiSHFUL	control	 (see	section	5.1.4):	All	 tasks	 regarding	WiSHFUL	control	 should	be	cleanly	
separated	from	end-user	applications	(experiment	control).	

• Monitoring	 &	 measurements	 (see	 section	 5.1.5):	 OML	 (OMSP)	 can	 be	 used	 for	 gathering	
monitoring	 results	 from	each	 testbed	node.	 It	would	be	nice	 if	WISHFUL	 control	 programs	
could	 use	 the	 OML	 library	 for	 logging	 information,	 allowing	 to	 easily	 evaluate	 and	
demonstrate	the	impact	of	the	control	program	logic.		
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The	following	sections	describe	every	step	in	the	experiment	lifecycle	and	give	a	detailed	description	
of	how	the	WiSHFUL	UPIs	can	be	cleanly	integrated	into	this	workflow.		

	

5.1.1 Node	discovery	
SFA	can	be	used	for	resource	discovery,	e.g.	knowing	which	nodes	are	 in	an	experiment.	Using	the	
resource	descriptions	advertised	by	the	testbeds	AM	(in	Rspec	format)	the	type	of	nodes	and	their	
capabilities	can	be	retrieved.	JFed	can	be	used	to	select	&	provision	the	discovered	resources	(nodes)	
that	are	needed	to	conduct	the	experiment.		

	

5.1.2 Experiment	Setup	
Scripts	can	be	configured	in	jFed	so	that	on	start-up	extra	software	is	 installed	on	the	nodes.	If	this	
software	is	complex	to	install	and	depends	on	lots	of	libraries,	tools	like	Ansible	could	be	used.	This	
feature	will	be	exploited	to	install	the	software	components	for	the	following	control	functionalities:	

• Experiment	Control	(see	section	5.1.3):	An	Ansible	script	is	provided	to	the	experimenters	to	
install	an	OMF	Experiment	Controller	(on	one	node)	and	OMF	Resource	Controllers	on	all	
other	nodes.	

• WiSHFUL	Control	(see	section	5.1.4):	An	Ansible	script	is	provided	to	allow	installation	of	
WiSHFUL	software	onto	testbed	nodes.	This	might	install	the	Global	MCE	on	one	node	and	
Local	MCE	on	all	other	nodes.	

In	contrast	to	the	integration	approach	which	was	described	in	D5.2,	it	is	now	no	longer	required	to	
use	OMF	in	order	to	do	WiSHFUL	experimentation.	This	reduces	the	amount	of	new	frameworks	to	
which	the	user	has	to	become	acquainted.	Also,	as	OMF6	is	written	in	Ruby	and	WiSHFUL	in	Python,	
it	becomes	overly	complicated	for	the	experimenter.	Of	course,	the	experimenter	can	still	chose	to	
run	both	OMF6	and	WiSHFUL	in	parallel	if	the	experiment	requires	it.	However,	it	is	no	longer	a	strict	
requirement.	Furthermore,	users	of	OMF6	can	also	benefit	from	the	approach	proposed	below.	

	

a. 	Ansible	support	in	jFed	
jFed	 (v5.7)	 now	 natively	 supports	 the	 Ansible	 framework	 to	 allow	 easy	 installation	 of	 complex	
software	packages.	When	using	Ansible	on	testbeds,	the	most	common	approach	is	to	allow	one	of	
the	 nodes	 in	 the	 experiment	 to	 act	 as	 Ansible	 controller.	 To	 turn	 a	 normal	 node	 into	 an	 Ansible	
controller,	add	the	following	Rspec	tags	to	a	node:	

<services> 
      <install install_path="/local" url="http://doc.ilabt.iminds.be/jfed-
documentation-5.7/_static/install-ansible.tar.gz" /> 
      <execute shell="sh" command="cd /local &amp;&amp; sudo /bin/bash 
install-ansible.sh" 
jfed:finished_flag="/tmp/ansible-install-finished"/> 
</services> 

To	allow	the	Ansible	controller	 (one	node	of	 the	experiment)	 to	 log	 into	all	 the	other	nodes	 in	 the	
experiment	over	SSH,	to	be	able	to	install	all	software	listed	in	the	Ansible	playbook,	add	this	line:	

<jfed:distribute_ssh_keypair /> 

jFed	also	has	the	ability	to	automatically	create	an	inventory	file	of	the	experiment.	In	the	inventory	
file,	different	groups	can	be	created.	The	experimenter	can	decide	which	software	will	be	installed	on	
nodes	of	a	certain	group.	For	example:	one	group	could	be	created	for	all	nodes	on	which	a	WiSHFUL	
Local	MCE	should	be	installed.	Another	group	could	be	created	for	one	node	where	the	Global	MCE	
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should	be	installed.	To	allow	the	creation	of	groups	in	the	inventory	file,	jFed	supports	a	new	ansible-
group	 tag	 in	 the	 Rspecs.	 The	 following	 code	 fragment	 shows	 the	 Rspec	 for	 a	 node	 in	 the	w-iLab.t	
testbed	that	is	part	of	the	WISHFUL	Local	MCE	group.	

<node client_id="accesspoint1" exclusive="true"  
                              
component_manager_id="urn:publicid:IDN+wilab2.ilabt.iminds.be+authority+cm"
> 
       <sliver_type name="raw-pc"/> 
       <jfed:ansible_group name="wishful_local_mce"/> 
</node> 

The	resulting	inventory	file	would	then	look	like	this:	

[wishful_local_mce] 
accesspoint1  ansible_host=zotacB1.wilab2.ilabt.iminds.be 

The	same	node	can	be	part	of	several	different	groups.	This	functionality	can	be	used	by	the	OMF	EC	
and	the	WiSHFUL	Global	MCE	to	get	a	list	of	all	nodes	in	the	experiment	(or	only	nodes	belonging	to	a	
certain	logical	group).		

By	using	the	following	Rspec	tag,	the	user	can	specify	in	which	directory	the	inventory	file	should	be	
uploaded:	

<jfed:ansible inventory="/local/my_repo/playbooks"> 

	

b. Example	Ansible	playbooks	
Several	 example	 Ansible	 playbooks	 are	 available	 in	 the	 ExperimentationTools	 directory	 of	 the	
WirelessTestbedAcademy	[2].	Playbooks	are	available	for	the	installation	of:	

• OMF6	Experiment	controller	
• OMF6	Resource	controller	
• OML	Measurement	Server	
• WiSHFUL	Global	MCE	
• WiSHFUL	Local	MCE	

To	execute	a	specific	Ansible	playbook,	some	extra	Rspec	additions	are	required.	The	example	below	
shows	the	commands	required	to	run	the	wishful.yml	playbook	on	the	nodes	defined	in	the	inventory	
file	wishful_hosts.		

<jfed:ansible 
       galaxy-command="sudo ansible-galaxy" 
       install_requirements="/local/my_repo/playbooks/ansible-
requirements.yml" 
       inventory="/local/my_repo/playbooks/wishful_hosts" 
       playbook-command="sudo ansible-playbook" 
       execute_playbook="/local/my_repo/playbooks/wishful.yml” 
       debug="true" 
 /> 

	

5.1.3 Experiment	Control	
OMF6	is	used	to	define	the	functionality	of	the	nodes	in	the	experiment	and	to	construct	a	timeline	
(time	 and/or	 event	 based)	 of	 the	 experiment.	 In	 practice,	 this	 will	 result	 in	 giving	 the	 testbed	
resources	 a	meaningful	 name	 and	 assigning	 applications	 to	 run	 on	 them.	 It	 is	 possible	 to	 use	 the	
information	from	the	Ansible	inventory	file	(see	5.1.2a)	in	the	OMF	experiment	description.	
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The	experiment	 script	 can	 then	 filter	 the	 list	of	 resources	 in	 the	 inventory	 file	based	on	 the	group	
they	belong	to.	Below	is	an	example	inventory	file	that	could	be	used	by	OMF	to	configure	two	nodes	
as	wireless	access	point,	while	the	other	two	nodes	are	configured	as	clients.	Note	that	the	OMF	RC	
should	be	installed	on	all	nodes,	which	is	why	all	nodes	are	member	of	the	OMF_RC	group.	

[omf_ec] 
expcontroller  ansible_host=dssK5.wilab2.ilabt.iminds.be 

[omf_rc] 
accesspoint1  ansible_host=zotacB1.wilab2.ilabt.iminds.be 
accesspoint2  ansible_host=zotacB2.wilab2.ilabt.iminds.be 
client1  ansible_host=zotacB3.wilab2.ilabt.iminds.be 
client2  ansible_host=zotacB4.wilab2.ilabt.iminds.be 

[accesspoints] 
accesspoint1  ansible_host=zotacB1.wilab2.ilabt.iminds.be 
accesspoint2  ansible_host=zotacB2.wilab2.ilabt.iminds.be 
 
[clients] 
client1  ansible_host=zotacB3.wilab2.ilabt.iminds.be 
client2  ansible_host=zotacB4.wilab2.ilabt.iminds.be 

	

5.1.4 WiSHFUL	Control	
To	 the	 experimenter,	 the	WiSHFUL	 software	 can	 be	 considered	 as	 extra	 functionality	 that	 can	 be	
included	in	his	experiment	to	allow	for	more	advanced	control	strategies.	

The	global	and	local	control	programs	define	the	network/radio	control	logic.	The	Global	MCE	should	
be	able	to	retrieve	the	nodes	in	the	experiment.	In	contrast	to	the	approach	proposed	in	D5.2	section	
5.1;	this	approach	no	longer	requires	OMF	to	be	used	to	start	WiSHFUL	control	on	testbeds.	In	this	
approach,	OMF	and	WiSHFUL	can	be	used	as	two	separate	frameworks.	Depending	on	the	needs	of	
the	experimenter,	a	combination	of	both	frameworks	can	be	advised.		

It	 is	 possible	 to	 use	 the	 information	 from	 the	 Ansible	 inventory	 file	 (see	 5.1.2a)	 in	 the	WiSHFUL	
Global	MCE.	The	Global	MCE	can	then	 filter	 the	 list	of	 resources	 in	 the	 inventory	 file	based	on	the	
group	they	belong	to.	Below	is	an	example	inventory	file	that	could	be	used	by	WiSHFUL	to	configure	
two	nodes	as	wireless	access	point,	while	the	other	two	nodes	are	configured	as	clients.	Note	that	
the	WiSHFUL	Local	MCE	should	be	installed	on	all	nodes,	which	is	why	all	nodes	are	member	of	the	
WiSHFUL_Local_MCE	 group.	 Only	 one	 node	 will	 act	 as	 WiSHFUL	 Global	 MCE.	 To	 simplify	 the	
inventory	file,	we	use	the	groups-of-groups	functionality	in	Ansible.	

[wishful_global_mce] 
globalcontroller  ansible_host=dssK5.wilab2.ilabt.iminds.be 

[wishful_local_mce:children] 
accesspoints 
clients 

[accesspoints] 
accesspoint1  ansible_host=zotacB1.wilab2.ilabt.iminds.be 
accesspoint2  ansible_host=zotacB2.wilab2.ilabt.iminds.be 
 
[clients] 
client1  ansible_host=zotacB3.wilab2.ilabt.iminds.be 
client2  ansible_host=zotacB4.wilab2.ilabt.iminds.be 

Note	 that	 adding	 nodes	 to	 a	 group	 can	 easily	 be	 done	 by	 using	 the	 ansible-group	 tag	 in	 jFed.	 All	
topology	information	is	thus	constructed	by	jFed	and	can	afterwards	be	queried	by	other	frameworks	
such	as	OMF	and	WiSHFUL.	Topology	changes	will	therefore	not	affect	the	experiment	description	in	
OMF,	nor	will	they	change	the	global	control	program.	This	is	because	selecting	a	different	physical	
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resource	 will	 not	 change	 the	 logical	 groups	 formed	 in	 the	 inventory	 file.	 Also	 running	 the	 same	
experiment	on	different	testbeds	should	be	significantly	simplified	by	this	approach.	

5.1.5 Monitoring	&	measurements	
The	 OMF	 experiment	 controller	 can	 define	 events	 based	 on	 measurement	 information	 stored	 by	
OML.	 By	 default,	 OML	 clients	 send	 their	 data	 to	 an	 OML	 server,	 which	 stores	 the	 data	 into	 a	
database.	The	OMF	EC	can	query	this	database	and	then	act	 if	 the	measurements	exceed	a	certain	
threshold.	However,	the	delay	that	is	introduced	by	this	method	might	be	too	high	to	quickly	react	to	
changing	situations.		

To	solve	this	 issue,	the	WiSHFUL	Global	MCE	will	serve	as	an	OML	proxy	server.	This	way,	 it	will	be	
able	to	parse	all	data	before	passing	it	on	to	the	real	OML	server.	The	Global	MCE	will	not	store	the	
data	 in	 a	 database,	 but	 keep	 the	 last	 received	 measurements	 available	 in	 RAM	 (e.g.	 Python	
associative	array).	Using	this	solution,	no	modifications	are	needed	to	the	OML	framework.	Instead,	
the	WiSHFUL	Global	MCE	will	be	extended	to	support	parsing	and	forwarding	of	OML	measurement	
streams.	The	OML	server	now	serves	as	a	pure	measurement	logger.	

The	 measurement	 logger	 library	 was	 added	 on	 WirelessTestbedAcademy	 under	
EperimentationTools/measurement_logger.	 Beside	 support	 for	 OML,	 also	 measurement	 loggers	
were	 created	 that	 log	 data	 into	 a	 CSV	 file,	MySQL	 database,	 a	 log	 file	 or	 to	 the	 standard	 output.	
Information	 about	 the	 type	 of	 measurements	 and	 the	 active	 logger	 type	 is	 defined	 in	 a	 YAML	
measurement	configuration	file.	This	information	should	be	passed	to	the	WiSHFUL	control	program	
at	start-up.	The	library	will	then	spawn	and	prepare	the	correct	logger	based	on	the	YAML	input.	

	

5.1.6 Summary	
This	 section	 serves	 as	 a	 summary	 by	 listing	 all	 the	 steps	 in	 the	 experiment	 life	 cycle	 assuming	
WiSHFUL	 is	 used	 as	 the	 experiment	 control	 framework.	 Therefore	 OMF	 is	 not	 mentioned	 in	 this	
experiment	flow.	

• The	experimenter	uses	his	F4F	certificate	to	start	jFed.	
• The	 experimenter	 chooses	 a	 selection	 of	 resources	 from	 a	 certain	 testbed,	 assigns	 them	 to	

different	logical	groups	and	activates	his	experiment	using	jFed.	
• By	using	simple	Ansible	 install	 scripts,	 the	user	enables	WiSHFUL	control	on	 the	nodes	 in	his	

experiment.	 The	 install	 scripts	 are	 automatically	 executed	 by	 jFed	 at	 the	 start	 of	 an	
experiment.	

• The	WiSHFUL	Global	and	Local	MCEs	are	automatically	started	by	jFed	when	the	installation	is	
finished.	

• The	 user	 creates/modifies/activates	 the	 WiSHFUL	 Global	 and/or	 Local	 Control	 Programs.	
Information	about	the	logical	groups	of	the	nodes	can	be	queried	from	the	inventory	file.	

• OML	monitoring/measurement	streams	originating	from	end-user	applications	or	Local	MCEs	
are	parsed	by	the	Global	MCE	before	being	forwarded	to	the	OML	server.	The	Global	MCE	can	
take	decisions	based	on	thresholds	defined	for	these	measurements.		

	

5.2 SDR	Frameworks	
Software-Defined	Radio	 (SDR)	refers	 to	platforms	where	wireless	signal	processing	 is	performed	by	
software	 modules.	 A	 detailed	 description	 of	 SDRs	 is	 available	 in	 D2.4	 section	 2.2.	 The	 two	 most	
common	 SDR	 frameworks	 utilised	 by	 the	 SDR	 development	 community	 and	 available	 to	WiSHFUL	
users	include:	GNU	Radio	and	IRIS.	
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5.2.1 GNU	Radio	
GNU	 Radio	 is	 an	 open	 source	 and	 free	 to	 use	 SDR	 framework	 that	 is	 flexible	 and	 adaptive	 for	
advanced	wireless	research,	experimentation	and	education	[4].	It	is	written	in	C++	and	Python	and	
has	 a	 very	 large	 development	 community	with	 an	 active	 user	 support	 network.	 It	 offers	 a	 simple	
reusable	model	for	developing	new	components	allowing	experimenters	to	build	software	radio	and	
signal	 processing	 applications.	 This	 is	 achieved	 by	 writing	 new	 signal	 processing	 blocks	 and	
supporting	the	reuse	of	existing	blocks.	Blocks	are	joined	into	connected	flowgraphs	through	which	
signal	data	flows	are	processed.	One	of	the	most	appealing	aspects	of	GNU	Radio	is	that	open	source	
components	developed	by	other	experimenters	can	be	easily	be	incorporated	into	new	experiments,	
which	can	reduce	experiment	setup,	development	and	testing	time.	

GNU	 Radio	 is	 currently	 used	 by	 the	 IRIS	 testbed	 at	 Trinity	 College	 Dublin	 for	 advanced	
experimentation	 and	 also	 education.	 A	 detailed	 experiment	 scenario	 showcasing	 of	 some	 of	 GNU	
Radio’s	 capabilities	 in	Radio	Virtualisation	 is	outlined	 in	D2.4	 section	2.2.	The	GNU	Radio	WiSHFUL	
UPIs	utilised	by	the	Radio	Virtualisation	experiment	are	outlined	in	D2.4	section	2.2.1.	

	

5.2.2 IRIS	
The	 IRIS	 SDR	 system	 is	 flexible	 and	 adaptive	 open	 source	 framework	 for	 advanced	 software	 radio	
research	 [9].	 It	 is	 a	 component-based/modular-based	 system	 that	 supports	 dynamic	 runtime	
reconfiguration,	which	is	written	in	C++.	A	component	is	an	element	or	stage	in	the	signal-processing	
chain.	The	radio	designer	determines	each	components	level	of	functionality	and	complexity.	A	radio	
can	 be	 created	 using	 a	 combination	 of	 existing	 or	 new	 radio	 components	 by	 experimenters.	
Components	 are	 key	 to	 IRIS’s	 reconfigurability	 and	 support	 reuse	 among	 different	 applications.	
Complex	flow-graph	structures	are	connected	together	to	support	radio	transmit	and	receive	chains,	
which	are	unambiguously	represented	using	Extensible	Markup	Language	(XML)	[9].	Human	readable	
XML	supports	a	simple	interface	for	external	reconfiguration	of	runtime	radios.	

IRIS	is	currently	used	by	the	IRIS	testbed	in	Trinity	College	Dublin	for	advanced	radio	experimentation	
and	 education.	 Since	 its	 inception	 in	 2004,	 there	 have	 been	many	 experimental	 SDR	 applications	
using	IRIS	including	[9]:		

• Using	OFDM	waveforms	in	a	TV	white	space	network,		
• Using	 novel	 physical	 (PHY)-layer	 signalling	 techniques	 for	 network	 rendezvous	 and	

coordination	in	dynamic	spectrum	access	networks,		
• Using	 a	 Cell	 Broadband	 Engine	 (CellBE)	 platform	 implementing	 real-time	 cyclostationary	

analyser.				

The	IRIS	WiSHFUL	UPIs	are	outlined	in	D2.4	section	2.2.2.	A	experiment	scenario	showcasing	of	some	
of	IRIS’s	WiSHFUL	capabilities	is	outlined	in	D2.4	section	2.2.	

	

5.3 	Tools	for	sensor	experiments	
This	section	describes	two	tools	to	facilitate	sensor	experiments.	The	first	subheading	describes	how	
to	 use	 the	 TAISC	parser	 to	 create	 a	 single	 sensor	 binary,	which	 contains	 all	 required	 libraries.	 The	
second	subheading	describes	the	usage	of	a	Logic	Analyzer	to	enable	TAISC	MAC	debugging.	

	

5.3.1 TAISC	Parser	as	a	single	binary	
The	TAISCParser	is	a	Python	script	which	generates	byte	code,	which	can	be	interpreted	by	a	TAISC	
Virtual	Machine	on	a	sensor	node,	from	a	TAISC	Chain	written	in	a	C-dialect-source	file.	As	this	script	
uses	specific	libraries,	and	a	specific	Python	version,	its	portability	is	reduced.	In	order	to	cope	with	
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the	differences	in	setups	at	the	end-user	side,	or	on	different	testbeds,	this	script	has	been	converted	
into	 a	 single	 binary.	 This	 significantly	 simplifies	 the	 execution	 of	 sensor	 experiments	 on	WiSHFUL	
testbeds.	

	

a. Dependencies	
The	TAISCParser	script	depends	on	the	following	libraries:	

• Python2.7	
• crcmod	
• crc16	
• python-clang-3.4	

If	 the	end-user	has	other	 versions	of	 the	above	 libraries	 installed,	 then	 the	TAISCParser	will	 fail	 to	
install.	A	virtual	environment,	with	the	correct	packages	installed,	is	needed	to	cope	with	this.	

	

b. PyInstaller	
The	open	source	platform	PyInstaller	[10]	can	be	used	to	compile	the	TAISParser	into	a	single	binary.		

Standard	usage	of	PyInstaller	gives	the	following	result:	
root@wulf:~/staticpytest# python2.7 PyInstaller-3.2/pyinstaller.py TAISCParser.py  
	

This	command	will	result	in	lots	of	separate	files:	one	file	for	every	dependency.	To	combine	all	the	
shared	libraries	into	one	single	binary,	the	following	command	can	be	used:	
root@wulf:~/staticpytest# python2.7 PyInstaller-3.2/pyinstaller.py TAISCParser.py -
-onefile 

	

The	compiled	file	can	then	be	distributed	among	end-users,	while	still	being	flexible	for	developers	to	
modify	the	Python	code	if	needed.	Note	that	the	compiled	version	is	OS	dependent.		

	

5.3.2 Logic	Analyzer	for	TAISC	MAC	debugging	
The	 Saleae	 Logic	 Analyzer	 [11]	 can	 be	 used	 to	 do	 in-depth	 debugging	 of	 TAISC	MAC	protocols.	 16	
GPIOs	(general	purpose	inputs	and	outputs)	are	selected	on	the	target	platform	to	observe	the	TAISC	
activities	via	a	Logic	Analyzer	 like:	chain	and	 instruction	envelopes,	 radio	activity,	and	so	 forth.	For	
now	 the	 RM090	 and	 the	 Zolertia	 Re-Mote	 sensor	 nodes	 are	 interfaced	 in	 a	 uniform	way,	 but	 this	
approach	can	be	applied	to	any	other	target	platform.		
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Figure	19:	LA		wires	on	the	Zolertia	Re-Mote	

In	 combination	with	 the	Saleae	 software	 it	enables	 the	experimenter	 to	monitor	a	MAC	 for	a	 long	
period	(typically	in	the	order	of	hours)	with	lots	of	detail	(sub-microsecond	execution).	

A	more	detailed	list	of	the	16	LA	channels	can	be	found	here:	

• 0..2:	three	wire	(software)	SPI	(data,	clock	and	enable)	with	16	wide	data	which	is	used	to	
reports	on	the	active	chain	and	instructions	

• 3:	tasks	invoked	by	TAISC	out	of	interrupt	context	(similar	to	TinyOS	tasks)	
• 4:	BAD	if	this	line	goes	high	something	(defined	in	software)	went	bad.	It	is	used	to	trigger	

the	LA	software	if	something	goes	bad.	
• 5:	TAISC	train:	shows	the	chain	envelope.	Becomes	high	on	the	first	instruction	of	a	chain	and	

goes	low	again	on	a	stop	instruction.	
• 6:	STATS:	this	channels	informs	about	reports	and	assign	which	are	invoked	on	the	control	

plane	interface	and	also	the	activities	of	the	data	plane	interface	like	when	a	frame	is	passed	
for	transmission,	rxTrigger,	txTrigger,...	

• 7:	Instruction	envelope.	It	shows	the	different	execution	parts	of	every	instruction.	First	part	
is	the	fetching	of	the	instruction,	second	part	is	the	execution	of	the	instruction	itself,	third	
part	is	used	to	report	chain	and	instruction	ID	on	the	SPI	(first	3	LA	lines)	of	the	current	
instruction	and	the	last	part	is	the	rescheduling	of	the	next	instruction.	

• 8:	becomes	high	when	frames	are	being	received	or	transmitted	on	the	RF	part	of	the	radio.	
So	could	be	seen	as	a	frame	envelope.	

• 9:	this	line	displays	if	the	radio	oscillator	is	active.	
• 10:	this	line	shows	if	the	radio	is	transmitting	(only	cfr.	Line	8).	
• 11:	this	line	represents	if	the	RF	part	of	the	radio	is	enabled.	
• 12:	this	line	informs	when	events	are	triggered	towards	the	TAISC	core.	
• 13:	displays	the	activity	of	the	core	scheduler	
• 14-15:	these	lines	reveals	the	serial	communication	to	and	from	the	target	platform	

This	 has	 been	 an	 extremely	 important	 debugging	 tool	 especially	 for	 long	 time	 stability	 testing	 of	
TAISC	in	all	kind	of	situations:	MAC	switching,	different	interference	patterns,	channel	switching,	and	
so	forth.	

As	an	example	a	brief	workflow	is	described:	in	Figure	20	one	can	notice	a	flat	line	on	the	instruction	
channel	 8.	 It	 happens	 after	 receiving	 an	 ACK	 on	 the	 last	 transmitted	 frame	 see	 channel	 8.	 After	
zooming	in,	the	ACK	envelope	is	still	visible	on	channel	8,	around	where	the	flat	line	begins	one	can	
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notice	that	instruction	33	(grabframe)	freezes	the	train	on	TAISC	chain	4	(0x0433	was	diplayed	on	the	
first	3	LA	channels).	So	we	know	now	that	we	can	start	debugging	the	grabframe	instruction.	

	

	
Figure	20:	LA	example	1	

	
Figure	21:	LA	example	1	(zoomed	in)	

	

This	hardware	has	been	deployed	on	6	sensor	nodes	in	the	w-iLab.t	testbed	and	can	be	accessed	by	
using	the	standard	F4F	testbed	tools.	This	enables	the	users	to	do	very	detailed	debugging	of	 their	
sensor	protocols.		
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5.4 Generic	measurement	visualization	
To	 allow	 the	 experimenter	 to	 easily	 visualize	 the	 results	 obtained	 from	 experiments,	 a	 generic	
measurement	visualization	tool	was	developed.	This	tool	operates	on	top	of	any	database	and	is	thus	
compliant	with	the	OML	measurement	library.	Currently,	two	database	flavours	 	are	 supported:	
MySQL	and	PostgreSQL.	The	 tool	does	not	 require	 the	experimenter	 to	adopt	a	new	programming	
language,	 since	 the	 input	 of	 the	 user	 is	 limited	 to	 SQL	 commands.	 Furthermore,	 since	 the	 tool	 is	
completely	web	based,	it	can	easily	be	used	on	any	testbed.	It	is	currently	in	use	in	the	w-iLab.t	and	
the	portable	testbed.	Figure	22	shows	an	example	SQL	query	that	can	be	inputted	to	the	visualization	
tool.	

	

	
Figure	22:	SQL	command	for	measurement	visualization	

	

Figure	23	shows	the	throughput	of	an	802.11g	WiFi	network.	Using	this	tool,	it	is	possible	to	zoom	in	
and	slide	through	the	graph.	It	is	also	possible	to	visualize	multiple	series	(lines)	on	one	graph,	which	
can	 be	 dynamically	 enabled	 or	 disabled.	 The	 tool	 can	 visualize	 both	 live	 and	 offline	measurement	
data.	By	right-clicking,	the	user	can	save	the	graphs	in	the	desired	format.	
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Figure	23:	Example	graph	showing	WiFi	throughput	

5.5 Spectrum	sensing	
Two	types	of	hardware	to	do	spectrum	scanning	are	described	 in	this	chapter.	The	first	 type	 is	 the	
Wi-Spy	spectrum	scanner,	which	can	be	used	to	do	very	basic	spectrum	scanning.	The	second	type	is	
the	more	advanced	mini	USRP.	Since	both	Wi-Spy	and	USRP	mini	can	easily	be	connected	over	USB	to	
any	type	of	computer,	the	tools	presented	here	can	be	applied	to	any	testbed.	

	

5.5.1 Wi-Spy	
The	Wi-Spy	gives	the	experimenter	a	quick	and	basic	view	on	what	the	current	channel	occupation	is.	
This	 low-cost	 spectrum	 analyzer	 supports	 both	 2.4	 and	 5GHz.	 Tools	 are	 provided	 for	 the	
experimenter	 that	 allow	Wi-Spy	 sensing	 data	 to	 be	 stored	 in	 a	 database	 and	 easily	 visualize	 the	
measurements	 on	 a	 web	 page	 (called	 ‘spectro’).	 More	 details	 on	 this	 tool	 can	 be	 found	 in	 D5.1	
section	4.1.1.		Figure	24	shows	activity	on	802.11g	channel	1	(2412MHz).		
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Figure	24:	Wi-Spy	output	using	the	spectro	tool	

	

5.5.2 USRP	mini	
With	its	very	small	dimensions	(8x5cm)	and	its	USB3.0	interface,	the	USRP	B200-mini	(Figure	25)	is	a	
very	portable	spectrum	scanner	that	can	easily	be	plugged	into	any	testbed.	

	
Figure	25:	USRP	B200-mini	

	

In	 combination	 with	 the	 SDR	 framework	 GNUradio	 (see	 5.2.1),	 the	 USRP	 mini	 allows	 the	
experimenter	to	easily	visualize	the	spectrum	from	70MHz	to	6GHz,	with	up	to	56MHz	bandwidth.	A	
simple	screenshot	 from	GNUradio	can	be	seen	 in	Figure	26.	 It	 shows	simple	energy	detection	on	a	
given	frequency,	which	makes	it	possible	to	e.g.	detect	WiFi	or	ZigBee	packets.		
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Figure	26:	GNUradio	screenshot	constructed	with	USRP	b200-mini	
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6 Conclusion		
This	deliverable	shows	that	all	of	the	testbeds	in	WiSHFUL	(w-iLab.t,	ORBIT,	FIBRE	Island	@	UFRJ,	IRIS,	
TWIST	and	the	Portable	testbed)	have	reached	FED4FIRE	compliance	on	the	level	of	the	AM	API.	This	
API	 enables	 the	 use	 of	 existing	 FED4FIRE	 tools	 on	WiSHFUL	 testbeds.	 It	 also	 enables	 the	 use	 of	 a	
single	user	certificate	to	access	all	testbeds	in	WiSHFUL	and	FED4FIRE.	The	use	of	one	user	account	in	
combination	with	uniform	tools	greatly	 simplifies	 the	experimentation	 life	cycle	 for	experimenters.	
During	the	second	year	of	the	project,	the	IRIS	testbed	was	brought	up	to	F4F	federation	standards	
by	 implementing	 the	GENI	AMv3	SFA	API	by	using	 the	Geni	Control	 Framework	 (GCF)	provided	by	
geni-tools.		

For	the	IRIS	testbed,	an	example	experiment	life	cycle	is	illustrated,	making	use	of	existing	FED4FIRE	
tools.	 The	 TWIST	 testbed	 can	 now	 support	 the	 creation	 of	 custom	 disk	 images	 and	 now	 provides	
testbed	 logging	 functionalities.	 For	 other	 testbeds,	 we	 refer	 to	 D5.2,	 since	 these	 testbeds	 were	
already	 F4F	 compatible	 at	 the	 end	 of	 Y1.	 The	 jFed,	 OMF6	 and	 OML	 tools	 are	 supported	 by	most	
testbeds	 and	 allows	 the	user	 to	 very	 easily	 provision	 resources,	 do	 automated	experiment	 control	
and	collect	measurements	in	a	uniform	way.		

Additionally,	 this	 deliverable	 gives	 an	 overview	 of	 the	 extensions	 that	 were	 made	 to	 WiSHFUL	
testbeds.	 The	w-iLab.t	 reports	 the	 addition	 of	 new	wireless	 nodes	 to	 increase	 the	 capacity	 of	 the	
testbed	as	well	as	the	support	for	802.11ac,	LTE	and	the	Adant	RAS	antenna.	In	addition,	a	secondary	
testbed	 location	 of	 the	 w-iLab.t	 was	 equipped	 with	 44	 new	 wireless	 nodes	 supporting	 802.11n,	
802.11ac,	802.15.4	and	Bluetooth	4.0.	The	IRIS	testbed	reports	the	addition	of	two	digital	TV	tuners.	
The	 nodes	 in	 the	 TWIST	 testbed	were	 extended	with	 a	 second	WiFi	 interface,	 as	well	 as	 a	WiSpy	
spectrum	 analyser	 for	 every	 node.	 The	 ORBIT	 testbed	 reports	 the	 addition	 of	 a	 number	 of	 LTE	
basestations	and	clients	as	well	as	an	increase	in	the	number	of	SDR	patforms.	

Furthermore,	a	detailed	description	regarding	the	 integration	of	WiSHFUL	UPIs	 in	testbeds	 is	given.	
The	 approach	 defines	 a	 loose	 coupling	 between	 the	 testbed	 interfaces	 and	 the	WiSHFUL	UPIs,	 by	
using	Ansible	playbooks	and	inventory	files.	Ansible	playbooks	are	provided	for	the	experimenter	to	
facilitate	the	installation	of	WiSHFUL	Global	and	Local	MCEs,	while	the	usage	of	inventory	files	allows	
the	experimenter	to	create	logical	groups	of	nodes	in	his	experiment.	Using	the	built-in	support	for	
Ansible	in	jFed,	the	experimenter	can	create	these	logical	groups	when	provisioning	the	experiment.	
This	means	that	it	becomes	very	easy	to	map	the	experiment	to	a	different	testbed,	or	to	change	the	
topology	of	the	nodes	without	having	to	change	the	WiSHFUL	experiment,	because	it	only	makes	use	
of	 the	 logical	groups	 instead	of	 the	physical	 resources.	The	 inventory	 files	 can	also	be	used	by	 the	
OMF	experiment	controller	to	configure	the	experiment.		

To	 conclude	 this	 deliverable,	 several	 tools	 are	 described	 to	 facilitate	 SDR	 research	on	 testbeds,	 as	
well	as	to	do	advanced	debugging	of	sensor	experiments,	visualize	measurement	data	and	do	simple	
spectrum	sensing	in	the	WiSHFUL	testbeds.	To	enable	SDR	research,	both	GNUradio	and	the	IRIS	tool	
can	be	used	on	several	testbeds.	The	in-depth	debugging	of	sensor	experiments	is	made	possible	by	
the	addition	of	a	Logic	Analyzer	to	6	sensor	nodes	in	the	w-iLab.t	testbed.	To	simplify	the	deployment	
of	sensor	experiments	using	TAISC,	the	TAISC	parser	is	able	to	create	a	single	sensor	binary	that	can	
easily	 be	 deployed	 using	WiSHFUL.	 Simple	measurement	 visualization	 is	 made	 possible	 through	 a	
web	page	that	fetches	data	from	a	database.	Using	SQL	queries	provided	by	the	experimenter,	this	
generic	 solution	can	be	used	 for	all	 types	of	applications	and	 is	not	bound	to	a	single	 testbed	or	a	
single	tool	like	OML.	To	finish	the	document,	two	methods	are	proposed	to	do	spectrum	sensing	in	
WiSHFUL	testbeds.	One	method	uses	the	low-cost	WiSpy	USB	dongles	to	visualize	the	spectrum	on	a	
web	page	or	to	store	the	measurements	in	a	database.	The	second	method	uses	the	USRP	B200-mini	
in	 combination	 with	 GNUradio.	 These	 approaches	 for	 spectrum	 sensing	 will	 be	 further	 extended	
during	Y3	of	 the	project,	during	which	spectrum	sensing	techniques	 from	the	CREW	project	will	be	
applied	to	WiSHFUL	testbeds	while	ensuring	F4F	compatibility.	

	



	 H2020	-	GA	No.	645274	 D5.4	
 

   40	

7 References	
	

[1]		 Geni-tools, https://github.com/GENI-NSF/geni-tools,		last	access	December	1st 2016.	

[2]		 ExperimentationTools	 repository	 on	 the	 WirelessTestbedsAcademy	 Github	 account,	 available	 at	
https://github.com/WirelessTestbedsAcademy/ExperimentationTools,	last	access	December	16th	2016		

[3]		 iLab.t	 authority,	 available	 at https://authority.ilabt.iminds.be/getcert.php,	 last	 accessed	December	2nd	
2016	

[4]	  Iris	 Experiment	 Tutorial, http://iris-testbed.connectcentre.ie/experiment_tutorial/,	 last	 accessed	
December	7th	2016	

[5]		 w-iLab.t	 documentation	 website,	 available	 at http://doc.ilabt.iminds.be/ilabt-
documentation/wilabfacility.html,	last	accessed	December	2nd	2016.	

[6]		 TKN	 instructions	 on	 creating	 custom	 disk	 images,	 https://www.twist.tu-berlin.de/tutorials/custom-disk-
images.html,	last	accessed	December	18th	2016	

[7]		 TKN	 Testbed	 system	 images,	 https://gitlab.tubit.tu-berlin.de/twist-testbed/twist-img,	 last	 accessed	
December	18th	2016	

[8]		 Graylog,	available	at	https://www.graylog.org/,	last	accessed	December	18th	2016	

[9]		 P.	D.	Sutton	et	al.,	"Iris:	an	architecture	for	cognitive	radio	networking	testbeds,"	in	IEEE	Communications	
Magazine,	vol.	48,	no.	9,	pp.	114-122,	Sept.	2010.doi:	10.1109/MCOM.2010.5560595	

[10]		PyInstaller,	 available	 at	 http://www.pyinstaller.org/	 or	 at	 https://github.com/pyinstaller/pyinstaller,	 last	
accessed	December	12th	2016	

[11]		Saleae	Logic	Analyzer,	available	at	https://www.saleae.com/	,	last	accessed	December	14th	2016	

	


