WiSHFUL H2020 - GA No. 258301 D5.1

* %%

o b
*
*

European
~ Commission
———

Wireless Software and Hardware platforms for

Flexible and Unified radio and network control

Project Deliverable D5.1

Design of experimentation tools

Contractual date of delivery: 30-06-2015

Actual date of delivery: 30-06-2015

Beneficiaries: IMINDS, TCD, TUB, UFRJ, RUTGERS, NCENTRIC

Lead beneficiary: IMINDS

Authors: Pieter Becue (IMINDS), Vincent Sercu (IMINDS), Bart Jooris

(IMINDS), Michael Mehari (IMINDS), Peter Ruckebusch (IMINDS),
Nicholas Kaminski (TCD), Mikolaj Chwalisz (TUB), Ivan Seskar
(RUTGERS), Robin Leblon (NCENTRIC), Jose F. de Rezende (UFRJ)

Reviewers: Ingrid Moerman (IMINDS)
Work package: WP5 — FED4FIRE compliance
Estimated person months: 3.5

Nature: R

Dissemination level: PU

Version: 35

Abstract:

This deliverable starts with an overview of all WiSHFUL testbeds and describes the status of their
level of Fed4FIRE (FAF) compliance. Orbit and w-iLab.t are fully F4F compliant, while TWIST, IRIS and
the FIBRE island at UFRJ are implementing their version of the federation AM API to be included in
the FAF federation. Three F4F federation tools are described and will be extended during the course
of the WiSHFUL project. SFA (jFed) will be used to discover, reserve and provision resources. FRCP
(OMF6) will provide advanced functionality for experiment control. Finally, OMSP (OML) facilitates
the collection of measurement and monitoring data. The deliverable is concluded by presenting
tools for advanced wireless monitoring, a framework for the automation of experiments, a tool for
the automation of complex software deployment and a short description of the integration of
WIiSHFUL UPI’s in the testbeds.

Keywords:
Fed4FIRE architecture, testbed infrastructure, Fed4FIRE tools, WiSHFUL UPI tools

WiSHFUL H2020 - GA No. 258301 D5.1

Executive Summary

This month 6 deliverable reports on the status of Fed4FIRE compliance of all WiSHFUL
infrastructures. Some of the WiSHFUL testbeds have reached full F4F compliance (i.e. Orbit and w-
iLab.t). The TWIST and IRIS testbeds are working towards an implementation of the federation AM
API by using the Geni Control Framework. The FIBRE island at UFRJ uses the SFAwrap tool to enable
an SFA compatible API. Of the available F4F federation tools, three tools are chosen to support
experimenters on WiSHFUL testbeds: jFed, OMF6 and OML. jFed implements the SFA protocol and
enables discovery, reservation and provisioning of testbed resources. OMF6 is an FRCP compatible
tool that allows advanced experiment control by a uniform description of testbed resources and
applications. The OML library provides an easy way for experimenters and facility providers to collect
and store experiment measurement and monitoring data. Finally, some new tools are described to
better assist users of the WiSHFUL testbeds and software in all stages of the experiment life cycle.
Some advanced tools for wireless spectrum monitoring are described, followed by a tool for the
automation of experiments. A framework for the automation of software deployment (Ansible)
allows users to set up complex software suites on testbed resources in a uniform way. The
deliverable is concluded by describing the integration of the WiSHFUL UPIs in a testbed environment.

WiSHFUL

H2020 - GA No. 258301

List of Acronyms and Abbreviations

AJAX
AM
AMQP
AP
ASIP
CH
COR
EC
DHCP
DIFFS
DNS
FLS
FRCP
F4F
GCF
GENI
GUI
HRN
HTMLS
ISM
JSON
LDAP
LDIF
LTE
LTS
ML
MP
MS
NDL
OEDL
OF
OMF
oML
OMSP

Asynchronous Javascript And XML
Aggregate Manager

Advanced Message Queuing Protocol
(Wireless) Access Point
Application-specific instruction set processor
Clearinghouse

Channel Occupancy Ratio

Experiment Controller

Dynamic Host Configuration Protocol
Dlgital Front-end For Sensing

Domain Name System

First Level Support

Federated Resource Control Protocol
Fed4FIRE

GENI Control Framework

Global Environment for Network Innovations
Graphical User Interface

Human Resource Name

HyperText Markup Language version 5
Industrial, scientific and medical radio bands
JavaScript Object Notation
Lightweight Directory Access Protocol
LDAP Data Interchange Format
Long-Term Evolution (known as 4G)
Long Term Support

Measurement Library

Measurement Point

Measurement Stream

Network Description Language

OMF Experiment Description language
OpenFlow

cOntrol and Management Framework
(Orbit) Measurement Library

OML Measurement Stream Protocol

D5.1

WiSHFUL

PDP
PHP
PKI
PoE
RC
RDF
REST
RF
Rspec
RSSI
SE
SCALDIO
SDR
SFA
SFI
SPARQL
sQL
SUMO
TCP
UN-II
URN
USRP
VLAN
VPN
XML
XMPP

H2020 - GA No. 258301

Policy Decision Point

PHP: Hypertext Processor (used to be Personal Home Page)
Public Key Infrastructure

Power over Ethernet

Resource Controller

Resource Description Framework
Representational State Transfer

Radio Frequency

Resource Specification

Received Signal Strength Indication
Sensing Engine

SCAlable raDIO

Software Defined Radio

Slice-based Federation Architecture
Python command line client for SFA
SPARQL Protocol and RDF Query Language
Structured Query Language

SUrrogate Modeling

Transmission Control Protocol

Unlicensed National Information Infrastructure
Uniform Resource Name

Universal Software Radio Peripheral
Virtual LAN

Virtual Private Network

Extensible Mark-up Language

Extensible Messaging and Presence Protocol

D5.1

WiSHFUL H2020 - GA No. 258301 D5.1

Table of contents

T INtrodUCHION ... —————————— 7
2 Fed4FIRE compliance of WiSHFUL testbedscccccooiimmiecciiiirreccce s 7
2.1 Slice-based Federation Architecture (SFA).....cccceeireeeuiiieeeneereenneereennerneeassessenssessennsessennnes 7
N A 1 =TT T Y= o T YU] TP PUPR 9

R N 4= =Y =l Y - T - T-1=] PP PPTPPPPPPPPPPPPPPPRE 10

2.1.3 GCF SOftWare PaCKage......uueeiiiiieeeiiie ettt et e e e e re e e st e e e e tr e e e esasaeeesnsaeeesnsseeennes 13

2.2 TWIST (TUB)u.uuuuuereiiiiiiiiiuneieeiiiiiiisssseeeesssssssssssere s s s ssssssssssste e s s sssssssssssesesssssssssssssensssssssnns 13
2.2.1 Testbed architeCtUrecoociiiiiiiiii e e 13

2.2.2 Federated testbed architeCturecccooiiiiiiiiiiiic e 17

28 | L 0 0) N 17
2.3.1 Testbed architeCturecoociiiiiiiiiii e e 17

2.3.2 Federated testbed architeCturecccooviiiiiiiiiiii e 18

2.4 FIBRE ISIaNd (UFRIJ)......uuuuuueiiiiiiiiiiittniiciiininneserecsnssssssste s ssssssssse s e s s ssssssessssssssnnns 18

2.5 Orbit (RUTGERS) ..cccoiiiiinunnieiiiiiiiinenieeesissssseseree s sssssssssste e s s ssssssssssse s e s ssssssssssssesssssssssnns 20
2.6 W-ILab.t (IMINDS)ccoiiiiunieeiiiiiiiineeeees i ese e ssass e s sssss e e e s s s s s sasss e e e s sssssnnes 21

3 Deployment and extension of existing F4F tools.............ccccccoiiiiiiiiiminineccnnnnn. 23
R S 23
311 ROttt ettt ettt ee ettt e e et et et e ee et en e s e enaes s ee e erae e eeereens 23

0 {0 S 27
2070t O 11 | o PP 28

20 T 0 111 S 30
20 0t O 1 PP 31

4 Development and F4F compatibility of new tools............ccccoeviiiiiriiiiiiirecennnnnn. 34
4.1 Advanced wireless MoNitoring tOOISccccciveeiiiiiiniiiiiieiiniineniniireiisieneisienesssiensssssennes 34
4.1.1 Basic spectrum scanning USINE Wi-SPY ...ccueuiiriiiiiiiiiiiiiiieieieieieieieieieierererernn o 34

4.1.2 Distributed SPECLrUM SCANNING ...uuvviiiiiiiiiiciiteee et e e e ee s e e e e e e sssbrrreeeeeessssnsreeeeesssessannes 36

4.2 Advanced tools for automation of experimentsccccceeiiiiieciiiiirecniniinnninieennene. 39
4.2.1 Wireless experiment automation using the SUMO t00IbOXuvveeviiiiiiiiiiieiien e 39

4.3 Advanced tools for automation of testbed/software deployment...........cccccvvurueereeenneennnne 42
B.3.1 ANSIDIE . e 42

4.4 Tools for the integration of WiSHFUL UPIs in testbedsccccceeiiiireniiiiineninineeninnenenninnenee. 44

5 CoNCIUSION.....ccceeiri i ——————————— 44

WiSHFUL

6 References

H2020 - GA No. 258301 D5.1

WiSHFUL H2020 - GA No. 258301 D5.1

1 Introduction

This deliverable reports on the work planned in WP5 “FED4FIRE compliance” and prepares the
implementation work for the first experimentation toolset which is due on month 12.

The document first describes the ongoing efforts to get all WiSHFUL infrastructures compatible with
the Fed4FIRE standards. A crucial part in the Fed4FIRE architecture is the use of SFA (Slice-based
Federation Architecture). Therefore a short explanation of SFA is included in this deliverable,
explaining concepts like slices, slivers, aggregate manager and clearinghouse.
The Orbit testbed at RUTGERS and the w-iLab.t testbed at IMINDS are already compliant to Fed4FIRE.
For the TWIST testbed at TUB and the IRIS testbed at TCD, it is described how they implement their
version of the federation aggregate manager by using the GENI Control Framework package.
The FIBRE island at UFRJ makes use of a different implementation to support an SFA interface on top
of their testbed, namely the SFAwrap tool.

Out of the currently available tools offered by the Fed4FIRE project, a selection is made in order to
support all WiSHFUL infrastructures and provide experimenters with a uniform way to access
different types of resources. The experimenter tool that is chosen to enable experimenters to access
the SFA interface of the testbeds is called jFed. jFed is a client-side experimenter tool that allows
experimenters to discover, reserve and provision resources in a wide variety of testbeds. To support
the FRCP standard for experiment control, the OMF6 tools are proposed in this deliverable. For the
collection of experiment measurement data and the monitoring of both infrastructure and resources,
the OMSP protocol and corresponding OML library are described. In the first stage of the WiSHFUL
project, the focus will be on extending the jFed tool to allow experimenters to use resources of
different testbeds in a uniform way. In later stages of the project, the OMF6 and OML will be
extended to support more advanced experiment control and uniform measurement collection.

The final chapter of this deliverable is dedicated to new tools that will be offered by month 12 in the
form of a first experimentation toolset. Because knowledge about the wireless spectrum is very
important, the first category of tools is dedicated to advance wireless monitoring. Next, a tool for the
automation of experiments is described which can be used by experimenters to explore multi-
dimensional parameter spaces to obtain the optimal operating point(s) for a set of certain
configuration parameters. If experimenters have complex software suites to be installed on testbed
resources, the WIiSHFUL project also offers an advanced tool for the automation of software
deployment, called Ansible. To conclude the deliverable, a guideline is given for the integration of
WIiSHFUL UPIs into the testbeds.

2 Fed4FIRE compliance of WiSHFUL testbeds

This chapter describes how WiSHFUL testbeds are modified to comply with the Fed4FIRE standards.
In the first section, the F4F architecture is briefly repeated (see D2.1) and a tool is presented that can
facilitate the federation process of existing (or new) testbeds. The next sections describe how the
federation process is being implemented for the existing WiSHFUL testbeds: TWIST (TUB), Router
testbed (TUB), IRIS (TCD) and the FIBRE island at UFRJ. The chapter is concluded by shortly describing
the Orbit testbed (RUTGERS) and the w-iLab.t testbed (IMINDS). These testbeds were already FAF
compliant prior to the start of the WiSHFUL project. After successfully federating the testbeds listed
above, all WiSHFUL testbeds will be FAF compliant.

2.1 Slice-based Federation Architecture (SFA)

The Fed4FIRE architecture is built around the concept of the Slice-based Federation Architecture
(SFA[1], see D2.1). The SFA architecture covers the initial stages in the experiment lifecycle, such as
resource discovery, requirements, reservation and provisioning (see left side of Figure 1). In order to
comply with the F4F standards, every testbed needs to provide an SFA interface to support these
stages. This is the case for both the advanced and light FAF federation model (see D2.1).

WiSHFWL H2020 - GA No. 258301 D5.1

Discovery, reservation Measurement and
and provisioning Experiment control monitoring

Experimenter

Testbed
management

Testbed
hardware

Figure 1 The Fed4FIRE federation tools.

Testbeds can enable an SFA interface by implementing two major components: a clearinghouse[2]
and a Federation Aggregate Manager (AM) API[3]. In cooperation with GENI [4] (Global Environment
for Network Innovations), the Fed4FIRE project offers several tools in order to make it easy for new
testbeds to implement those components specifically for their testbed architecture. The tool chosen
as a reference clearinghouse & AM implementation for the WiSHFUL testbeds is called the Geni
Control Framework, now part of GENI-tools (see 2.1.3).

Discovery, reservation
and provisioning

Experimenter

Testbed
management

Figure 2 A Clearinghouse and AM example.

WASHFUL H2020 - GA No. 258301 D5.1

The clearinghouse (Figure 2) takes care of user, project and slice management, while the aggregate
manager provides testbed resources to experimenters. The following two sections describe the
functionality of the clearinghouse and the aggregate manager. The chapter is concluded by giving an
overview of the Geni Control Framework.

FAF federation requirements such as documentation, policies and facility monitoring will not be
described in this deliverable, as having an operational AM API is a crucial first step to joining the F4F
federation. The federation protocols for experiment control (FRCP (see 3.2)) and measurement
collection (OMSP (see 3.3)) are shortly described in the deliverable, but are not mandatory to join the
FAF federation.

2.1.1 Clearinghouse
The functionality of the clearinghouse is split into the management of users, projects and slices.

Clearinghouse

Create & register user/
S o > Users
S project/ slice
-— N—
f —
[)
-
c
g Projects
= User / Project / Slice
3 credentials
"
Slices
N

Figure 3 A Clearinghouse example.

The user management is handled by an Identity Provider and provides certificates and PKI (Public Key
Infrastructure) keys to the experimenters.

The project authority is responsible for creating project and assigning roles to the different members
of the project.

The slice authority provides experimenters with slice credentials. The slice concept is very important
to understand the working of the SFA architecture: a slice is an abstraction for a collection of
resources (WiFi/sensor nodes, servers, robots, etc.) capable of running experiments. A slice can be
shared by one or more experimenters. An experiment can thus use resources of a certain slice.
Experimenters can request slices at the clearinghouse and get a slice credential back.

WiSHFWL H2020 - GA No. 258301 D5.1

Clearinghouse

Create & register slice
Slice credentials

Figure 4 The get slice credential process.

Experimenter tool

Using this slice credential, the user can add resources to the slice. The functionality to add resources
to a slice is part of the aggregate manager (see section 2.1.2). Therefore, a slice can contain
resources from different testbeds at the same time. The selection of resources of a slice that are
managed by the same aggregate manager is called a sliver.

Sliver
[.
Testbed A Testbed B Testbed C

Figure 5 The Slice and sliver concept.

2.1.2 Aggregate Manager

The aggregate manager exposes the federation AM API. This API can be seen as an extra layer on top
of an already existing testbed management framework. As with any API, the exposed functions are
common across all testbed in the federation, but the implementation of each function will be specific
for every testbed.

Experimenters can make use of SFA-enabled client tools (see section 3.1) to use the functions
exposed by the AM API. Client tools communicate with AM APIs by using Rspec (Resource
specification [5]) documents. Rspecs are XML-formatted documents that contain a detailed listing of
resources (and their specifications) of a certain AM. There are three different kinds of Rspec
documents:

10

WASHFUL H2020 - GA No. 258301 D5.1

* The advertisement Rspec is sent by the AM in response to a ListResources call and gives a
detailed listing of all available resources managed by that AM.

* The request Rspec is passed as an argument to the CreateSliver call. It contains a subset of
the resources selected by the user to run the experiment on.

* The manifest Rspec contains a detailed listing of the resources that have been reserved for
the experimenter. This description contains all specifications of the resources that could be
needed by the experimenter to conduct the experiment (e.g. network configuration,
software versions, etc.).

The figure below shows a simplified version of the calls made by an experimenter tool to the
aggregate manager.

ListResources

\ 4

. - .
What are the available resources ? Advertisement RSpec

A

CreateSliver (Request Rspec, ...)

I would like to use these resources

Manifest RSpec

Aggregate
Manager

A

ListResources (SliceName, ...)

\ 4

What resources am | using ? Manifest RSpec

o
«

Figure 6 Available AM API calls.

The workflow to set up an experiment using the federation AM API is described below. The AM API
functions that can be directly mapped onto a stage in the experiment lifecycle are also shown
between brackets in the section below. Note that the CreateSliver command is split up into three
separate calls in this description: Allocate, Provision and PerformOperationalAction.

The steps shown in Figure 6 and Figure 7 are explained in this section. The first step in the
experiment lifecycle is to discover the available resources (ListResources), after which the
experimenter will request a certain subset of those resources (Allocate). The next step is to provision
the reserved resources (Provision) and start them up (PerformOperationalAction). After the
resources are started, the status can be checked (Status) and the reservation can be extended
(Renew). If the experimenter no longer has a need for the resources, they can be released (Delete).
Different versions of the AM API are currently in use by several testbeds, therefore is it possible to
request the AM API version from the tools (GetVersion) to ensure compatibility. Testbed owners can
decide to stop (Shutdown) a slice (a collection of resources assigned to an experimenter) if the slice is
in conflict with the testbed policies.

11

WiSHFWL H2020 - GA No. 258301 D5.1

Allocate (SliceName, SliceCredential, Request Rspec,...)

ManifestRSpec

Provision(SliceName, SliceCredential, Request Rspec, ...)

ManifestRSpec

PerformOperationalAction (SliceName, SliceCredential,...)

Figure 7 AM calls required for CreateSliver.

To conclude this section, the experiment workflow, including the AM API functions, are summarised
below in the order in which they will be called for a typical experiment.

1.

10.

11.

The experimenter gets a certificate and slice credential from the clearinghouse, thus
renewing the slice if it had expired. The user and slice credentials are passed on as
arguments for most of the AM functions below. They are omitted from the function
definitions for the sake of simplicity.
The client tool executes a GetVersion call to learn which RSpec formats are supported by this
aggregate manager.
The ListResources call invokes the sending of an Advertisement Rspec, describing all available
resources at that aggregate.
The experimenter constructs a request Rspec, containing all the resources needed to conduct
the experiment.
The Allocate(<request RSpec>) call invokes the following operations:

a. The aggregate reserves the resources specified in the request Rspec

b. The AM returns a manifest RSpec describing the reserved resources
Next, the Provision(<request RSpec>, <users struct>) call instantiates the resources and also
returns a manifest Rspec describing the reserved resources and the configuration
information that is specific for this instantiation. A part of the provisioning process could be
to load an operating system onto a resource.
The Status(<slice URN or sliver URNs>) call checks if the resources are already provisioned.
Finally, —the aggregate starts the resources in the slice by calling
PerformOperationalAction(<slice URN>, ":start").
The Status(<slice URN>) call now checks if the resources have been started.
Optionally, the Renew(<slice URN or sliver URNs>, <new time>) call can extend the
reservation of the resources.
The experimenter can now conduct the experiment and call Delete(<slice URN or sliver
URNs>) when done.

12

WiSHFWL H2020 - GA No. 258301 D5.1

2.1.3 GCF Software package

The Geni Control Framework (GCF [6]) software package implements a sample clearinghouse and
aggregate manager. The GCF software package is part of GENI-tools on GitHub [7] and is being
developed, extended and maintained by both the GENI and Fed4FIRE project.

The sample clearinghouse implementation takes care of all the specifics for dealing with certificates
and PKI keys. The testbed administrator’s tasks are limited to configuring some options and defining
their policies (e.g. which AM’s to trust).

The sample aggregate manager provides templates for all functions that have to be implemented in
order to be compatible with other aggregate managers’ APIs in the federation. The testbed specific
implementation of the AM functions is the responsibility of the testbed administrators.

The GCF software package also includes some client tools, which can be used by facility providers to
test their newly deployed clearinghouse and aggregate manager. However, in the first stages of the
WIiSHFUL project, only the jFed tool will be used (see 3.1).

To conclude, the GCF software package provides all the necessary tools for facility providers to
implement their own federation AM APl and should save them a considerable amount of time and
effort to join the federation.

2.2 TWIST (TUB)

2.2.1 Testbed architecture

a. Sensor Network

The TKN Wireless Indoor Sensor Network Testbed (TWIST) is a multiplatform, hierarchical testbed
architecture developed at the TKN. The self-configuration capability, the use of hardware with
standardized interfaces and open source software make the TWIST architecture scalable, affordable,
and easily replicable (Figure 9). The TWIST instance at the TKN office building is one of the largest
remotely accessible testbeds with 204 sockets, currently populated with 102 eyesIFX and 102 Tmote
Sky nodes (Figure 8). The nodes are deployed in a 3D grid spanning 3 floors of an office building at
the Technische Universitit Berlin (TUB) campus, resulting in more than 1500 m? of instrumented
office space. In small rooms, two nodes of each platform are deployed, while the larger ones have
four nodes. This setup results in a fairly regular grid deployment pattern with intra node distance of
3 m, as shown in Figure 10. Within the rooms the sensor nodes are attached to the ceiling.

Figure 8 Tmote Sky (left), eyes IFXv2 (middle) and NLSU2 supernode / USB Hub (right).

13

WASHFUL H2020 - GA No. 258301 D5.1

Y

Remote Node
Client Super USB 2.0 Hub

Ethernet/WLAN eyesIFXv2.1

USB 2.0 Hub
Node

k.

USB Cable
Public
Server(s)

Super
Node

Tmote Sky

Figure 9 The hardware components of the TWIST testbed.

154 T
{
i
@ @ e L @ @ @
104
S— S— S— — S— SE— T
pa— — g
5] " e0 o0 o0 e e @ e .
o (o) (8] o L @ @
o - - ‘ - T - - - l' - — -l - - - L) - - - T - l'
0 5 10 15 2 s R < o ra

Figure 10 The locations of sensor nodes in the 2nd floor of TWIST testbed.

b. Turtlebot Il Robotic Platform

Turtlebot Il robotic platform comprises of a mobile base called Kobuki, a laptop, a router and a
Microsoft Kinect 3D camera sensor (Figure 11). On the software side we are using Robot Operating
System (ROS), an open source approach for robots. ROS comes with numerous drivers and libraries
that cover everything from low-level communication with hardware as well as higher layer tasks,
such as mapping, navigation and obstacle avoidance. Besides that, ROS is also a communication
middleware that transports information between components in ROS. The dominating scheme is
topic oriented asynchronous message exchange in the fashion of publish-subscribe, but it also has
means for synchronous communication. It is easily extendible through either publishing or
subscribing to existing topics or through creating new ones. By doing so, ROS can also be used to
transport arbitrary data. This allows using ROS for controlling robots and extends the system by
adding components on top of that.

14

WASHFUL H2020 - GA No. 258301 D5.1

We have set up an autonomous testbed environment in which we use the Turtlebot to position the
Solution Under Test (SUT) at different locations (Figure 12). To do that we leverage the navigational
capabilities of ROS that also includes obstacle avoidance. ROS uses a map, given a-priori, and
localizes itself by matching the depth information of the Kinect 3D camera with the outline of the
known map. ROS provides a simple interface to request the robot to drive autonomously to a given
coordinate, so called goal, and a path planer is calculating the best path towards it. We have
embedded these calls to move the robot to the next location into a higher schedule. First we define a
set of waypoints that have to be covered in the experiment, then the robot iterates autonomously
over each one of them. The whole procedure is followed in an unstructured office environment with
dynamic obstacles, like humans, opening / closing the doors, etc.

For communicating with the rest of the infrastructure the mobile platform is equipped with a WLAN
access point that operates in client mode and connects to one of the six APs deployed on every floor
in our building. We are controlling the robot's AP by a ROS component that is location aware and
selects the most appropriate AP in the different parts of the floor.

Figure 11 The Turtlebot Robotic Platform.

_—

waypoint®
Kinect = Navigation Waypoint
inec
| |) ~ System »'m
1 upda(e

Map . Visual Mobile
_ Server _ Localization | _ Base
— J— 0 J 3 Kobuki

-+

|

Figure 12 The Robotic Platform Design.

15

WASHFUL H2020 - GA No. 258301 D5.1

c. WLAN Access Points

TKN testbed is equipped with 18 dual band TP-link N750 APs (model TL-WDR4300) (Figure 13). They
run under the control of the OpenWRT operating system that can be customized for each
experiment. The positions of the WLAN APs in the 2" floor of TKN testbed are depicted in Figure 14.

Figure 13 The TL-WDR4300 WLAN Access Point.

0 T T T >l> >l' L

0 5 10 15 20 % T
Figure 14 The locations of WLAN routers in the 2nd floor of TKN testbed.

d. WMP on Alix2D2 Embedded PCs

Wireless Mac Processor (WMP) is a customizable WLAN 802.11b/g MAC. It is running on ALIX2D2
embedded PCs equipped with Broadcom WL5011S 802.11b/g cards and shown in Figure 15. In our
infrastructure three ALIX2D2 exist.

E A, — - (s) =

o

Figure 15 An Alix 2D2 embedded PC.

16

WiSHFUL H2020 - GA No. 258301 D5.1

2.2.2 Federated testbed architecture

The WLAN routers, Robots, and Alix2D2 PCs, do not have a public API allowing external users to
easily access them. However, to enable the access for external users, GCF will be used to implement
the TWIST AM. It will be deployed in one of the TWIST public servers allowing for external federated
users to provision resources in the testbed. This gateway server will interact with the internal
infrastructure to configure the provided resources. For example, it will allow the users to deploy their
own and custom OpenWRT image on the router as well as start and control the robot behaviour. It
will also generate RSpecs, as needed to conform to the Fed4FIRE approach to user interaction. Finally
it will provide SSH connections to the routers and APl access to interact with the robot.

Currently TWIST Sensor Network runs under the control of its own open source control system
allowing users to reserve time on the testbed on the per platform basis. It is a stable system working
for many years but in the current state it is not compatible with the AM APIs. It is planned that in the
first phase of the work this system will stay in place without any modifications. The TWIST AM will in
the later stage provide access to the sensor network in terms of image deployment on the particular
sensors and Serial Forwarder interface to communicate with them. This can be achieved by a direct
mapping to the current TWIST access to the sensor nodes. Those are constrained devices, so SSH
based access cannot be achieved.

2.3 IRIS (TCD)

2.3.1 Testbed architecture

The Implementing Radio In Software testbed (IRIS) is a reconfigurable radio testbed based on
software-defined radio (SDR), hosted by Trinity College Dublin (TCD), through the
telecommunications research centre (CTVR). This testbed supports experimentation with a flexible
radio system running on a virtualized computational platform. The testbed is organised into 16
experimentation units, each of which consisting of three parts: a virtual computational platform, SDR
software, and flexible radio frontend hardware. This organization encapsulates the elements
required to use an SDR system to construct a broad range of radio systems. Each experimentation
unit is designed to flexibly serve a range of needs: Linux (Ubuntu 14.04 LTS) provides a highly
configurable computation platform, IRIS provides real-time radio reconfigurability, and a Universal
Software Radio Peripheral (USRP [8]) offers a broad range of wireless interfaces. Radio hardware is
housed on the ceiling of a dedicated indoor testing space to provide users with a clean operating
environment. The management infrastructure allows users to deploy experimentation units to
compose arbitrary radio systems and networks as desired.

i Experimentation
Unit

i Experimentation i) =
i Unit i

i BT

g

PI\;itrch:Jr?;s ==
& b b &
e IEEEY?
Manager Host Servers E\% é% é% é%

Figure 16 The TCD testbed System Architecture.

17

WiSHFUL H2020 - GA No. 258301 D5.1

Figure 16 displays the architecture of the virtualized testbed. In this paradigm, underlying hardware
is composed into experimentation units to server users as described above. An array of servers,
referred to as host servers, provide the computational power to support running SDR software and
supporting software with virtual machines. Each virtual machine is connected to a USRP mounted on
the ceiling grid within the dedicated testing space. The cloud manager coordinates and controls
virtual machines, handling the deployment of computational environments and their connection to
USRPs.

2.3.2 Federated testbed architecture

Figure 17 displays the application of the GCF based AM in the TCD testbed. The AM implementation
is deployed on a publically accessible gateway that allows federation users to provision resources as
necessary. The GCF implementation is used as a frontend to the facility that handles requests from
federated users in the manner specified by the Fed4FIRE project. These requests are translated into
an internal TCD testbed protocol to interact with the cloud manager that configures the underlying
resources to provide the requested platforms. The gateway server also generates RSpecs as needed
to conform to the Fed4FIRE approach to user interaction. Finally, the gateway server also provides
SSH connectivity to experimentation units once they are provisioned.

Experimentation
Unit

Experimentation
Unit @)n—é
el [k =
Z}
——)Il =
Gateway
Server
<<<<<<<<<<<_< é élg é é
] SRR L L L L
=18 x —— ——>
% = -
Cloud e
Manager
Host Servers i { ¥ ¥

USRPs

Figure 17 The TCD testbed user interaction.

The GCF based AM exposes resource provisioning in the standard Fed4FIRE manner. For example,
the ListResource call returns an Advertisement Rspec, listing all of the currently available
experimentation unit versions and associations (a VM connected to a USRP, where the version refers
to the pre-loaded version of IRIS and the position refers to the position of IRIS on our grid). The
Provision command then interacts with the Cloud Manager to start VMs loaded with the appropriate
version of IRIS and connect them to the selected USRP. In this way the GCF AM exposes resource
provisioning functionality through SFA.

2.4 FIBRE Island (UFRJ)

The FIBRE testbed island at UFRJ is being set up in the FP7 FIBRE-EU project. The UFRJ testbed forms
one of the testbed Islands of FIBRE facility infrastructure at the Brazilian side. The hardware of the
UFRJ testbed is shown in Figure 18.. The testbed consist of three NetFPGA devices, 8 wireless Icarus

18

WASHFUL H2020 - GA No. 258301 D5.1

nodes and an IBM server to host some virtual machines and take care of some testbed management
functions such as LDAP. An OpenFlow switch acts as the FIBREnet border router.

Icarus node #8

OMF domain
(Wireless
Network)

Icarus node #1

IBM server
(VMs, LDAP)

Pica8 Pronto
Switch

Top of Rack Datacom OpenFlow

conventional sWwitch
switch (FIBREnet border router)

Control plane link
Data plane link
= = = Data + Control plane

Figure 18 A FIBRE island with UFRJ hardware.

This testbed makes use of a different implementation of the SFA-layer, namely SFAwrap [9]. The
FIBRE architecture is shown in Error! Reference source not found.. Users can create an account and
control their experiments through the MySlice [10] portal. The MySlice portal translates the user
input into SFA calls that are made to either the SFA registry or the SFA AM API’s (AMv3) of the
testbeds that are part of FIBRE. The SFA AM APl's were developed based on the SFAwrap [9]
implementation and are therefore F4F compliant.

19

WiSHFWL H2020 - GA No. 258301 D5.1

FIBRE SFA
Authority Reg

Figure 19 The FIBRE architecture.

2.5 Orbit (RUTGERS)

The 400-node ORBIT radio grid testbed at WINLAB, RUTGERS University is shown in Figure 20 below.
The testbed provides 400 programmable radio nodes for at-scale and reproducible emulation of
next-generation wireless network protocols and applications. The ORBIT radio grid can be accessed
by experimenters via an Internet portal, which provides a variety of services to assist users with
setting up a network topology, programming the radio nodes, executing the experimental code, and
collecting measurements. The testbed also supports end-to-end wired and wireless experiments
using a combination of ORBIT and OpenFlow switch/router nodes under the same experimental
execution framework. In addition to fixed-function wireless devices (802.11 a/b/g/n/ac/ad,
Bluetooth, ZigBee, WiMAX, LTE, etc.), the testbed has a number of SDR platforms including URSP
1/2/N210/B210/X310, WARP, CRKIT, Nutag ZeptoSDR/PicoSDR and ZedBoards to support
programmability at the radio PHY and MAC layers as needed to support emerging cognitive radio
networking experiments. The radio grid is also supplemented by a number of sandboxes, outdoor
and vehicular nodes (both WiFi and WiMAX) deployed on or around the RUTGERS campus, to be
used for real-world validation of results or for application trials.

20

WASHFUL H2020 - GA No. 258301 D5.1

VPN Gate — Gigabit backbone
Pt I = Fixed Network
Wide-AreaTestbed OI' ﬁ B? Service Cluster
b

N
2,
Open
MC, N, || I';\;g_ialze
a0 . \{(=lea =l = =] ﬁl
B E) _
Testbed Spectrum Interference
Controller Confiauration Measurement Sources U
%Imemeﬂ VPN Gatewav /
(a) ORBIT radio grid architecture (b) ORBIT radio grid at RU tech center building

Figure 20 The ORBIT Wireless testbed.

In addition to main ORBIT facility, 10 mini ORBIT testbeds (service machine with 3 nodes) with a set
of 26 WiIMAX/LTE base stations are being used to support wireless aspects of the GENI on selected
campuses. OMF (version 5.4bis), as one of the control frameworks in GENI, is used as the main
control/management framework in all of these deployments.

While strictly speaking, ORBIT OMF version does not support GENI standardized SFA directly, it is
fully integrated with the GENI portal (and indirectly with other federated testbeds) through OMF
GENI Portal AM which is used for the distribution of Authentication and Authorization (A&A)
information from the portal to individual sites in the form of LDAP (LDIF) records (ORBIT site is the
root site in the distribution tree for all GENI wireless OMF deployments). These LDAP records are
then used for basic SSH authentication as well as for access to individual site WEB-based schedulers
(these are “single users” sites and access to each site is controlled through OMF Scheduler AM
service).

Features and capabilities of ORBIT (as well as of each of the GENI wireless testbeds) are exposed
through the OMF Inventory AM service which allows discovery in two forms:

1. REST-like query with XML output: the aggregate/node/device capabilities are returned by the
service as a structured XML response.

2. SPARQL query with XML output: a number of existing domain specific networking ontologies
such as NOVI and NDL as well as a number of newly developed wireless and testbed
ontologies (that were introduced through collaboration with the CREW project) are used as
an input for the community driven “Testbed as a Service Ontology Repository” (TaaSOR). The
resulting abstraction layer over heterogeneous testbeds is then used for testbed-
independent queries.

2.6 W-iLab.t (IMINDS)

The w-iLab.t testbed [11] is deployed in Zwijnaarde, Belgium. It consists of 60 node locations. Every
location hosts an embedded PC with two 802.11a/b/g/n Wi-Fi interfaces, an in-house designed
802.15.4 sensor node and a Bluetooth dongle. In addition to the 60 fixed wireless nodes, the w-iLab.t
also hosts 20 mobile nodes. These mobile nodes can be configured and used in exactly the same way
as the fixed nodes, but have the capacity to change location during the experiment. The w-iLab.t also
supports the new 802.11ac. Currently, 10 fixed wireless nodes and all mobile nodes are equipped
with an 802.11ac Wi-Fi card. Next to the embedded PCs, the w-iLab.t can also be used to conduct
cognitive radio experiments by using USRP’s (x8), WARP’s (x3), ZedBoard (x8) or imec sensing engines

21

WiSHFUL H2020 - GA No. 258301 D5.1

(x6). To support LTE experiments, 4 femto cells are installed and about 30 LTE client USB dongles (on
both fixed and mobile nodes).

The w-iLab.t uses a combination of three management frameworks:

e Emulab [12]: This framework takes care of resource discovery, reservation and provisioning.
It allows experimenters to design complex topologies and transparently takes care of all
network configurations. The Emulab framework also provides a GENI AMv3 SFA interface
(see 2.1). Experimenters can choose to use the testbed by either using the native Emulab
interface, or the SFA interface in combination with fed4FIRE tools.

* OMF6: the OMF6 framework is used for doing experiment control (see 3.2.1).

* OML: the OML framework is used for the collection of experiment results, measurement
data and for both infrastructure and experiment monitoring (see 3.3.1).

The architecture of the w-iLab.t testbed is depicted in the figure below.

SFA AMvV3

o

Experiment network

S o ‘(“ N
@) (@)
8 x USRP 3 X WARP 6 ximec
Sensing Engines

Figure 21 Emulab deployed at w-iLab.t.

Wireless
Node60

Wireless
Node1

Mobile Mobile
Node1 Node 20

The main server of the Emulab framework is called the BOSS server. This server is responsible for
tasks such as DHCP, DNS and the loading of operating systems onto the testbed nodes. The BOSS
server also provides an SFA AMv3 [13] interface to the outside world. This functionality comes pre-
installed with the Emulab software package. The OPS server is the file server where users can store
their data.

The deployment of the OMF framework in the w-iLab.t testbed is depicted in the figure below. Note
that there are 2 extra servers needed: one AMQP server and one optional OMF experiment
controller. The experiment controller doesn’t have to be provided by the testbed, since users can
install their own OMF experiment controller on one of the testbed nodes. Next to these servers, a
ruby daemon, called the OMF Resource Controller has to be installed on every testbed node. For
more information on the OMF framework, please see section 3.2.1).

22

WiSHFWL H2020 - GA No. 258301 D5.1

OP.
(File server)

.
‘

Wireless
node

OMF RC

Wireless
node

OMF RC

Wireless
node

OMF RC

OMF EC

Figure 22 OMF deployed at w-iLab.t.

To support OML, the w-iLab.t testbed offers one publicly available OML server. All testbed nodes are
pre-installed with the OML client library. Section 3.3.1 describes the OML framework in more detail.

3 Deployment and extension of existing F4F tools

This chapter describes the three federation protocol as supported by the Fed4FIRE project: SFA, FRCP
and OMSP. In the next sections, every protocol is shortly described, followed by one example of a
client tool that supports these protocols. In the first stage of the WiSHFUL project, focus will be on
these client tools only. Based on feedback from open call experimenters or experiences from the
project partners, other tools might be chosen or modifications will be made to the existing tools.

3.1 SFA

The SFA protocol takes care of resource discovery, requirements, reservation and provisioning. A
detailed description of the protocol is given in section 2.1.

3.1.1 jFed

The jFed tool [14] is a client side SFA tool to enable experimenters to easily set up their experiments
across different testbeds in the federation. The architecture of the tool is shown below.

Automated Automated Experimenter = Experimenter

Probe GUI Probe CLI Tester GUI Tester CLI Toolkit GUI Toolkit CLI

High level library

Low level library

Figure 23 The jFed suite architecture.

23

WiSHFUL H2020 - GA No. 258301 D5.1

The suite is built around the low level library, which implements the client side for all the supported
APIs (e.g. GENI AMv3); and a high level library, which manages and keeps track of the lifecycle of an
experiment. On top of these libraries various components were developed to allow thorough
examination and testing of these APIs, as well as an user-friendly graphical Experimenter GUI to allow
end-users to use the testbeds.

The most important components are:

* jFed Experimenter GUI allows end-users to provision and manage experiments.

* jFed Probe assists testbed developers in testing their APl implementations

* jFed Automated tester performs extensive fully-automated tests of the testbed APIs, in
which the complete workflow of an experiment is followed. This tool is used as part of the
Fed4FIRE testbed monitor.

The remainder of this chapter briefly describes the jFed Experimenter GUI. For more information on
the jFed tool, see Fed4FIRE D2.4 (http://www.fed4fire.eu/deliverables/).

jFed is written in Java. It uses the credentials and certificates issued by the clearinghouse (see 2.1.1)
to authenticate and authorize users on testbeds. The experimenter can create new experiments by
using the drag & drop functionality to select different types of resources. The current selection of
node types contains Generic nodes (jFed will choose a node), Physical nodes (a complete physical
server, no virtual machine) and three types of virtual machines (generic, XEN [15] or OpenVZ [16]).
Also wireless nodes and channels can be reserved. A dedicated external network connection can be
used to setup layer 2 connectivity between testbeds.

1+ et o R T ™ wdi Y,). i
Genera | Topology Editor | RSpecEditor | Timeline Editor |]
E=a > o @ 0

New Open Open Save Run Recover Open Preferences Report Docs About
URL Shared abug
Experiment Definition Experiment Preferences Support

v Computing Elements

= N

Generic Node Physical Node

(& |
Virtual Machine XEN VM
OpenVZVM Wireless Node
o =
= >
Dedicated Ext Wireless
Network h |
Connection anne
(& Untitled X

Figure 24 A new jFed experiment.

After dragging in some nodes, the user can select on which testbed he wants the experiment to run.
Extra configuration can be done such as selecting a specific node, changing the default operating
system and select a script to be run when the node boots. Network connections can be drawn
between nodes, which will invoke the creation of a VLAN on the experiment switch of the testbed.

24

WASHFUL H2020 - GA No. 258301 D5.1

The example below shows an experiment on the w-ilab.t testbed, which uses two wireless nodes
(named AP and client), one USRP and one server to process the results produced by the USRP. The
server and the USRP are connected to each other by drawing a link between them.

General | Topology Editor | RSpecEditor | Timeline Editor |
[00
B & & > o = o] e 0
New Open Open Save Run Recover Open Preferences Report Docs About
URL Shared abug
Experiment Definition Experiment Preferences | Support
v Computing Elements # ° Properties of usrpl E@ﬂ
General | Boot scripts
[_L - . Node name: usrpl
Generic Node Physical Node
Y AP client Select testbed: | jMinds Wilab 2 -
Disk Image: +
(X
)) Node:

Virtual Machine ~ XEN VM _ B =
@ Specific node: [
usrpl - Q9

- | m V| Only show available nodes
OpenVZVM Wireless Node
e usrpl
= >
Dedicated Ext. Wireless
Network
. Channel
Connection
(& Untitled X
) Save Cancel

Figure 25 A jFed wireless experiment.

When starting the experiment, jFed sends a request Rspec to the correct testbed aggregate
managers to start the allocation and provisioning of the resources. The request Rspec can be viewed
on the Rspec editor tab. An example Rspec is shown here for the wireless experiment as shown

above.

25

WiSHFWL H2020 - GA No. 258301 D5.1

| General | Topology Eitor.| Rspec Etor | Timeine Edtor |
> B R = v ~

Run Reserve Save Format Verify Search Search

Code Rspec & Replace
Code

ype="request" generated by

Ty Editor" generated="2015-06-09T11:0
ana "urn:publicid:I

inds.be+authoricy+cm”

.ilabt.iminds.pe+authority+cm"

minds.be/rspec/ext/jfed/1" x=

2.ilabt.iminds.be+authority+cm”

manager_id:
ode+uSrp

jfed/1"

netmask="255. 0" type="ipv4"/>

1inko">
name="urn:publicid:
se; ifo"/>

DN+wilab2.ilabt.iminds.be+authority+cm"/>

(& Untitled X

Figure 26 The jFed Rspec editor.

The jFed tool can also be used to get an understanding of the working of the SFA protocol. By clicking
the icon on the bottom right, an overview is given of the calls made by jFed to the testbed AM’s. The
example below shows the calls made to get an overview of the available resources at the w-iLab.t
testbed.

20N IsEShoes Task details
1 Get User Credential

2 Fetch Advertisement RSpec on iMinds Wilab 2 (available)
3 Fetch Advertisement RSpec on iMinds Wilab 2 (all)

Name: | Fetch Advertisement RSpec on iMinds Wilab 2 (available)
State: | SUCCESS
Start Time: | Tue Jun 09 10:49:11 CEST 2015
Stop Time: | Tue Jun 09 10:49:14 CEST 2015

Duration: 2 seconds and 828 milliseconds
This task depends on: Tasks depending on this task:

Task calls

v Geni Aggregate Manager API v3 - ListResources (@ wilab2.ilabt iminds.be) ARSI
Save all details: | ;¢ text.. || asxml.. | Requestsize (byte): 8189 Reply size(byte): 21178

Connection | HTTP Request | HTTP Reply | XmIRpc Request | XmlIRpc Reply | Geni Reply Value | Geni Reply Code & Output | Proce: (>
Authority: | urn:publicid:IDN+wilab2.ilabt.iminds.be+authority+cm
Server URL: | https://www.wilab2.ilabt.iminds.be:12369/protogeni/xmirpc/am/3.0
Connection User... | urn:publicid:IDN+wall2.ilabt.iminds.be+user+pbecue
Call start time: | Tue Jun 09 10:49:11 CEST 2015 Call stop time: | Tue Jun 09 10:49:13 CEST 2015

Connection Deb... | 2

Proxy: | no proxy used

Figure 27 jFed SFA calls.

26

WiSHFUL H2020 - GA No. 258301 D5.1

The jFed tool will be extended during the course of the project to support the testbeds in WiSFHUL.
This will happen in close collaboration with the Fed4FIRE project. More specifically, jFed will be
extended to parse Rspec documents specific for WiSHFUL testbeds and have the contact information
for all the aggregate managers. The possibility to use jFed in offline modus to control the portable
testbed (see D6.1) will also be investigated.

3.2 FRCP

The Federated Resource Control Protocol [17] is used to control and orchestrate distributed
resources, such as testbed devices, sensor nodes or measurement software. The protocol can use
messages in XML or JSON format. The messages are transported by using a Publish/Subscribe
mechanism like XMPP [18] or AMQP [19].

The basic protocol consists of messages being sent by a requester to a component (or resource). The
component may accept the message and perform the requested associated actions. This may lead to
further messages being sent to an observer. The protocol consists of five messages: inform,
configure, request, create, and release. An example of the use of these messages is shown in the
figure below. A requester can create, configure and release resources. As response to these
messages, the resources inform the requester with its status. The requester can also request the
status of the resources with a separate message. These messages form the core of the FRCP protocol.

Requester

create

inform(created R1)

configure

inform(current state)

request

inform(current state)

inform(current state)

release(Resource 2)

P—

inform (R2 released) wy
Figure 28 FRCP example.

The Fed4FIRE architecture regarding experiment control is shown below.

27

WASHFUL H2020 - GA No. 258301 D5.1

D) oo Py

! SSH client
Scenario editor

Experiment controlier

T
|
|
|
|
|
|
|
|
I
I
|
|
|
|
|
I
I
I
I
I
I
|
|
|
|
|
|
]
I
|
|
|
|
|
|
|
I
I
1
|
|
|
|
I
I
I

]
| I
| I
| i
i i
i i
i i
| |
| |
| |
| |
| |
I I
I |
I I
I |
I |
I |
I |
I |
I |
i |
| i
i
§ i i
i I
'E | |
i I
3 | |
Experiment | |
5 control server : :
'é | |
I 1
Q] 1
B] 1
I 1
w I]
] I
] I
] I
] I
: :
Aggregate 1 1
| wmm | |
Policy)1] |
XMPP Deci;ion : : :
XMPP Point | | |
poei ! ! !
| | :
| 1
'8§ 4 rcr B s N ! !
Resource | | |
5= | |
Q | 1 |
= 3 I 1 I
! ! :

Testbed with nodes Federator Experimenter

Figure 29 Fed4FIRE experiment control.

Testbed resources can either be controlled by SSH or by an FRCP enabled tool like OMF6 (see 3.2.1).
The experimenter does not interact directly with the FRCP APl on the testbed resources, but submits
an experiment description to an experiment controller. This experiment controller translates the
experiment into FRCP message, which are then sent over an XMPP or AMQP server towards the
testbed resources. To authenticate and authorize experimenters to use certain resources, a Policy
Decision Point (PDP) is introduced. The PDP queries which nodes belong to which slice and decides
which experimenter has the rights to control these nodes.

A detailed description of the FRCP protocol is out of scope of this document. For more information,
please see Fed4FIRE D2.4.

3.2.1 OMFe

OMF®6 [20] is a control and management framework for testbeds. It implements the FRCP protocol.

In an OMF testbed, everything is a resource. The entity that controls one or multiple resources is
called a Resource Controller (RC). The RC can run directly on the resource (e.g. a PC), or run on a
separate computer that can control the resources (e.g. a bunch of sensor nodes or an OpenFlow
switch). OMF is designed to support many different types of resources, and additional RCs for those
resources can make use of the FRCP APIs. All communication in OMF is done via Publish/Subscribe
(PubSub). By default OMF uses AMQP for that, but other messaging layers such as XMPP are
supported. Each OMF component must be able to talk to at least one PubSub server, although there
can be multiple PubSub servers used in an experiment. The experimenter uses the Experiment
Controller (EC) to run the experiment script and steer the resources. The EC can be installed on a
user-facing machine inside the testbed, or alternatively on the user's own computer. The figure
below shows the different components of the OMF6 architecture.

28

WASHFUL H2020 - GA No. 258301 D5.1

Resource Controller
(Physical Nodes)

Experiment

Resource Controller Pub/Sub Controller

(Virtual Machines)

Resource Controller
(Everything Is A
Resource)

Figure 30 The OMF®6 architecture.

OMF experiments are described in the OMF Experiment Description Language (OEDL [21]). OEDL is
based on the Ruby programming language [22], but provides its own set of experiment-oriented
commands and statements.

An OEDL experiment description is composed of 2 main parts. In the first part the resources are
declared that will be used in the experiment, such as applications or computing nodes, and some
configurations that the experimenter wants to apply to these resources. The second part defines the
events that the experimenter would like to re-act during the experiment's execution, and the
associated tasks that have to be executed when these events occur. A simple OMF example is
included below.

defProperty("ap",
defProperty("client”,

defpplication('ping
app.description
app.binary path = '
app.defProperty('ta t
app.defProperty('coun Number of times to ping', '-c', {:type => :integer})

', '', {:type => :string})

end
defGroup('My_ Pinger', property.client) do |g]|
g.addApplication("ping”) do |appl

app.setProperty('ta
app.setProperty('c
end

', property.ap)

end

onEvent (:ALL_UP) do |event]|
allGroups.startApplications
after 5.=econds do
Experiment.leave_memberships
Experiment.done
end
end

Figure 31 An example OMF OEDL script.

29

WiSHFUL H2020 - GA No. 258301 D5.1

This script uses two properties named “ap” and “client” which contain the DNS names for the
resources used in this experiment. The resource controllers on these resources are configured to
subscribe to the AMQP server by using their hostname.

The defApplication code block describes the application that will be run on the resources. It contains
a description and the location of the binary (on the resource). Optionally, it can contain some
properties, which can be compared to command line arguments. In this case, a property is defined
for the target of the ping and the number of times the ping has to run.

The defGroup code block describes the testbed resources that will be configured during the
experiment. This example only interacts directly with the client resource. Therefore, the group
‘My_Pinger’ only contains one node, the client. Multiple resources can be added to a single group
and even combinations of groups can be made. The content of the defGroup block maps the
applications — defined in defApplication — to the resources and specifies a value for the properties.

The final part of the example contains the timeline of the experiment. After the ALL_UP event is
received from all the involved resource controllers, the actual experiment starts and all applications
are started in all groups (allGroups.startApplications), after which the actual ping command will be
executed on the client. After 5 seconds (relative to the ALL_UP trigger), some cleanup actions are
taken and the experiment finishes.

The example shown here is only a small excerpt of the capabilities of OMF. OMF also provides the
ability to configure network interfaces of resources, execute events based on experiment
measurement data or change properties of an application during the experiment execution. Recently
a feature was added to retrieve the resources belonging to a certain slice.

To support the OMF framework in all WISHFUL testbeds, the following steps are foreseen:

¢ If the testbed hosts Linux-capable embedded PC’s, existing OMF Resource controllers can be
installed to make the testbed FRCP compatible.

* For other testbeds, where resources are controlled through e.g. a server with a REST-API, the
OMEF RC can be installed on this server and not on the individual resources. This will be for
example the case in testbeds with sensor nodes instead of embedded Linux PC’s.

* If some of the hardware in the WIiSHFUL testbeds cannot be supported by OMF, new
modules will be developed to plug into the resource controller.

* New OMF applications will be developed to support the tools described in chapter 0.

3.3 oMsP

The OML Measurement Stream Protocol [23] is used to describe and transport measurement tuples
between Injection Points and Processing/Collection Points. All data injected in a Measurement Point
(MP) is time stamped and sent to the destination as a Measurement Stream (MS). In the most
common scenario, the measurement point is an application on a testbed resource and the collection
point is represented by a database server where all measurements are stored. The liboml2 library
(see 3.3.1) provides an API allowing to generate these measurement streams using this protocol and
send them to a remote host (database server), or store them in a local file.

The usage of the OMSP can be split up in several phases:

* In the first step, a connection is made to a collection point (e.g. database server)
* After connection, a set of headers is sent, describing the injection point. The headers contain
the following key/value parameters:
o Protocol: OMSP version
o Domain (or experiment-id): string identifying the experimental domain
o Start-time: local UNIX time in seconds taken at the time the header is being sent

30

WiSHFUL H2020 - GA No. 258301 D5.1

o Sender-id: string identifying the source of this measurement stream
o Application: string identifying the application producing the measurements
* Along with the headers, the schemas of the transported measurement streams are also sent
to the collection point. Based upon these schemas, the collection point can then create the
correct tables in the database.
* When the steps above have executed correctly, the measurement data (e.g. from a
throughput testing application on a testbed resource) is time stamped and then serialised.
The serialisation can either be either a binary or text encoding.

To every measurement sample some metadata is added:

* Timestamp: a double timestamp in seconds relative to the start-time sent in the headers, the
server uses this information to rebase timestamps within its own timeline.

* Stream_id: an integer indicating which previously defined schema (see above) this sample
follows.

* Seqg_no: an int32 monotonically increasing sequence number in the context of this
measurement stream.

The following data types are supported by OMSP: int32, uint32, int64, uint64, double, string, blob,
guid, bool, guid. The latest version of OMSP also supports vector types, for which the type of its
elements can be any of the data types listed above, except for string, blob or guid.

The OMSP architecture is shown in Figure 32.

Injection
Pe int

Processing

point

Collection
point|

Feedback

point

D Source
'Z] Sink

Figure 32 The OMSP architecture.

In the above example, an injection point creates two measurement streams. One of the MSs is
handled by the processing point which creates two streams out of it and sends them to the collection
point. The other stream originating at the injection point is sent to a feedback point which controls
some aspect of the measurement tool at the injection point, as well as some of the processing
point’s parameters.

The next section shows an example client and server implementation for the OMSP protocol, named
OML.

3.3.1 OML

OML [24] is an instrumentation tool that allows application writers to define customisable
measurement points (MP) inside new or pre-existing applications. Experimenters running the
applications can then direct the measurement streams (MS) from these MPs to remote collection
points, for storage in measurement databases. OML was originally conceived to provide

31

WiSHFUL H2020 - GA No. 258301 D5.1

measurement facilities for OMF-enabled testbeds, such as the Orbit testbed at RUTGERS. It is now a
stand-alone tool which can also be run independent of OMF.

OML can instrument the whole software stack, and take input from any sensor with a software
interface. It has no preconception on the type of software to be instrumented, nor does it force a
specific data schema. Rather, it defines and implements a reporting protocol and a collection server.
On the client side, any application can be instrumented using libraries abstracting the complexity of
the network communication. Additionally, some of the libraries provide in-band filtering, allowing to
adapt the measurement streams obtained from an instrumented application to the requirements of
the current observation (e.g., time average rather than raw metrics). Applications for which the code
is not available can also be integrated in the reporting chain by writing simple wrappers using one of
the supported scripting languages (Python or Ruby). After collection from the distributed application,
the time stamped data is stored in an SQL database (SQLite3 or PostgreSQL), grouped by
experimental domain; a server can collect data from several domains at the same time.

OML OML >
Measure- filter | < &---4 SQI ite3/

ment pumt PostgreSQL

) liboml2 (b) oml2-server

> OML E

..... proxy OMLAR:: >

<:> . } server MPBase L«
_____ . (7//

(c) oml2-proxy-server (d) OML4R

Figure 33 OML components.

OML consists of several components, which are shown in Error! Reference source not found.:

* OML client library (libomi2): the OML client library provides a C API for applications to collect
measurements that they produce. The library includes a dynamically configurable filtering
mechanism (OML filter) that can perform some processing on each measurement stream
before it is forwarded to the OML Server. Next to the C library, there are also
implementations available for Python (OML4Py) and Ruby (OML4R).

* OML Server:the OML server component is responsible for collecting and storing
measurements inside a database. Currently, SQLite3 and PostgreSQL are supported as
database backends.

* OML proxy server: this server allows the path between injection point and collection points
to be decoupled. It also provides capabilities for disconnected experiments. It is currently
used in the mobility framework in the w-iLab.t and will be used to cache measurement data
in the portable testbed use case (see D6.1).

* OMLA4R: This is a native Ruby implementation for creating collection points. This is the most
used implementation for applications that are not written in C and can thus not make direct
use of the libomI2 C library.

A number of sample applications are available that perform measurements and filter and collect
them using OML (e.g. iperf, libsigar and libtrace).

The use of OML in the Fed4FIRE architecture for measurement and monitoring is shown in the figure
below.

32

D5.1

H2020 - GA No. 258301

WIiSHFUL

Proprietary APl

W 3
||
8

@

¥

|

E

(=

L

-

o

[+})

©

(<))

(T

Outside
federation

Experimenter

- Database client

Federator

Testbed with nodes

Figure 34 Fed4FIRE measurement and monitoring.

33

WASHFUL H2020 - GA No. 258301 D5.1

As depicted in Figure 34, OML consists of a service running on the testbed resource, and a service
and database running on the OML server. On the resource, the Measurement Library (ML) takes
measured values as an input, and is responsible for getting them added to the database at the OML
server. Annotations to the measured values such are experiment ID, source ID and so on are
automatically added by the OML framework. From an experimenter point of view, it is sufficient to
redirect the measured value coming out of your own software or measurement tool to the ML to
collect all of them in a single place for future processing. The experimenters can then use database
tools (or even a browser) to query the measurement data. OML is also used in the FAF architecture to
provide data for infrastructure and facility monitoring. OML adapters are available for proprietary
measurement and monitoring services such as Zabbix [25] or Naggios [26].

OML will be used on WiSHFUL testbeds to collect both experiment measurement data and provide
monitoring data for infrastructure and facility monitoring.

4 Development and F4F compatibility of new tools

This chapter describes some new tools that can be useful for experimenters of the WiSHFUL
testbeds. Some of the tools described in the chapter below have functionality that is being re-used
from projects like FP7 CREW. These tools will be redesigned so they comply with the Fed4FIRE
standards and can thus be used in a uniform way through the F4F API’s.

4.1 Advanced wireless monitoring tools

Two spectrum scanning tools are described in this chapter. The first scanning tool is a basic spectrum
scanning tool using Wi-Spy devices. The second scanning tool is a more advanced version using a
combination of different hardware devices in the w-iLab.t testbed. The tools presented here can be
applied to any testbed, but installation of specific hardware might be required to provide the same
functionality.

4.1.1 Basic spectrum scanning using Wi-Spy

The basic spectrum scanning is created to have an easily accessible tool (dubbed “spectro”) for
experimenters to have a quick and basic view on what the current channel occupation is on the w-
iLabt.t Zwijnaarde testbed. The basic spectrum scanning tool is available at
http://spectro.wilab2.ilabt.iminds.be , but an openVPN connection is required to access the page.

Using Wi-Spy sensing hardware' a database is built with power measurements over different
channels. Depending on the sampling rate and frequency spectrum to be scanned, there are four
modes available on the Wi-Spy DBx2 [27] used in w-ilab.t:

Table 1: Wi-Spy operation modes

Range ID Name Frequencies Step (resolution) Samples / sec
0 2.4GHz ISM 2400MHz-2483MHz 199.00KHz 419 samples
1 2.4GHz ISM FAST 2400MHz-2484MHz 560.00KHz 150 samples
2 5GHz 5100MHz-5866MHz 748.00KHz 1024 samples

! http://www.metageek.com/products/wi-spy

34

WASHFUL H2020 - GA No. 258301 D5.1

3 5GHz UN-II 5100MHz-5483MHz 374.00KHz 1024 samples

Every Wi-Spy device can be configured in one of the settings depicted in Table 1. Using, for example,
setting #0, the device will scan the 2400 till 2483MHz band in increments of 199 KHz resulting in 419

samples every second.
]
g

Smartphone

These samples are sent to a database as illustrated in Figure 35.

Spec tool

/" uss

' TCPIIP

) Alix
Wi-Spy

End user

Database +
Webserver

Figure 35: The Spectro architecture.

The Wi-Spy devices are connected via USB to an Alix embedded computer [28] (powered via PoE).
This Alix serves as a forwarder: pushing all data the Wi-Spy collects on a TCP-socket. A small
application that comes with the Wi-Spy toolbox, called spectool takes care of this. A small ruby script
parses the output from the spectool and dumps the data into a database. Lastly, this database is
queried by the webserver. The OML framework (see 3.3.1) is used for this purpose, so the resulting
databases are compatible with the OMSP protocol (see 3.3) as used by Fed4FIRE.

When an end user connects to the database server (via a browser on a smartphone, laptop,
computer, tablet, etc...), the data is fetched and drawn on a HTML5 canvas (illustrated in Figure 36).
The horizontal axis has frequency labels, and the vertical axis has the timestamp of the
measurement.

[wrilab.t ZW Spectrum

C' [spectro.wilab2.ilabt.iminds.be o, O =

w-iLab.t Zwijnaarde Spectrum (preview version!)

dBm
Data is kept for 24h. A viewer for old data is scheduled to be implemented. 30
For best performance: use chrome and try to limit the amount of plots.

start Live spectral visualisation 40

Visualize plots

wispy_0_24_ISM wispy_1_24_ISM
@ #wispy_0_24_ISM py_0_24 py_1_24_| M.

W#wispy_1_24_ISM

vsercu@intec.ugent.be

Figure 36: The webpage displaying the online spectrogram (Spectro).

35

WiSHFUL H2020 - GA No. 258301 D5.1

Dataflow generated by the spectool is ASClI-text (one line per sample, RSSI-values that are separated
by spaces) and looks like:

Wi-Spy DBx2 USB 2401370404: -56 -72 -85 -91 -95 -97 -100 -100 -102 -101 -102 -102 -

102 -102 -101 -102 -101 -102 -102 -102 -101 -101 -100 -102 -102 -102 -103 -102 -102
omitted several samples ... -103 -102 -101 -102 -102 -103 -103 -103 -103 -103 -

103 -102 -103 -101 -103 -103 -102 -103 -104 -101 -103 -103 -103 -103 -102 -103 \n

The parsing done by the Ruby script (called an OML-wrapper script) will extract every RSSl-value and
put it in the corresponding column, in right table. A database table is created for every
measurement-set.

A PHP-script queries this data and allows it to be publicly viewed. Data queried from the database is
available and is fetched using an AJAX mechanism that asynchronously fetches the RSSI-values stored
in JSON format. The HTML5 canvas is filled will tiny squares that have colour values from red to blue
(red being high RSSI values while blue represents low energy signals).

As the Wi-Spy devices scan continuously, data cannot be kept indefinitely. In the best case (Range
ID#1, in Table 1), a single device generates 5KB (about the storage size of a row of 150 frequency
measurements in the database) every second. Meaning 5KB * 60 (sec.) * 60 (min.) * 24 (hours) = 432
MB per day.

In order to cope with this, data is cycled every 24h for every Wi-Spy. Experimenters can query the
database at any time and store the data locally if it is important for their tests.

Because of the very limited hardware requirements of this basic spectrum scanning solution, it can
easily be used in other testbeds, or even in the deployment stage of the testbed-on-the-move (see
D6.1). After installing the software on a laptop (Linux) and plugging in the Wi-Spy USB dongle, the
experimenter can immediately get valuable information on the wireless spectrum at any location.

4.1.2 Distributed spectrum scanning

The distributed spectrum scanning tool was originally developed in the context of the FP7 CREW
project. Its main goal is to allow experimenters to get a detailed view of the wireless spectrum
before, during and after the execution of their experiment. The solution presented here will be made
FAF compatible in the WiSHFUL project. This means that all resources required to do the scanning
should be accessible through the Federation AM API, the experiment control should be done using an
FRCP (3.2) compatible tool and the collection of the measurements has to be ensured by using an
OMSP (3.3) compatible protocol. The experiment control is currently implemented in OMF5.4, so a
conversion will be needed to OMF6 (3.2.1). For the collection of measurements, a similar version
upgrade of the OML library (3.3.1) will be needed to ensure compatibility with the OMSP protocol.

The distributed spectrum scanning tool combines the information generated by several scanning
components: USRP devices, Wi-Fi cards and imec [29] sensing engines. The 802.15.4 sensor nodes
can also be used for spectrum scanning, but are not used in this solution. The general architecture of
the tool is shown in the figure below. It consists of two parts: a web interface for visualization as the
front-end, and a set of tools to monitor the wireless environment as the back-end. The figure below
provides a general overview of the system with the different components. The different scanning
components are described (and started) in an experiment description (OMF5.4). After starting the
experiment, the measurements of the different scanning components are stored in the database and
visualized on a web interface. The ZigBee monitor shown in the architectural figure will not be
described here, since it only contains information about the number of packets (and their content)
that are sent over a certain channel. A next version of the distributed spectrum scanning tool will
include an integrated 802.15.4 sniffer that is capable of determining RSSI values on a certain
frequency.

36

WiSHFUL H2020 - GA No. 258301 D5.1

[}
Monitor Experiment feedback
scripts
m—— Back-end
' PHY monitor ... ‘ S
: = J L ! Visualisation
s i - oo
= wiFi monitor il | E
\ <
. - . | - | |
Exper.lmlenl Experiment 1 ZlgBee monitor vj Storage e
escription
controller database

Figure 37 Distributed spectrum scanning tool.

The distributed spectrum scanning tool combines information that is gathered by the USRP, the imec
sensing engine and finally by the Atheros Wi-Fi chipset.

The USRP devices can be used to obtain RSSI values of a certain frequency and are also able to
determine the COR (Channel Occupancy Ratio). The frequencies in which the USRP can operate are
limited to the frequencies in the ISM-band. The USRP enables researchers to rapidly design and
implement powerful, flexible software radio systems. It offers high RF performance and great
bandwidth. Next to spectrum monitoring, some of its functionality includes: physical layer
prototyping, dynamic spectrum access and cognitive radio and networked sensor deployment.

The imec sensing engines are able to determine RSSI values inside and outside of the ISM-band. The
device consists of two main blocks: an analogue RF front-end including analogue to digital conversion
and a Dlgital Front-end For Sensing (DIFFS). Two types of analog RF front-ends are available: a WARP
board covering the 2.4 and 5 GHz ISM bands and an in house (imec) developed flexible SCAlable
raDIO (SCALDIO), covering an RF input range from 0.1 up to 6 GHz and a channel bandwidth up to 40
MHz. The digital front-end is an ASIP specifically designed for sensing operations, signal conditioning
and synchronization.

The more recent version of the Atheros [30] Wi-Fi chipset (version AR92xx and AR93xx or higher)
have the built in capability of doing spectral analysis [31]. The chipset reports FFT (Fast Fourier
Transform) data from the baseband under controlled conditions. The reports contain the following
fields:

* The absolute magnitude for each FFT bin
* Anindexindicating the strongest FFT bin
* The maximum signal magnitude for each sample.

The information above can be used to create an open source spectrum analyser. The functionality
was combined in a script called ath_spec_scan. The example below was tested on the wireless nodes
in the w-iLab.t testbed using the ath9k wireless driver [32].

To get spectral information out of the Wi-Fi chipset, the devices have to be put in monitor mode.
Prior to the scanning, the channel on which the user wants to scan has to be configured on the
device. The output of the tool contains the following fields:

* current_time: Starting unix epoch timestamp (millisecond resolution)
¢ sniffer_mac: sniffer node Wi-Fi mac address

* frequency: working frequency (e.g. 2.412 GHz for 802.11g channel 1)
* COR: Channel Occupancy Ratio

37

WASHFUL H2020 - GA No. 258301 D5.1

* RSSI: Received Signal Strength indication
* previous_dur: measurement duration

The result of the distributed spectrum scan tool is a heat-map (background of Figure 38 and Figure
39) generated based on the RSSI of the entire 20 MHz that is monitored by the sensing devices
(USRP, imec SE and Atheros chipset). The numbered circles in green represent embedded PCs with
Atheros Wi-Fi cards. The purple circles represent imec sensing engines. The USRP devices are shown
as smaller green circles, with numbers 63, 65, 69, 75, 81 and 89 (see Figure 39). Figure 38 shows the
heat map constructed by combining the results of the Atheros chipsets and the imec sensing engines.

When clicking on individual nodes, a more detailed spectrogram will pop up, as shown in the figure
below. Figure 38 shows the detailed spectrogram obtained at imec sensing engine 41.
The spaces in between nodes are constructed by applying the inverse distance weighting algorithm
to the measurement data.

dBm
@ 3 @ s 6 7) s © 10 0
I AL R | P -40
@ (:E)] (14 15 16 a7 18/) i 20
= = L s 50
2 2 4 2 o 28 ® @ @ 32
33 3 35 3 39 0 f
‘43\ (a8 a5 (a6 a9 50 ﬁ
|
(53) (54 (55 56 (57)) (58 i

Auto-update m - t

Figure 38 Spectrum scanning in w-iLab.t using an imec sensing engine.

Figure 39 shows the heat map constructed by the combination of the measurements taken by the
Atheros chipsets and the USRP devices. It also shows the detailed spectrogram obtained by the
Atheros chipset of Wi-Fi node 23.

38

WiSHFWL H2020 - GA No. 258301 D5.1

o
us)
3

;

}
&
=

I
I
T
T
T
1
T

I
T
T

T

Figure 39 Spectrum scanning in w-iLab.t using an Atheros chipset.

4.2 Advanced tools for automation of experiments

4.2.1 Wireless experiment automation using the SUMO toolbox

Out of the box, the SUrrogate Modelling (SUMO) toolbox [33] is used as a complete multi-
dimensional optimizer. It is targeted to achieve accurate models of a computationally intensive
problem using reduced datasets. From the reduced datasets, the toolbox generates accurate
Surrogate Models to evaluate the design objectives.

*Maximize accuracy

) w{ *Minimize cost Visualisation
e | *Minimize overhead

Hydrol

Data source

Aerodynamics

Metallurgy
SUMO-Toolbox
Accurate global

Anal
surrogate model
Requirements
and Constraints

Figure 40 The process of generating an accurate surrogate model.

Jii

The SUMO toolbox bundles both the control and optimization functions together. The control
function sitting at the highest level manages the optimization process with specific user inputs. The
figure below describes the SUMO toolbox in a nutshell highlighting the control and optimization
functions together.

w

9

WiSHFUL H2020 - GA No. 258301 D5.1

stdin/stdout

b

17 Controller —l

6output

input, input,

Dataset Surrogate Model

Figure 41 Out of the box SUMO toolbox in a nutshell view.

From the figure above it can be seen that the controller manages the optimization process starting
from a given dataset (i.e. initial samples + output performance) and generates a surrogate model.
The surrogate model approximates the dataset over the continuous design space range. Next, the
controller predicts the next design space element from the constructed Surrogate model to further
meet the optimization’s objective. Depending on the user’s configuration, the optimization process
iterates until conditions are met.

Moreover, the aim of the SUMO toolbox is to use it as a standalone optimizer and put it inside an
experimentation framework. This means from out of the box SUMO toolbox, the loop is broken, the
control function is removed and clear input/output interfaces are created to interact with the
controlling framework. The figure below shows the integration of the modified SUMO toolbox inside

a wireless testbed.
Configuration
File

Wireless Testbed

Result
New sample
point
? Configuration y v
] Testbed Management
Experiment Framework
dataset
CMD
Y v
goutput 10 12; 16 20
. 10 12 5
L ¢ 14 8 7 Dataset
s 11 15 9 points
input, .. .
input, input,
Dataset/File Surrogate model

Figure 42 Integration of modified SUMO toolbox in a wireless testbed.

The figure above shows the use of the testbed management framework instead of the default
controller. Suppose we are in a context of a wireless experiment, concerning two parameters:
transmit power and the node location. The goal is to find the optimum combination of those two

40

WASHFUL H2020 - GA No. 258301 D5.1

parameters to achieve the maximum throughput. After the initial datasets are collected, SUMO
toolbox determines the parameter set for the next experiment and writes the parameters in the
dataset file, as shown in the figure above. The testbed framework performs the experiment and
appends the result on the same row in the data file (in this case it is the throughput result). This
iteration goes on until the stopping criteria are reached.

The testbed management framework performs the same tasks which were already implemented by
the previous controller except additional tasks like experimentation on the wireless testbed, storing
the dataset on a separate file, and reading experiment configuration from a file. It should be
understood very well that the operation of the SUMO toolbox has not changed at all except
replacement and addition of a few working blocks. A more general pictorial presentation on the
operation of the SUMO toolbox is also presented in the next figure.

Configuration

o s

Lessthan - Greater than
initial sample sizew initial sample size ‘1,
\' - i .\\\‘

Sample Value Text File NoEE RELT

[1012; 16 20]
10 12 5
14 18 7
11 15 9 —

INITIAL DATASET 16 17 9 3

FINISHED 16 15 115 - =

13 16 11.9 . A
13 16 11.9 W

N 13 16(119)
Latin hypercube Optimum <
sampling example Throughput I -

Figure 43 Complete modified SUMO toolbox optimization over two dimensional design space.

In the figure above, a complete optimization using the modified SUMO toolbox is presented. The
SUMO toolbox optimizes a two dimensional design space (i.e. transmit power 10dbm to 16dbm and
transmitter location id 12 to 20) problem.

Before SUMO toolbox starts the optimization process, it requires a minimum number of initial
samples plus their output performance which will be used to generate the first surrogate model. The
figure above shows four selected initial dataset pairs (i.e. [10 12], [14, 18], [11, 15], [16, 17]). Latin
hypercube sampling is used to generate the initial samples, which guarantees the samples to be
equally spaced across the design space.

Next, the experiment is conducted at each initial samples and the dataset (i.e. initial samples +
output performance) is fed to the optimizer. The SUMO tool first generates the surrogate model and
next calculates a new sample point to reach the global optimum. Using the calculated sample point, a
new experiment is conducted and the dataset is updated. As the optimization progresses, the SUMO
toolbox approaches the global optimum point. The figure below shows the different steps during the
SUMO optimization process.

41

WASHFUL H2020 - GA No. 258301 D5.1

model evaluations = 24, Data base (nterp) points = 17
il

WeiData
O FmnalSweep
— Actual Optima

WeiData
O FinalSweep
Actual Optima

DWSM pacameter x2
DWSM pacameter x2

10
12 14 16 17 18 19

Controliable parameter x1 Controliable parameter x1

1
012 1" 16 17

Optimum throughput=11.9 Mbps Optimum throughput=12.184 Mbps

model evaluations = 64; Data base (interp) points = 38 # model evaluations = 74; Data base (interp) points = 42
Ll -

16e 16e

WeiData
O FinalSweep
— Actual Optima

WeData
QO FinalSweep
— Actual Optima

15 15

=
.
=
.

DWSM pacarneter x2
OWSM pacameter x2

12 14 16 17 18 19 20 12 16 17 19

Controliable parameter x1 Controllable parameter x1

Optimum throughput=12.37 Mbps Optimum throughput=12.419 Mbps

Figure 44 The different steps during SUMO optimization.

From the above figures, we see that as the number of iterations increases the simulation optimum
coincides with the global optimum. The first figure shows 17 experiments and optimum performance
of 11.9 Mbps. The second figure shows 24 experiments and optimum performance of 12.184 Mbps.
The third figure shows 38 experiments and optimum performance of 12.37 Mbps. The last figure
shows 38 experiments and optimum performance of 12.419 Mbps. At last, we end the optimization
after a stopping criteria is met. Two stopping criteria widely used alongside the SUMO toolbox are
when the Number of Experiment Equals (NoEE) a given value and when the Relative Error of
performance is Less Than (RELT) a given threshold.

This tool will be modified so that it can be used by experimenters of the Fed4FIRE federation.
Therefore all experiment control will be done using OMF6 (see 3.2.1).

4.3 Advanced tools for automation of testbed/software deployment

4.3.1 Ansible

Current testbeds are usually supported by diverse servers and require considerable amount of time
and expert knowledge not only to install but also to maintain. This problem is particularly important
for the portable testbed concept, where it should be possible to deploy a functional testbed with
minimal effort and knowledge.

This problem has been also identified by IT administrators saying that "Deploying, configuring, and
updating systems and applications can be drudgery". We can take their efforts in providing
automation engines for application deployment to ease setting up a portable testbed in any location.

42

WiSHFUL H2020 - GA No. 258301 D5.1

TUB is currently working with Ansible to make the testbed infrastructure configured through it. This
gives an abstraction on what a testbed provider has to do to deploy the necessary software on a new
machine. This also works with changing the configuration on one or multiple nodes. We are trying to
follow the Ansible guidelines [34] to solve problems.

Ansible is an open source and free to use IT automation engine that aims for simplicity. It works by
connecting to nodes and pushing out small programs, called “Ansible Modules” to them. These
programs are written to be resource models of the desired state of the system. Ansible then
executes these modules (over SSH by default), and removes them when finished. [35]

The library of modules can reside on any machine, and there are no servers, daemons, or databases
required. Typically the administrator works with his favourite terminal program, a text editor, and
probably a version control system to keep track of the changes to the content. [35]

Ansible can be compared to Chef (https://www.chef.io/chef/) or Puppet (https://puppetlabs.com/).
Both of them use a client-server model with clients installed on all the servers you want to manage.
This probably makes it more powerful, but also more complex than Ansible. It also means that they
have higher demands on the controlled resources, while for Ansible the minimal requirement is only
SSH based access. In later stage it uses Python for most of the work, but it still is not a strict
requirement and Python itself can be deployed by Ansible.

Currently in the TWIST testbed we are managing internal DHCP/DNS server, webservices, XEN virtual
machines, WLAN routers and robots (with workstation support). We have a central repository where
all the configuration tasks are stored and are executed through Ansible playbooks. In practice it
means that it is possible to bring a new machine that should control the robot, install the base
system (ubuntu+ SSH server), add one line in the host inventory, and run a playbook. Based on all
information in the playbook it will install all required packages that need to be on the robot, also
prepare and compile robot environment. After that we have a fully functional machine for a robot
support.

In the same manner, we are able to flash new image on the WLAN routers, install some additional
packages (which are not installed by default due to flash size limitation, later we can use USB stick),
and change any configuration we wish. All that is able to run in parallel to speed up the process, as a
bonus a task that has already been executed once will not be executed second time (it still will be if
there is some configuration mismatch).

Finally, for the portable testbed we envision this should help in creating a shortest path between a
bare metal hardware with no software to a working testbed. Providing minimal requirements on the
running software, namely SSH and networking, this can be an issue in a real portable testbed
deployment, but not in the preparation phase. Everything else can be auto-deployed. Ansible can be
particularly helpful when not all hardware is shipped by us or in preparation phase of the hardware
for shipping. We have servers in mind here (data collection, management) but also particular
wireless devices needing reconfiguration.

To summarize, we have found out that every hardware change requires a lot of manual installation
process with expert knowledge to bring everything into a running state. We have decided to make an
extra effort to do that process once in Ansible to simplify next changes. We already see benefits of
that approach, as one can have a repository of all tools that have been deployed in the testbed and
thus have a visible development process.

It is also possible to integrate Ansible into the FED4FIRE experiment life cycle. Namely the user
activates some nodes using jFed (or another SFA) tool. This step loads an OS onto your nodes/servers
and makes sure you can SSH to them. One of the activated nodes might be used as the Ansible
terminal. Using Ansible, extra software can be installed like a web (or database) server, but also
experiment control tools like OMF/OML. Especially the Ansible feature to use template files to fill in
the correct values in configuration files gives much flexibility in experiment preparation and

43

WASHFUL H2020 - GA No. 258301 D5.1

customization. It could be used to properly configure the configuration files for the OMF resource
controller/experiment controller. OML requires a database server and quite some configuration, so a
playbook to install all of this will be useful. Usually a simple bash script is not enough for this as there
are too many dependencies.

4.4 Tools for the integration of WiSHFUL UPIs in testbeds

The WIiSHFUL UPIs developed in WP3 and WP4 will allow experimenters to implement control
programs allowing fine-grained control of their solutions under test. The control programs can run on
each node offering node-local control via UPI_R and UPI_N and management via the UPI_M. They
can also enable network-wide or global control via UPI_G. This interface provides functions for
discovering the nodes under control. Since this information is already available via the testbed
management services, it makes sense to provide an interface between the testbed management
services and the global monitoring and configuration engine implementing UPI_G. Figure 45
illustrates how this interface is integrated in the high-level WiSHFUL architecture.

> Global Control Program
UPI_HC
SFA
UPI_G FRCP
3 OMSP
Global Monitoring & Configuration Engine aptation e ¢
—
3
Testbed
Remote UPI usage Management
v Services
UPI_N APP APP UPI_N
o] |:°C‘.1| TRANSPORT TRANSPORT |:°C‘.1| Local
Monitoring & Monitoring &
Control . . NET NET . . Control
Proaram UPI_R [@iteTtelitel) e ac Configuration Yl Proaram
= > Engine Engine > =
PHY PHY

Figure 45 Testbed adaptation tools for integrating the WiSHFUL UPI's in testbed.

Because all Fed4FIRE compliant testbeds have a specific implementation (e.g. Rspec extensions) for
the Fed4FIRE interfaces (SFA, FRCP, OMSP), testbed adaptation tools need to be developed that offer
a generic interface to the global monitoring and configuration interface. SFA can be used for resource
discovery, e.g. knowing which nodes are in an experiment. Using the resource descriptions
advertised by the testbeds AM (in Rspec format) the type of nodes and their capabilities can be
retrieved. FRCP allows configuring resources in an experiment, and is hence a possible candidate for
implementing the protocol that allows remote UPI usage. Using slice information from the testbeds
AM, also information about the groups defined in an experiment can be deducted from the AMQP
topic subscription. This information is useful for experiments with multiple types of nodes (for
instance mixed WiFi and ZigBee experiments). Additionally OMSP, provided by the OML library, can
be used for gathering monitoring results from each testbed node. This information can be fed via
UPL_G to the global control program to steer the decision making.

This section only describes the integration of WiSHFUL UPIs at a very high level. It will be described in
detail in D5.2 at month 12.

5 Conclusion

In this deliverable, we described the Fed4FIRE compliance status of all WiSHFUL testbeds and their
implementation efforts to join the federation. The TWIST and IRIS testbeds make use of the Geni

44

WiSHFUL H2020 - GA No. 258301 D5.1

Control Framework to expose the federation AM API. The SFAwrap tool is used to bring the FIBRE
island at UFRJ up to Fed4FIRE standards. To better understand the SFAwrap and GCF tools, a
description of the SFA architecture is included in this deliverable. Finally, the Orbit and w-iLab.t are
already F4F compliant. Their architecture is included in this deliverable to have a complete list of all
WIiSHFUL testbeds.

Providing a federation AM API on all testbeds is the first step in the federation. Once the federation
AM API’s are up and running, several client side federation tools are offered by Fed4FIRE. jFed is
chosen as the tool to implement the SFA protocol and provide experimenters with the functionality
to discover, reserve and provision resources in all WiSHFUL testbeds. To support the FRCP protocol
and the associated advanced experiment control functionality, the OMF6 tools were chosen. Finally,
the OML library implements the OMSP protocol and provides an easy way for experimenters and
facility providers to collect measurement and monitoring data. The above tools will be extended to
support the hardware and software in WiSHFUL, starting with the jFed tool, since this tool is used for
the first stage in the experiment life cycle.

Finally, some new tools are presented and modified to support the Fed4FIRE federation protocols
like SFA, FRCP and OML. The tools offer functionality that facilitates the experimentation process for
users of WiSHFUL infrastructure, including users of the portable testbed. The tools presented here
are spanning advanced wireless spectrum monitoring, automation of experiments and automation of
software deployment. To conclude, a short description is given on the integration of WiSHFUL UPIs
into a testbed environment. The need for other tools will be investigated during the course of the
project. Feedback from open call experiments and/or extensions will play a crucial role in deciding
what tools are useful for users of WiSHFUL.

45

WASHFUL H2020 - GA No. 258301 D5.1

6 References

[1] Slice Federation Architecture 2.0 (available at http://groups.geni.net/geni/wiki/SliceFedArch and
https://fed4fire-testbeds.ilabt.iminds.be/asciidoc/general.html)

[2] Clearinghouse (available at http://groups.geni.net/geni/wiki/GeniClearinghouse)

[3] Description of the federation AM API (available at https://fed4fire-
testbeds.ilabt.iminds.be/asciidoc/federation-am-api.html)

[4] GENI, Global Environment for Network Innovations (available at https://www.geni.net/)

[5] RSpecs, Resource Specification documents (see https://fed4fire-
testbeds.ilabt.iminds.be/asciidoc/rspec.html)

[6] GENI Control Framework (available at http://trac.gpolab.bbn.com/gcf)

[7]1 GENI-tools (available at https://github.com/GENI-NSF/geni-tools/wiki)

[8] USRP N210 series (datasheet available at http://www.ettus.com/content/files/07495 Ettus N200-
210 _DS_Flyer HR_1.pdf)

[9] SFAwra.p (available at http://sfawrap.info/)

[10] MysSlice portal (available at https://myslice.info/)

[11] W-iLab.t wireless testbed (http://doc.ilabt.iminds.be/ilabt-documentation/wilabfacility.html)

[12] Emulab — Network Emulation Testbed software (available at http://emulab.net/)

[13] GENI Aggregate Manager APl Version 3 (available at http://groups.geni.net/geni/wiki/GAPI_AM_API_V3)

[14] jFed, a Java-based framework for testbed federation (available at http://jfed.iminds.be/)

[15] XEN Hypervisor (available at http://wiki.xen.org/wiki/Xen_Project_Software_Overview)

[16] OpenVZ, container based virtualization for Linux (available at https://openvz.org/Main_Page)

[17] FRCP, Federated Resource Control Protocol (available at
https://github.com/mytestbed/specification/blob/master/FRCP.md)

[18] XMPP, eXtensible Messaging and Presence Protocol (available at http://xmpp.org/)
[19] AMQP, Advanced Message Queuing Protocol (available at https://www.amqgp.org/)

[20] OMF6, cOntrol and Management Framework (available at
https://omf.mytestbed.net/projects/omf6/wiki/Wiki)

[21] OEDL, the OMF Experiment Description Language (available at
https://omf.mytestbed.net/projects/omf6/wiki/Wiki)

[22] Ruby Programming Language (available at https://www.ruby-lang.org/en/)

[23] OMSP, The OML Measurement Stream Protocol (available at
http://oml.mytestbed.net/doc/oml/2.11/doxygen/omsp.html)

[24] OML, (Orbit) Measurement Library (available at http://oml.mytestbed.net/)

[25] Zabbix monitoring solutions (available at http://www.zabbix.com/)

[26] Nagios monitoring solutions (available at http://www.nagios.org/)

[27] Wi-Spy spectrum monitoring tool (available at http://www.metageek.com/products/wi-spy)

[28] Alix embedded PC’s (available at http://www.pcengines.ch/alix.htm)

[29] Imec research centre (available at http://www2.imec.be/be_en/research.html)

[30] Atheros Wi-Fi chipsets (available at http://www.qca.qualcomm.com/)

[31] Atheros spectral scan (available at https://wireless.wiki.kernel.org/en/users/drivers/ath9k/spectral_scan)

46

WASHFUL H2020 - GA No. 258301 D5.1

[32] Ath9k Wireless Driver (available at https://wireless.wiki.kernel.org/en/users/drivers/ath9k)

[33] Surrogate Modeling toolbox (available at http://sumowiki.intec.ugent.be)

[34] Ansible playbooks (available at http://docs.ansible.com/playbooks.html)

[35] Ansible architecture (available at http://www.ansible.com/how-ansible-works)

47

