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Executive Summary 
The	 classical	 control	 and	 management	 plane	 for	 computer	 networks	 is	 addressing	 individual	
parameters	of	protocol	 layers	within	an	 individual	wireless	network	device.	We	argue	 that	 this	 is	
not	 sufficient	 in	 phase	 of	 increasing	 deployment	 of	 highly	 re-configurable	 systems,	 as	 well	 as	
heterogeneous	 wireless	 systems	 co-existing	 in	 the	 same	 radio	 spectrum	 which	 demand	
harmonized,	 frequently	even	coordinated	adaptation	of	multiple	parameters	 in	different	protocol	
layers	(cross-layer)	in	multiple	network	devices	(cross-node).		

Therefore,	 in	 WiSHFUL	 project,	 we	 propose	 a	 set	 of	 the	 Unified	 Programming	 Interfaces	 (UPI)	
enabling	 a	 coordinated	 cross-layer	 control	 and	 management	 operation	 over	 multiple	 network	
nodes	–	D4.2.	With	usage	of	 the	UPIs,	 the	network	control	 logic	may	be	 implemented	either	 in	a	
centralized	or	distributed	manner.	This	allows	to	place	time-sensitive	control	functions	close	to	the	
device	under	control	(i.e.,	local	control	programs),	while	off-loading	more	resource	hungry	control	
programs	to	compute	servers	and	make	them	work	together	to	control	entire	network.		

This	deliverable	reports	the	UPIs	supported	 in	Y2	of	the	project	 in	the	second	release	of	network	
control	 software	platform.	The	focus	 is	on	a	detailed	description	and	 implementation	the	Unified	
Programming	 Interfaces	 for	 network	 control	 (i.e.	 UPI_N,	 UPI_G,	 UPI_M	 and	 UPI_HC),	 whereas	
deliverable	 D3.4	 addresses	 radio	 control	 through	UPI_R	 focusing	 on	 the	 lower	 layers,	 i.e.	 lower	
MAC	and	physical	 layer.	The	UPI	 functionality	has	been	 implemented	for	two	different	platforms,	
namely,	Linux-based	wireless	nodes	and	sensor	nodes	using	the	Contiki	operating	system.	The	full	
documentation	of	UPI_N,	UPI_G,	UPI_M	and	UPI_HC	together	with	 the	code	of	 the	 implemented	
software	is	available	in	the	WiSHFUL	GitHub	repository.	

Moreover,	 this	 document	 contains	 also	 description	 of	 capabilities,	 implementation	 and	
performance	evaluation	of	the	WiSHFUL	control	framework.	The	WiSHFUL	control	framework	was	
tested		in	a	number	of	showcases	(see	D2.4),	that	provided	valid	proofs	of	its	usability.		
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6LowPan	 IPv6	over	Low	power	Wireless	Personal	Area	Network	

AP	 Access	Point	

API	 Application	Programming	Interface	

ARM	 Advanced	RISC	Machine	

CAPWAP	 Control	And	Provisioning	of	Wireless	Access	Points	

CoAP	 Constrained	Application	Protocol		

CSMA	 Carrier	Sense	Multiple	Access	

DMA	 Direct	Memory	Access	

DUT	 Device	Under	Test	

FEC	 Forward	Error	Correction	

FFT	 Fast	Fourier	Transform	

GCP	 Global	Control	Program	

GPS			 Global	Positioning	System	

HetNet	 Heterogeneous	Networks	

ICMP	 Internet	Control	Message	Protocol	

IPv6	 Internet	Protocol	version	6	

ISM	 Industrial,	Scientific,	Medical	

LCP	 Local	Control	Program	

LTE	 Long	Term	Evolution	

LTE-U	 LTE	in	unlicensed	spectrum	

LWAPP	 Lightweight	Access	Point	Protocol		

MAC	 Medium	Access	Control	

MCS	 Modulation	and	Coding	Scheme		

MIPS	 Microprocessor	without	Interlocked	Piped	Stages	

NDPI	 Native	Device	Programming	Interface	
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NTP	 Network	Time	Protocol		

OS	 Operating	System	

PTP	 Precision	Time	Protocol	

QDisc	 Queueing	Disciplines	

RE	 Resource	Element	

RPC	 Remote	Procedure	Call	

RPL	 Routing	Protocol	for	Low	power	and	Lossy	Networks	



	 H2020	-	GA	No.	645274	 D4.4	
 

   

WiSHF   L 

4	

SDN	 Software	Defined	Networking	

SDR	 Software	Defined	Radio	

SNMP	 Simple	Network	Management	Protocol	

SoC	 System	On	Chip	

STA	 Wireless	Station	

SUT	 System	Under	Test	
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TCP	 Transmission	Control	Protocol		
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UDP	 User	Datagram	Protocol	

UML	 Unified	Modeling	Language	

UPI	 Unified	Programming	Interface	

UPI_G	 Unified	Programming	Interface	Global	
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UPI_M	 Unified	Programming	Interface	Management	
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1 Introduction	
This	 deliverable	 describes	 the	WiSHFUL	 control	 framework	 as	 well	 as	 gives	 description	 of	 the	
implemented	Unified	Programming	Interfaces	for	network	control,	UPI_N,	i.e.	higher	layers	of	the	
network	 protocol	 stack.	 The	 source	 code	 along	 with	 detail	 documentation	 of	 the	 implemented	
control	framework	is	available	in	the	WiSHFUL	GitHub	repository.		

In	Section	2,	description	of	second	release	of	WiSHFUL	control	framework	 is	provided.	 It	provides	
an	 overview	 of	 the	 implementation	 architecture	 along	with	 a	 description	 of	 all	 components	 and	
programming	 interfaces.	 This	 section	 covers	 also	 related	work	 on	 control	 frameworks.	 Section	 3	
contains	 description	 of	 UPI_N	 supported	 in	 year	 2	 for	 Linux	 and	 Contiki	 operating	 systems.	 In	
section	4,	we	provide	description	of	additional	 interfaces,	namely	UPI_G,	UPI_M	and	UPI_HC	that	
are	used	 for	global	control,	management	and	hierarchical	 control	 respectively.	Section	5	gives	an	
overview	of	the	WiSHFUL	control	framework	2.0	implementation	for	the	Linux	OS.	The	framework	
is	 implemented	 in	 Python	 programming	 language.	 The	 architecture	 of	 the	 framework	
implementation	 is	 presented	 in	 a	 UML	 diagram.	 We	 provide	 instructions	 about	 framework	
deployment	and	discuss	 support	offered	 for	other	programming	 languages	and	external	 software	
libraries.	 Furthermore,	 the	 framework’s	 performance	was	 evaluated	 and	 quantitative	 results	 are	
presented.	 This	 section	 contains	 also	 a	 description	 of	 future	work	 that	 is	 planned	 for	 year	 3.	 In	
section	6,	 the	 implementation	of	 the	necessary	 software	 components	 to	 connect	wireless	 sensor	
network	nodes	with	the	WiSHFUL	control	framework	based	on	Contiki	OS	is	presented.	We	offer	a	
detailed	 description	 of	 the	 architecture	 and	 implementation	 of	 the	 RPC	 engine,	 attribute	
repository,	 protocol-specific	 connector	 modules,	 communication	 wrapper,	 node	 discovery	 and	
remote	 UPI	 function	 execution	 support.	 Finally,	 Section	 7	 concludes	 this	 document,	 while	
references	are	listed	in	Section	8.		
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2 WiSHFUL	control	framework	2.0	
The	 control	 plane	 and	 the	management	 plane	 have	 played	 a	 very	 important	 role	 in	 the	 classical	
telecommunication	systems,	but	have	been	given	much	less	attention	in	computer	networks.	As	a	
matter	 of	 fact	 the	 only	 widely	 accepted	 approach	 is	 the	 usage	 of	 Simple	 Network	Management	
Protocol	 (SNMP)[1]	 or	 Network	 Configuration	 Protocol	 (NETCONF)[2]	 as	 basis	 for	 creating	
management	 applications.	 This	 is	 increasingly	 recognized	 as	 not	 sufficient	 -	 especially	 in	 case	 of	
wireless	 networks	where	many	parameters	 have	 to	be	 frequently	 tuned	 in	 response	 to	 changing	
wireless	propagation,	interference	and	traffic	conditions.	There	were	already	a	couple	of	attempts	
for	wireless	control	protocols	including	Lightweight	Access	Point	Protocol		(LWAPP)[3]	and	Control	
And	Provisioning	of	Wireless	Access	Points	 	 (CAPWAP)[4],	but	 these	were	designed	with	 focus	on	
rare	 changes	 of	 configuration	 and	 device	 management	 and	 are	 not	 suitable	 for	 time-sensitive	
control	of	devices.		

Furthermore,	classical	control/management	actions	have	been	addressing	individual	parameters	of	
protocol	 layers	 within	 an	 individual	 network	 device.	 This	 is	 not	 sufficient	 in	 phase	 of	 increasing	
deployment	 of	 highly	 re-configurable	 systems,	 as	 well	 as	 heterogeneous	 wireless	 systems	 co-
existing	 in	 the	 same	 radio	 spectrum	 which	 demand	 harmonized,	 frequently	 even	 coordinated	
(simultaneous)	 change	 of	 multiple	 parameters	 in	 different	 parts	 of	 hardware	 and	 software	 in	
multiple	network	devices.	Typical	examples	of	emerging	real	scenarios	are	LTE-U	and	Wi-Fi	in	5	GHz	
and	Wi-Fi,	 Bluetooth	 and	 ZigBee	 in	 2.4	 GHz	 ISM	 band.	 On	 the	 other	 hand,	 even	 homogeneous	
deployments	 are	 suffering	 from	 intra-technology	 interference.	 In	 recent	 years	 we	 have	 seen	 a	
boom	 of	 cross-layer	 design	 proposals	 for	 wireless	 networks	 where	 additional	 information	 from	
some	layers	are	obtained	and	used	to	optimize	operation	of	other	layers.	So	far	control	programs	
had	 to	 solve	 the	 challenge	 of	 harmonized/simultaneous	 actions	 on	 case-by-case	 basis,	 which	
significantly	 complicated	 development	 of	 such	 applications	 and	 lead	 to	 lack	 of	 any	 compatibility	
across	the	various	solutions.	We	argue	that	the	efficiency	of	wireless	networks	can	be	significantly	
improved	 by	 enabling	 the	 management	 and	 control	 of	 the	 different	 co-located	 wireless	
technologies	 and	 their	 network	 protocols	 stacks	 (cross-layer)	 in	 a	 coordinated	 way	 using	 either	
centralized,	hierarchical	or	distributed	control	architectures.	

In	D4.1,	we	have	presented	the	WiSHFUL	architecture,	which	is	suitable	for	time-sensitive	control	of	
heterogeneous	 wireless	 networking	 devices.	 The	 WiSHFUL	 monitoring	 and	 configuration	 engine	
(MCE)	has	hierarchical	architecture	with	 local	MCEs	residing	on	each	wireless	node	and	a	central	
global	 MCE.	 The	 global	 MCE	 enables	 global	 control	 programs	 to	 control	 the	 behaviour	 of	 each	
wireless	Device	Under	Test	(DUT)	using	the	well-defined	UPI-R/N	interfaces	provided	by	each	node.	
Moreover,	the	global	MCE	can	instantiate	local	control	programs	on	each	wireless	node,	which	are	
executed	 by	 each	 node-local	 MCEs	 independently.	 Besides	 the	 global	 control	 there	 is	 also	 the	
option	 to	 control	 each	node	 independently	 using	 a	 local	 control	 program	 on	 top	of	 a	node-local	
MCE.	

Contribution:	 This	 chapter	 describes	 the	WiSHFUL	 control	 framework	 that	 implements	WiSHFUL	
architecture.	 The	 suggested	 Application	 Programming	 Interface	 (API)	 supports	 typical	 functions	
needed	for	coordinated	cross-layer,	cross-technology	and	cross-node	control	and	similarly	as	in	the	
SDN	paradigm	we	allow	 for	centralized	control,	while	 supporting	equally	well	hierarchical	 control	
structure	and	logically	centralized	but	physically	distributed	control.	Network	control	programs	can	
be	either	co-located	with	the	controlled	device	(both	running	on	the	same	network	node,	e.g.	for	
latency	reasons)	or	separated	from	each	other	(running	on	two	nodes,	e.g.	control	program	runs	on	
server	due	to	requiring	high	computing	power).	This	enables	rapid	prototyping	of	control	programs	
for	wireless	network	devices,	management	and	control	of	operation	of	-	possibly	heterogeneous	-	
nodes	in	wireless	networks.	
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2.1 System	Model	
In	 this	 section,	 we	 define	 our	 system	 model	 and	 provide	 definitions	 of	 all	 terms	 that	 we	 use	
consistently	in	this	and	all	related	documents.		

The	network	is	a	collection	of	nodes	-	Figure	1	-	under	common	management	and	control	domain	
(authority).	 A	 node	 is	 a	 collection	 of	 equipment	 sharing	 a	 common	 hardware	 platform	 (i.e.	
motherboard)	and	being	operational	under	a	 single	 instance	of	an	operating	 system.	The	 type	of	
nodes	 spans	 from	small,	 constrained	devices	 to	powerful	 computing	 servers.	A	node	 is	 equipped	
with	 zero	 or	 more	 devices.	 A	 device	 is	 a	 piece	 of	 hardware	 fulfilling	 a	 dedicated	 functionality.	
Additionally,	platform	is	a	pair	of	device	and	proper	software	that	may	expose	set	of	operations	to	
control	its	behaviour	and	parameters.	For	convenience,	we	frequently	use	term	device	for	platform.	
For	 example,	 a	 wireless	 network	 platform	 provides	 packet	 forwarding	 functions	 with	 usage	 of	
wireless	 transmission	 technology	 (e.g.	 802.11,	 LTE)	 and	 exposes	 set	 of	 operations	 in	 UPI_R	 and	
UPI_N	 interfaces	 to	 control	 its	 parameters	 including	 transmission	 power,	 central	 frequency,	
bandwidth,	etc.		

The	 control	 logic	 may	 be	 implemented	 either	 as	 standalone	 or	 multiple	 cooperating	 control	
programs	that	run	in	node(s).	In	particular,	a	control	program	may	be	located	in	the	same	node	as	
the	network	device	that	it	is	controlling.	

We	assume	 the	existence	of	a	 common	control	 channel	 enabling	control	program(s)	 to:	 i)	 access	
UPI_R	 and	UPI_N	of	 all	 devices	 in	 network,	 ii)	 use	 it	 to	 control	 their	 behaviour	 and	 iii)	 exchange	
control	 messages	 between	 each	 other	 for	 cooperation	 purposes.	 This	 control	 channel	 may	 be	
realized	over	the	wireless	network	itself	(in-band)	and/or	additional	wired	backhaul	 infrastructure	
(out-band).	

	
Figure	1.		System	model	overview.	

	

2.2 Requirements	and	Design	Principles	
The	main	objective	of	the	WiSHFUL	control	framework	is	to	facilitate	and	shorten	time	required	for	
prototyping	 of	 novel	 control	 solutions	 in	 heterogeneous	wireless	 networks.	We	 argue	 that	 novel	
wireless	control	programs	may	be	realized	when	the	following	functionality	is	provided:	

• Coordinated	collection	of	information	from,	and	execution	of	control	actions	on	different	
protocol	layers	(cross-layer),	heterogeneous	devices	(cross-technology)	and	multiple	nodes	
(cross-node)	within	a	network,	

• Existence	of	a	global	and	consistent	view	of	the	entire	network,	i.e.	knowledge	about	the	
state	of	all	devices	and	their	relationship,	

• Possibility	to	implement	logically	centralized	and	physically	distributed	control	programs,	
i.e.	placing	time-sensitive	tasks	close	to	device	and	off-loading	resource	greedy	tasks	to	
powerful	servers,	

• Support	for	multiple	levels	of	control	for	scalability	reasons,	i.e.	local	control	programs	
handle	frequent	commands	and	events,	while	global/hierarchical	control	programs	handle	
rare	events	(Figure	2),	

• Support	for	detecting	network	changes	in	proactive	and	reactive	control	schemes	in	control	

Node NodeNodeNode

Control	Channel
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programs,	
• A	high-level	API	for	control	of	operation	of	individual	wireless	devices	and	groups	of	

devices,	
• Location	transparency	i.e.	the	same	API	syntax	for	execution	of	commands	on	local	and	

remote	devices	(->	UPI_R/N),	
• Possibility	to	execute	commands	on	group	of	nodes/devices.	

Control	 and	 optimization	 of	 operation	 of	wireless	 network	 usually	 involves	 tuning	 parameters	 of	
network	 devices	 being	 in	 proximity	 of	 each	 other,	 i.e.	 in	 wireless	 communication/interference/	
sensing	area.	Examples	are	the	radio	channel	and	transmit	power	assignment	to	co-located	Access	
Points	 in	Wi-Fi	 networks.	 Hence,	 the	 control	 plane	 requires	mechanism	 to	discover	 the	wireless	
devices	 in	 the	 network	 and	 their	 (wireless)	 relationship.	 Moreover,	 this	 information	 has	 to	 be	
monitored	and	updated	at	 run-time.	Having	a	global	view	of	 the	entire	wireless	network	enables	
control	 programs	 to	 efficiently	manage	 and	 control	 of	wireless	 devices.	 Changes	 in	 the	network	
state	 can	 be	 detected	 in	 two	ways,	 namely	 proactive	 and	 reactive.	 In	 a	 proactive	 approach,	 the	
network	 controller	 is	 periodically	 polling	 the	 network	 entities,	 while	 in	 a	 reactive	 approach	 the	
execution	 of	 control	 program	 functions	 is	 triggered	 by	 events	 generated	 by	 the	 nodes	 in	 the	
network.	It	should	be	up	to	the	experimenter	to	define	his	preferred	control	strategy.	

For	 coordinated	 control	 among	 multiple	 devices	 of	 different	 nodes,	 the	 framework	 API	 has	 to	
support	 time	 synchronized	execution	of	 functions	 across	multiple	network	devices.	 Examples	 are	
the	coordinated	channel	switching	of	multiple	devices	due	to	appearance	of	an	interference	source.	
While	it	is	natural	that	the	device	programming	interface	is	different	for	each	wireless	technology,	
in	most	 cases	 it	 also	varies	across	different	 implementation	of	 the	 same	 technology,	 i.e.	wireless	
devices	of	different	vendors.	The	unification	of	the	different	Native	Device	Programming	Interface	
(NDPI)	 is	achieved	by	 the	 introduction	of	 the	UPI_R	and	UPI_N	 interfaces	which	allow	controlling	
the	devices	of	a	heterogeneous	network	in	a	unified	way.		

	

	
Figure	2.	Levels	of	control	in	WiSHFUL	control	framework.	Global	controllers	(left)	handle	rare	events	and	

commands	while	local	controllers	(right)	are	able	to	handle	frequent	commands	and	events.	In	
hierarchical	control	(middle)	there	are	two	control	loops,	i.e.	outer	and	inner.	

	

In	the	general	SDN	concept	the	control	plane	is	logically	centralized	enabling	control	programs	to	
have	 a	 global	 view	 of	 the	 entire	 network.	 This	 approach	 simplifies	 the	 development	 of	 control	
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programs	 significantly.	 However,	 from	 a	 practical	 point	 of	 view	 a	 centralized	 controller	 would	
introduce	a	significant	delay	in	the	control	plane,	which	could	in	turn	prevent	time	sensitive	control	
logic	to	be	implemented.	Moreover,	transporting	all	monitoring	data	from	devices	to	a	central	node	
would	create	a	high	load	on	the	control	plane.	Sometimes	pre-processing	data	locally	at	the	device	
is	 feasible.	 In	 this	way,	 the	control	 logic	may	be	partitioned	 into	 smaller	 control	programs	where	
parts	 of	 them	 would	 run	 on	 the	 network	 nodes	 and	 others	 on	 the	 central	 compute	 node,	 i.e.	
hierarchical	control.	Another	advantage	of	such	a	split	is	the	possibility	to	reuse	control	programs.	
For	example,	an	averaging	filter	may	be	implemented	once	as	a	control	program	and	used	as	a	local	
component	 in	 the	 implementation	of	more	complex	controllers	 in	 the	 future.	Figure	2	shows	 the	
levels	 of	 control	 in	 the	 WiSHFUL	 control	 framework.	 Local	 control	 programs	 handle	 frequent	
commands	 and	 events,	 while	 global	 control	 programs	 handle	 rare	 events.	 There	 is	 also	 the	
possibility	for	hierarchical	control	where	exchange	of	events	between	the	global	control	programs	
and	the	local	control	programs	is	also	rare.	

In	 summary,	 the	 our	 control	 framework	 allows	 for	 running	 multiple	 control	 programs,	 which	
communicate	 with	 each	 other,	 and	 provides	 them	with	 an	 interfaces	 for	 controlling	 all	 wireless	
network	devices	in	a	coordinated	way.	

	

2.3 Architecture	Overview	
WiSHFUL	is	a	distributed	middleware	running	across	multiple	nodes	that	interconnects	all	control	
programs	 having	 the	 ultimate	 goal	 to	 control	 wireless	 network	 devices.	 The	 control	 programs	
running	 on	 top	 of	 the	 middleware	 perform	 control	 tasks	 over	 wireless	 devices	 by	 utilizing	 the	
provided	UPI_R,	UPI_N	and	UPI_G	interfaces.	The	WiSHFUL	southbound	interface	is	responsible	for	
translating	UPI	calls	coming	from	control	programs	to	the	devices.	In	the	following	subsections,	we	
provide	detailed	description	of	the	WiSHFUL	control	framework	design	and	implementation.	

	

2.3.1 Control	Program	
A	 control	 program	 is	 an	 entity	 that	 implements	 a	 particular	 network	 control	 logic.	 In	 general,	 it	
collects	 information	 and	measurements	 from	 one	 or	 a	 group	 of	 network	 devices,	makes	 control	
decisions	according	to	set	policies	and	performs	network	reconfiguration.		

Each	 control	 program	 is	 provided	 with	 a	 global	 view	 of	 all	 nodes	 in	 the	 network.	 By	 default,	 a	
control	 program	 is	 able	 to	 control	 all	 device	modules	 (using	 UPI_R	 and	 UPI_N	 interfaces)	 in	 the	
entire	wireless	network.		

Control	programs	can	register	callback	functions	to	get	references	to	remote	nodes	(and	eventually	
to	 devices)	 which	 are	 required	 when	 performing	 asynchronous	 execution	 of	 UPI_R	 and	 UPI_N	
functions	or	when	registering	for	framework	events,	e.g.	new_node_callback	or	node_exit_callback.	

	

2.3.2 Interfaces	and	execution	context	
In	 order	 to	 access	 the	 WiSHFUL	 framework	 a	 network	 control	 program	 creates	 a	 controller	
instance.	 A	 global	 control	 program	 creates	 an	 instance	 of	 Controller	 whereas	 a	 local	 control	
program	creates	an	Agent	from	which	he	is	able	to	get	a	reference	to	LocalController	using	function	
call	get_local_controller().	This	controller	object	provides	an	access	to	the	UPI	 interfaces	–	UPI_R,	
UPI_N,	UPI_HC	and	UPI_G.	Note,	 that	 in	 case	of	 local	 control	 only	 access	 to	 the	 local	UPI_R	and	
UPI_N	 interfaces	 is	possible,	 i.e.	only	control	of	 local	devices.	For	global	controller	 the	UPI_R	and	
UPI_N	interfaces	are	the	same	for	devices	located	in	the	same	host	machine	as	well	as	for	remote	
devices.	 It	 is	 the	 UPI_G	 that	 is	 responsible	 for	 delivering	 and	 executing	 function	 calls	 in	 proper	
device	in	order	to	achieve	location	transparency.		
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The	UPI_R	and	UPI_N	interfaces	give	a	control	program,	global	or	local,	the	possibility	to	configure	
and	monitor	the	supported	protocol	layers	of	a	network	device.	The	UPI_G	contains	also	functions	
for	 network-wide	 operations,	 e.g.	 a	 function	 that	 estimates	 the	 nodes	 in	 carrier	 sensing	 range,	
which	perform	operations	using	the	UPI_R	and	UPI_N	interfaces	on	a	set	of	multiple	nodes/devices	
in	 a	 coordinated	way.	 The	UPI_HC	 interface	 is	 required	 for	 hierarchical	 control.	 It	 is	 used	by	 the	
global	control	program	to	start/stop	local	control	programs	on	remote	nodes	and	to	exchange	user-
defined	messages	with	them.		

A	global	control	program	may	execute	Remote	Procedure	Calls	 (RPC)	on	a	set	of	remote	network	
devices	by	calling	node()	or	nodes()	functions	before	calling	the	desired	UPI_R	or	UPI_N	function.	By	
default,	 all	 RPC	 calls	 are	 blocking	 execution	 of	 control	 program	 until	 the	 function	 returns.	 For	
convenience,	 the	 Controller	 (LocalController)	 class	 provides	 three	 functions,	 namely:	 i)	
delay(relative_time),	ii)	exec_time(absolute_time)	and	iii)	callback(cb=None).	Using	those	functions	
one	may	delay	execution	of	call,	schedule	execution	of	call	in	future	point	in	time	and	execute	non-
blocking	 call,	 respectively.	 Optionally,	 it	 is	 possible	 to	 register	 a	 callback	 function	 to	 handle	 the	
result	 returned	 from	 the	 function	 call.	 Some	 examples	 of	 the	 supported	 calling	 semantics	 are	
presented	in	Listing	1.	

	

Listing	1.	Examples	of	supported	UPI	call	syntax	

1. #definition of callback function   
2. def my_get_power_cb(data):   
3.     print(data)   
4.    
5. #execution of blocking call from local controller   
6. res = controller.radio.iface("wlan0").get_power()   
7.    
8. #execution of non-blocking call from local controller   
9. controller.callback(print_response).radio.iface("wlan0").get_power()   
10.    
11. #execution of blocking call from remote/global controller   
12. controller.node("node_1").radio.iface("wlan0").get_tx_power()   
13.    
14. #execution of non-blocking call from remote/global controller   
15. controller.node("node_1").callback(print_response).radio.iface("wlan0").get

_tx_power()   
16.    
17. #delay execution of non-blocking call from local controller   
18. controller.delay(3).callback(my_get_power_cb).radio.get_tx_power()   
19.    
20. #schedule execution of non-blocking call from local controller   
21. t = datetime.now() + timedelta(seconds=3)   
22. controller.exec_time(t).callback(my_get_power_cb).radio.get_tx_power()	

In	order	to	control	a	node,	a	control	program	has	to	first	obtain	its	identifier	(ID).	This	is	achieved	by	
registering	 a	 callback	 using	@controller.new_node_callback()	 decorator.	 On	 discovery	 of	 a	 new	
node	the	framework	notifies	the	control	program	about	this	by	sending	an	event	containing	a	node	
object	 with	 its	 ID.	 Those	 node	 IDs	 are	 required	 for	 remote	 UPI_R	 and	 UPI_N	 function.	 The	
framework	keeps	track	of	the	presence	of	all	nodes	 in	the	network	and	notifies	control	programs	
about	node	lost	events.	

	

2.3.3 Distributed	Control	Framework	
The	WiSHFUL	control	 framework	 is	a	distributed	middleware	 that	 inter-connects	network	devices	
and	control	program(s).	The	framework	takes	care	of	node	management	including	node	discovery	
and	monitoring	connection	between	all	nodes.	Whenever	a	new	node	is	discovered	or	connection	
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with	some	node	is	lost,	the	framework	notifies	all	control	programs	about	the	changes	by	sending	a	
proper	event.	While	control	programs	running	on	top	of	the	framework	are	able	to	control	wireless	
devices	 with	 simple	 UPI_R/N	 calls,	 it	 is	 the	 framework	 that	 is	 responsible	 for	 delivering	 and	
executing	function	calls	to/on	the	proper	device.	Moreover,	the	middleware	is	also	responsible	for	
discovering	 the	UPI	 capabilities	 of	 each	 device,	 allowing	 to	 handle	 exceptions	 if	 an	 unsupported	
function	is	called.	Using	the	WISHFUL	control	framework	it	 is	possible	to	develop	global,	 local	and	
hierarchical	network	control	programs.	In	this	way,	the	framework	by	design	supports	three	types	
of	 control	 programs:	 i)	 local	 –	 when	 the	 control	 program	 is	 running	 in	 the	 same	 node	 as	 the	
controlled	device(s),	 ii)	non-local	–	when	the	control	program	is	running	on	a	different	node	then	
the	controlled	device(s)	and	iii)	hybrid	or	hierarchical	–	when	control	logic	is	split	between	multiple	
control	programs	running	on	multiple	nodes.	A	hierarchical	control	is	a	trade-off	between	local	and	
global	 control.	 It	 allows	 putting	 time	 sensitive	 control	 functions	 close	 to	 device,	 and	 off-load	
complex	 tasks	 to	 remote	 more	 powerful	 nodes	 (servers	 in	 cloud).	 Note	 that	 the	 framework	
provides	location	transparency	meaning	that	calling	syntax	is	always	the	same	for	a	local	as	well	as	
a	remote	device.	

	

2.3.4 Network	Device	Modules	
The	 UPI_R/N	 interfaces	 work	 in	 two	 directions,	 i.e.	 control	 program	may	 execute	 functions	 and	
change	parameters	of	device	(in-direction),	but	 it	may	also	receive	data,	measurements,	samples,	
etc.	 from	device	 (out-direction).	All	 communication	 in	 in-direction	 is	 realized	 transparently	either	
with	local	or	remote	calls,	while	communication	in	out-direction	is	realized	using	messages.		

	
Figure	3.	Device	Module	provides	a	unified	interface,	UPI_R	and	UPI_N,	by	wrapping	the	Native	Device	

Programming	Interface.	

	

The	device	module	translates	function	calls	from	control	programs	into	Native	Device	Programming	
Interface	(NDPI)	–Figure	3A.		In	other	words,	device	module	wraps	different	API	and	tools	used	to	
program	device	and	exposes	them	to	WiSHFUL	framework	in	a	unified	way	as	UPI_R	and	UPI_N.	In	
Figure	3B,	we	present	two	device	modules	as	an	example.	As	shows	the	UPI_R	and	UPI_N	functions	
are	 delivered	 to	 modules	 and	 translated	 to	 proper	 NDPI	 calls,	 i.e.	 NETLINK	 and	 XML/RPC	
respectively.		

An	example	of	function	implementation	is	presented	in	Listing	2.	Here,	we	consider	the	802.11	WiFi	
device	 module.	 The	 set_channel()	 function	 takes	 channel	 as	 an	 argument	 and	 uses	 NETLINK	
interface	 to	 communicate	 with	 Linux	 802.11	 subsystem	 to	 configure	 the	 network	 device.	 We	
provide	bind_function	decorator	 to	mask	 function	names	which	can	also	be	used	 to	 implement	a	
unified	 abstraction	 layer.	 In	 example,	 the	 function	 is	 hidden	 behind	 proper	 operation	 from	 UPI	
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definition.	 Note	 that	 the	 device	 connectors	 are	 Python	 objects	 and	 they	 keep	 state	 between	
consecutive	function	calls.		

	

Listing	2.	Example	of	wrapper	that	translates	UPI	function	to	NDPI	function	

1. @wishful_module.bind_function(upis.radio.set_channel)   
2. def set_channel(self, channel):    
3.     self.channel = channel    
4.     # set channel in wireless interface using NDPI (e.g. NETLINK)    
5.     # .......   
6.     return reponse  	

2.4 Related	Work	
Related	work	falls	into	three	categories	that	are	described	in	following	subsections:	

	

2.4.1 Cross-layer	Control	
CRAWLER	[5][6]	is	experimentation	architecture	for	centralized	network	monitoring	and	cross-layer	
coordination	 over	 different	 devices.	 ClickWatch	 [7]	 aims	 for	 simplification	 of	 experimentation	 of	
wireless	cross-layer	solutions	 implemented	using	 the	Click	Modular	Router.	Both	 frameworks	aim	
to	facilitate	experimentation	and	offer	possibility	to	control	all	nodes	in	the	network	from	a	single	
centralized	controller.	In	contrast,	WiSHFUL	is	more	flexible	as	it	allows	distributing	controller	logic	
over	 multiple	 nodes	 so	 that	 time	 sensitive	 control	 logic	 can	 be	 located	 and	 executed	 on	 the	
network	node	to	be	controlled.		

	

2.4.2 Software-defined	Networking	
There	are	already	lots	of	distributed	control	frameworks,	but	they	are	mostly	focused	on	control	of	
wired	switches	using	open	protocols	(e.g.	OpenFlow[8]).	Some	of	them,	like	ONOS	[9]	and	ONIX	[10]	
are	focused	on	scalability	and	performance.	As	they	are	already	in	very	advanced	state,	it	is	hard	to	
use	them	for	resource	constrained	devices	or	to	adjust	them	to	wireless	networking.	Ryuo	[11]	and	
Kandoo	[12]	provide	the	possibility	for	offloading	of	control	programs	to	local	controllers	as	a	way	
to	limit	the	control	plane	load.	Local	controllers	handle	frequent	events,	while	a	logically	centralized	
root	 controller	handles	 rare	events.	Beehive	 [13][14]	provides	 interesting	 features	 like	 automatic	
distribution	 of	 network	 applications	 over	 network	 nodes.	While	 having	 similar	 concepts,	 Beehive	
does	 not	 differentiate	 between	 control	 programs	 and	 device	 modules,	 which	 are	 of	 great	
importance	when	targeting	the	control	of	heterogeneous	wireless	networks.		

CoAP	 [15]	 proposes	 a	 vendor	 neutral	 centralized	 framework	 for	 configuration,	 coordination	 and	
management	of	residential	802.11	APs	using	an	open	API.	In	contrast	to	WiSHFUL	the	CoAP	API	is	
restricted	to	control	of	802.11	networks.	Moreover,	only	centralized	control	programs	are	possible.	
OpenRF	 [16]	 provides	 programming	 abstractions	 tailored	 for	 wireless	 networks,	 i.e.	 MIMO	
interference	 management	 techniques	 that	 impact	 the	 physical	 layer.	 OpenRF	 is	 restricted	 to	
centralized	 control	 of	 802.11	 infrastructure	 networks.	 Finally,	 in	 [17]	 SDN	 architecture	 for	
centralized	 spectrum	 brokerage	 in	 residential	 infrastructure	 Cognitive	 Radio	 networks	 was	
proposed.	
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2.4.3 General	Distributed	Control	Frameworks	
ROS	 [18]	 is	 an	 open	 source	 robot	 operating	 system	 for	 rapid	 prototyping.	 ROS	 is	 focused	 on	
providing	 control	 for	 a	 single	 robot,	 trying	 to	 achieve	 one	 goal,	 and	 having	 all	 devices	 working	
towards	 that	 goal.	 In	 WiSHFUL,	 we	 are	 trying	 to	 achieve	 harmonization	 of	 multiple	 devices.	
Moreover,	 we	 also	 provide	 time	 scheduled	 execution	 of	 operations	 on	 multiple	 and	 possible	
heterogeneous	devices.	
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3 UPI_N	WiSHFUL	functions	and	attributes	
This	section	provides	 the	UPI_N	 interface,	 it	 is	 responsible	of	 the	higher	 layers	 reconfiguration	of	
the	 network	 protocol	 stack	 of	 a	 particular	wireless	 node,	 in	 terms	 of	 network	 capability,	 i.e.	 set	
traffic	flows.	According	to	the	WiSHFUL	architecture	design	described	in	D4.2,	the	UPI_N	functions	
are	called	exactly	 in	the	same	way	over	different	hardware	platforms	(which	will	be	called	simply	
platforms	 for	 the	 rest	 of	 the	 document),	 and	 they	 are	 organized	 into	 the	 following	 functional	
groups:	

• Address	management	
• Protocol	attribute	manipulation	
• Traffic	control	
• Topology	detection	and	routing	control	

According	with	the	presentation	of	WiSHFUL	modules	 for	the	UPI_R	provided	 in	deliverable	D3.4,	
we	 also	 exploit	 the	 platform	module	 concept	 and	 provide	 a	 set	 of	 modules	 able	 to	 implement	
UPI_N	 functions	and	be	 loadable	 in	a	given	wireless	node.	Three	module	have	been	produced	 to	
implement	 all	 the	 UPI_N	 functions:	module_net_linux	 and	module_iperf	 for	 the	 Linux	 OS;	 and	
module_net_contiki	 for	 the	Contiki	OS.	Also	 for	 the	UPI_N	 interface,	 the	 complete	 list	 of	 loaded	
modules	with	their	functions	for	each	node	is	reported	to	the	global	control	program	by	the	agent	
nodes.	 An	 experimenter	 is	 able	 to	 use	 an	UPI_N	 function	 inside	 the	 control	 program,	 only	 if	 the	
module	that	contains	it	is	loaded.	WiSHFUL	UPI_N	implementation	supports	two	platforms,	namely	
the	 linux	 networking	 subsystem	 and	 Contiki	 embedded	 OS.	 For	 the	 Contiki	 OS,	 two	 different	
network	layer	protocols	are	supported	(Rime	and	IPv6).	

The	 remainder	 of	 this	 section	 is	 organized	 as	 follows:	 first	 the	UPI_N	 functions,	 supported	by	 all	
platform	 types	 are	 listed	 for	 each	 functional	 group.	 Second,	 the	UPI_N	 functions	 supported	by	 a	
subset	of	platforms	are	described	for	the	relevant	functional	groups	and	platform	types.	The	same	
organization	is	used	for	the	UPI	attributes	in	the	following	two	sections.	Finally	an	example	is	given,	
together	with	a	summary	of	all	available	UPI_N	 functions	and	a	 list	of	candidate	UPI_N	 functions	
and	attributes.	

	

3.1 UPI_N	functions	supported	by	all	platform	types	
The	UPI_N	functions	presented	in	this	section	are	implemented	by	all	platform	types	(i.e.	Linux	OS	
and	Contiki	OS	based	hardware	platforms).		

	

3.1.1 Address	Management	
This	subsection	presents	the	generic	UPI_N	functions	for	address	management	-	Table	1.	They	allow	
getting	or	setting	the	IP	address	and	hardware	address	per	interface.	They	are	implemented	by	the	
module_net_linux	and	module_net_contiki.	

	

Table	1.	UPI_N	functions	for	address	management	

Function	 Description	

get_iface_hw_addr	 Returns	the	hardware	address	(MAC	address)	of	a	given	interface	

set_iface_ip_addr	 Sets	the	IP	address	of	the	interface.	

get_iface_ip_addr	 Returns	the	IP	address	of	a	given	interface.	
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3.1.2 Functions	to	manipulate	protocol	attributes	
This	 subsection	 presents	 the	 generic	 UPI_N	 functions	 that	 allow	 manipulating	 UPI_N	 attributes	
(Table	 2),	 i.e.	 set/get	 network	 level	 configuration	 parameters,	 read	 network	 level	measurements	
and	 subscribe	 network	 level	 events.	 They	 are	 implemented	 by	 the	 module_net_linux	 and	
module_net_contiki.	

	

Table	2.	UPI_N	functions	for	protocol	attributes	manipulation	

Function	 Description	

set_parameters	 This	 UPI_N	 function	 is	 able	 to	 configure	 the	 higher	 layer	
protocols	(routing,	transport,	application)	behavior	by	changing	
parameters.	Parameters	correspond	to	the	variables	used	in	the	
protocols.	

get_parameters	 Get	the	parameter	on	higher	layers	of	protocol	stack		

get_measurements	 This	 UPI_N	 function	 is	 able	 to	 retrieve	 the	 measurements	
maintained	by	higher	layer	protocols.	

get_measurements_periodic	 This	 UPI_N	 function	 is	 able	 to	 retrieve	 the	 measurements	
maintained	by	higher	layer	protocols	in	a	periodic	manner.	

subscribe_events	 Allows	to	subscribe	a	 local	event	 listener	 that	 is	 triggered	each	
time	the	subscribed	event(s)	occur(s).	

get_network_info	 This	UPI_N	function	retrieves	the	network	layer	information.	

	

3.1.3 Traffic	control	
In	this	section	the	UPI_N	functions	for	controlling	traffic	during	an	experiment	are	listed	-	Table	3.	
Using	these	UPIs	an	experimenter	is	able	to	start	or	stop	applications,	change	the	application	data	
rate	and	create	or	remove	packet	flows.	The	experimenter	can	also	retrieve	traffic	results	in	terms	
of	 throughput	 and	 delta	 time	 information	 in	 real	 time	 during	 the	 traffic	 session.	 They	 are	
implemented	by	the	module_net_linux,	module_net_iperf	and	module_net_contiki.	

	

Table	3.	UPI_N	functions	for	traffic	control	

Function	 Description	

install_application	 Install	application	in	a	node	

start_application	 Start	previously	installed	application	in	node	

stop_application	 Stop	previously	installed	application	in	node	

create_packetflow_sink	 Create	a	sink	that	is	able	to	receive	packet	flows	from	different	
nodes.	

destroy_packetflow_sink	 Destroy	a	packet	flow	sink.	

start_packetflow	 Start	a	packet	flow	towards	the	specified	sink.	

stop_packetflow	 Stop	an	existing	packet	flow	towards	the	specified	sink.	

register_packetflow_logging	 Register	on	packet	flow	sink	in	order	to	receive	logging	message	
with	traffic	information	result.	
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The	 UPI_N	 functions	 presented	 in	 this	 section	 provide	 a	 complete	 tool	 for	 performing	 network	
throughput	measurements.	It	can	test	either	TCP	or	UDP	throughput.	To	perform	an	traffic	session,	
the	experimenter	must	establish	both,	server	(sink)	and	client	(packetflow	source)	side,	the	logger	
is	activated	in	the	server	node	and	provides	a	service	to	notify	traffic	information	results.	The	Table	
4	 shows	 the	 complete	 list	 of	 parameters	 available	 for	 the	 traffic	 control	 functions	 and	 their	
description.	

	

Table	4.	Parameter	UPI_N	functions	for	traffic	control	functions	

Parameters	 Side	 Description	

port	 server/client/logger	 Server	port	to	listen	on/connect	to	

logging_interval	 server	 Seconds	 between	 periodic	 throughput	 result	
reports	

use_udp	 server/client	 Use	UDP	rather	than	TCP	

bind_interface	 server/client	 Bind	to	<host>,	an	interface	or	multicast	address	

dest_ip	 client	 Connecting	to	<host>	

time_duration	 client	 Time	in	seconds	to	transmit	the	traffic		

bandwidth	 client	 For	UDP,	bandwidth	to	send	at	in	bits/sec	

frame_length	 client	 Length	of	buffer	to	read	or	write	(default	8	KB)	

sink_ip_address	 Server/logger	client	 Connecting	to	<host>	to	receive	logging	message	

filter_ip_address	 logger	client	 Filter	 the	 logging	 message	 for	 a	 specific	 node	
information	

	
	
When	one	or	more	traffic	sessions	are	present,	the	UPI_N	register_packetflow_logging()	provides	a	
method	to	collect	the	traffic	session	results	in	real	time.	When	the	UPI_N	create_packetflow_sink()	
is	performed,	a	logging	service	is	activated	on	sink	node.	From	this	moment,	every	control	program	
can	use	the	UPI_N	register_packetflow_logging()	 to	connect	to	the	 logging	service	present	on	the	
Sink	 node.	 Afterwards,	 every	 logging_interval	 time	 the	 registered	 node	 receives	 the	 throughput	
results	in	terms	of	throughput	and	delta	value	in	real	time.	For	each	notification	the	relative	UPI_N	
callback	is	performed.	Figure	4	shows	a	scenario	in	which	the	WiSHFUL	UPI_N	traffic	control	is	used	
with	the	logging	service	enabled.	Two	traffic	sessions	are	active	from	Node0	and	Node1	to	the	Sink	
node.	 The	 control	 program	 uses	 the	 UPI_N	 register_packetflow_logging()	 to	 retrieve	 the	 traffic	
results	for	both	traffic	sessions.	
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Figure	4.	Architecture	of	the	logging	service	for	UPI_N	traffic	control	

	

In	,	we	present	an	example	of	a	control	program	that	implements	the	above	scenario,	a	packetflow	
sink	 is	 enabled	 on	 ap_node,	 and	 two	 traffic	 sessions	 are	 activated	 from	 node0	 and	 node1	 to	
ap_node.	 Afterwards,	 the	 register_packetflow_logging()	 function	 is	 called	 two	 times	 in	 order	 to	
enable	logging		for	both	of	the	nodes.	For	each	call	a	different	callback	function	is	defined.	Both	of	
the	callback	functions	process	the	logging	result	coming	from	the	nodes	and	then	they	append	the	
throughput	 and	 the	 delta	 values	 in	 the	 following	 four	 arrays:	 i)	 throughput_results_node0,	 ii)	
delta_results_node0,	 iii)	 throughput_results_node1,	 iv)	 delta_results_node1.	 These	 arrays	 can	 be	
used	 to	plot	 the	 throughput	 trend	 in	 real	 time,	 or	 to	 store	 all	 the	 values	 in	 a	data	base	 for	 post	
processing.	

	
Listing	3.	Example	of	traffic	sessions	activation	and	real	time	throughput	result	acquisition	

1. #callback implementation to store traffic information (throughput and delta
 time) for node 0   

2. throughput_results_node0 = [ ]   
3. delta_results_node0 = [ ]    
4. def collect_traffic_logging_messages_node0(group, node, data):   
5.     log.debug('receives data msg at %s -

 %s' % (str(node.ip), str(data) ))   
6.     throughput_results_node0.append(data['throughput'])   
7.     delta_results_node0.append(data['delta'])   
8.    
9. #callback implementation to store traffic information (throughput and delta

 time) for node 1       
10. throughput_results_node1 = [ ]   
11. delta_results_node1 = [ ]    
12. def collect_traffic_logging_messages_node1(group, node, data):   
13.     log.debug('receives data msg at %s -

 %s' % (str(node.ip), str(data) ))   
14.     throughput_results_node1.append(data['throughput'])   
15.     delta_results_node1.append(data['delta'])   
16. ….   
17. #start server traffic on node ap   
18. controller.nodes(ap_node).net.create_packetflow_sink(port='1234')       
19. #start client traffic on node 0   
20. controller.nodes(node0).net.start_packetflow( ap_node.ip, port='1234', time

_duration='500', bandwidth ='1M')   
21. #start client traffic on node 1   
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22. controller. .nodes(node1).net.start_packetflow( ap_node.ip, port='1234', ti
me_duration='500', bandwidth ='3M')   

23. ….   
24. #start  logging to collect traffic throughput results on node 0   
25. controller.callback(collect_traffic_logging_messages_node0).register_packet

flow_logging(port='8301', sink_ip_address=ap_node.ip, filter_ip_address=nod
e0.ip):   

26. #start  logging to collect traffic throughput results on node 1   
27. controller.callback(collect_traffic_logging_messages_node1).register_packet

flow_logging(port=''8301', sink_ip_address=ap_node.ip, filter_ip_address=no
de1.ip):   

28. ….   
29. #start client traffic on node 0   
30. controller.nodes(node0).net.stop_packetflow()   
31. #start client traffic on node 1   
32. controller.nodes(node1).net.stop_packetflow()   
33. #destroy packet flow sink on ap node    
34. controller.nodes(ap_node).net.destroy_packetflow_sink()  

	

3.1.4 Topology	detection	and	routing	control	
UPI_N	 supports	 basic	 functions	 for	 enabling	 both	 passive	 topology	 detection	 (e.g.	 by	 inspecting	
routing	and	neighbour	table)	and	active	topology	detection	by	generating/sniffing	probing	frames.	
Also	included	in	this	group	are	functions	to	add/remove	entries	in	the	routing	and	neighbour	table,	
allowing	 to	 control	 the	 routing	behavior.	 The	 functions	 listed	 in	 Table	5	 are	 implemented	by	 the	
module_net_linux	and	module_net_contiki.	

	

Table	5.	UPI_N	functions	for	topology	detection	and	routing	control	

Function	 Description	

get_route_table	 Get	the	current	routes	from	the	route	table.	

clear_route_table	 Clear	the	current	routes	in	the	route	table.	

add_route	 Add	a	route	in	the	route	table.	

remove_route	 Remove	a	route	from	the	route	table.	

get_neighbor_table	 Get	the	discovered	neighbors	from	the	neighbor	table.	

clear_neighbor_table	 Clear	the	discovered	neighbors	in	the	neighbor	table.	

add_neighbor	 Add	a	neighbor	in	the	neighbor	table.	

remove_neighbor	 Remove	a	neighbor	from	the	neighbor	table.	

gen_layer2_traffic	 Inject	layer2	traffic	into	network	device	

inject_frame	 Inject	L2/L3	frame	into	the	protocol	stack	

sniff_layer2_traffic	 Layer-2	packet	sniffing	from	network	device	

	

3.2 UPI_N	functions	supported	in	Linux	OS	

3.2.1 Address	Management	
This	 subsection	presents	 the	additional	UPI_N	 functions	 for	address	management	using	 the	Linux	
networking	 subsystem	 -	 Table	 6.	 They	 are	 implemented	 by	 the	 module_net_linux	 and	 allow	
manipulating	the	ARP	table.	
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Table	6.	UPI_N	functions	for	Address	Management	supported	in	Linux	OS	

Function	 Description	

get_ARP_entry	 Returns	an	entry	from	the	ARP	cache	

set_ARP_entry	 Manipulates	the	entries	in	the	ARP	cache	

	

3.2.2 Traffic	control		
In	 this	 section	 the	 UPI_N	 functions	 are	 listed	 that	 are	 in	 place	 for	 fine-grained	 configuration	 of	
traffic	control	in	the	Linux	networking	subsystem.	Using	these	UPIs	an	experimenter	is	able	to	apply	
traffic	shaping	and	prioritize	flows.	Also	UPI_N	functions	for	managing	Queuing	Disciplines	and	for	
wireless	 link	emulation	 (in	 terms	of	 throughput,	delay,	etc.)	 in	wired	networks	are	offered	 in	 this	
group.	The	UPI_N	functions	listed	below	are	implemented	in	module	module_net_linux.	

	

3.2.3 Support	for	management	of	Queueing	Disciplines	
The	provided	UPI_N	functions	for	configuration	of	queueing	disciplines	follows	an	object-oriented	
approach	and	 is	 listed	 in	Table	7,	 they	are	 implemented	 in	module	module_net_linux.	 It	 gives	an	
experimenter	a	user-friendly	way	for	managing	the	QDisc[19]	for	each	interface	 in	System-Under-
Test	(SUT)	nodes.		

	

Table	7.	UPI_N	functions	for	management	of	Queueing	Disciplines	supported	in	Linux	OS	

Function	 Description	

install_egress_scheduler	 Install	Egress	Scheduler	in	given	network	interface.	

remove_egress_scheduler	 Remove	Egress	Scheduler	from	network	interface	

	

An	example	of	a	configuration	of	QDisc	 is	presented	 in	Listing	4.	First,	a	 root	scheduler	has	 to	be	
created.	Second,	queues	are	created	and	added	 to	 shaper.	 Finally,	 the	 install_egress_scheduler()	
function	is	called	to	send	QDisc	configuration	to	remote	node,	which	will	apply	it	on	the	specified	
interface.	 A	 Qdisc	 configuration	 is	 installed	 using	 Netlink	 calls	 to	 the	 kernel	 traffic-control	
subsystem.	 	 In	 Listing	 5,	 an	 example	 of	 using	 a	 UPI	 function	 to	 delete	 an	 egress	 scheduler	 is	
presented.		

We	implemented	a	Python	package,	called	python-tc	that	is	used	to	:	i)	create	QDisc	configuration	
in	 object-oriented	 way;	 ii)	 agent	 to	 install	 this	 configuration	 on	 a	 specified	 interface.	 Currently	
supported	queuing	disciplines:	pfifo,	bfifo,	pfifo_fast,	tbf,	sfq,	netem,	prio,	htb.	Multiple	schedulers	
can	 be	 chained	 together,	 what	 gives	 an	 easy	 way	 for	 creation	 of	 even	 very	 complex	 queuing	
disciplines.	Traffic	control	can	be	performed	on	both	the	ingress	and	egress	interfaces.		

Filters	 are	 testing	 packed	 according	 to	 set	 so	 called	 5-tuple,	 which	 is	 a	 set	 of:	 source	 address,	
destination	address,	protocol,	source	port	and	destination	port.	A	packet	is	tested	against	all	filters	
in	order	they	were	created	until	it	matches	some	of	them.	
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Listing	4.	Example	of	configuration	and	installing	queuing	disciplines	in	SUT	node	

1. #Define scheduler   
2. prioSched = PrioScheduler(bandNum=4)   
3.    
4. #Define queues that will be added to scheduler   
5. pfifo1 = prioSched.addQueue(PfifoQueue(limit=50))   
6. bfifo2 = prioSched.addQueue(BfifoQueue(limit=20000))   
7. pfifo3 = prioSched.addQueue(SfqQueue(perturb=11))   
8. tbf4   = prioSched.addQueue(TbfQueue(rate=1000*1024, burst=1600, limit=10*1

024))   
9.    
10. #Define filters   
11. filter1 = Filter(name="BnControlTraffic");   
12. filter1.setFiveTuple(src=None, dst='192.168.1.178', prot='udp', srcPort=Non

e, dstPort='5001')   
13. filter1.setTarget(pfifo1)   
14. prioSched.addFilter(filter1)   
15. …   
16. …   
17. …   
18. filter4 = Filter(name="BestEffort");   
19. filter4.setFiveTuple(src='10.0.0.2', dst=None, prot='tcp', srcPort='21', ds

tPort=None)   
20. filter4.setTarget(tbf4)   
21. prioSched.addFilter(filter4)   
22.    
23. #Install defined scheduler in node0   
24. controller.install_egress_scheduler(node0, 'wlan0', prioSched)  	

	

Listing	5.	Deletion	of	egress	scheduler	in	SUT	node		

1. #Delete scheduler in particular interface of node   
2. controller.remove_egress_scheduler(node0, 'wlan0')   

	

3.2.4 Emulation	
We	provide	an	experimenter	a	way	to	emulate	link	parameters	in	wired	network.	We	envision	that	
this	 functionality	 will	 be	 helpful	 for	 testing	 control	 programs	 by	 emulating	 the	wireless	 links	 (of	
course	 with	 some	 limitations)	 in	 wired.	 The	 complete	 list	 of	 the	 UPI_N	 for	managing	 the	 traffic	
emulation	is	presented	in	Table	8,	these	UPI_N	are	implemented	in	module	module_net_linux.	

	

Table	8.	UPI_N	function	for	network	emulation	supported	in	Linux	OS	

Function	 Description	

set_netem_profile	 Set	emulation	profile	in	given	network	interface	

update_netem_profile	 Update	emulation	profile	in	given	network	interface	

remove_netem_profile	 Remove	emulation	profile	from	given	network	interface.	

set_per_link_netem_profile	 Set	 emulation	 profile	 in	 network	 interface	 for	 given	 link	
identified	with	destination	MAC	address	

update_per_link_netem_profile	 Update	 emulation	 profile	 in	 network	 interface	 for	 given	 link	
identified	with	destination	MAC	addresses.	
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remove_per_link_netem_profile	 Remove	emulation	profile	from	network	interface	for	given	link	
identified	with	destination	MAC	addresses.	

	

An	 experimenter	 is	 able	 to	 define	 parameters	 of	 the	wireless	 network	 (throughput,	 delay,	 jitter,	
packet	 loss,	etc.)	and	apply	 it	 to	each	SUT	node	using	 implemented	UPI	 functions.	Moreover,	we	
introduce	Profile	abstraction	to	further	facilitate	the	configuration	of	an	emulated	link.	A	profile	is	a	
description	of	link	characteristics.	

In	 Listing	 6,	 we	 present	 an	 example	 of	 configuration	 of	 a	 link	 profile	 and	 the	 use	 of	
set_netem_profile()	 to	apply	 it	 to	a	specified	 interface	 in	SUT	node.	 In	Listing	7	we	show	how	to	
update	 an	 already	 existing	 profile	 using	update_netem_profile().	 Finally,	 in	 Listing	 8	 it	 is	 shown	
how	to	remove	a	profile	using	remove_netem_profile()	function.	

In	 order	 to	 emulate	 link	 characteristics	 in	 wired	 network,	 we	 use	 a	 combination	 of	Netem	 and	
Token	Bucket	Filter	(TBF)	Queuing	Disciplines	available	in	Linux	kernel.	Netem	is	an	enhancement	of	
the	Linux	traffic	control	 facilities	that	allow	to	add	delay,	packet	 loss,	duplication	and	more	other	
characteristics	 to	 packets	 outgoing	 from	 a	 selected	 network	 interface.	 Token	 Bucket	 First	 is	
responsible	for	shaping	the	throughput	of	traffic	passing	interface.	

	

Listing	6.	Example	of	the	configuration	of	an	emulated	link	

1. #Define emulation profile     
2. profile4G = Profile("profile3G")   
3. profile4G.setPacketLimit(1000)   
4. band_1Mbps = 1000 * 1000 / 8   
5. profile4G.setRate(band_1Mbps)   
6. profile4G.setDelay(delay=100, jitter=10)   
7.    
8. #Apply emulation profile to interface eth0 of node0   
9. controller.set_netm_profile(node0, 'eth0', profile4G)   

	

Listing	7.	Example	of	update	of	emulation	profile	

1. #Update emulation profile   
2. band_3Mbps = 3 * 1000 * 1000 / 8   
3. profile4G.setRate(band_3Mbps)   
4. profile4G.setDelay(delay=70, jitter=5)   
5.    
6. #Update emulation profile in node0   
7. controller.update_netm_profile(node0, 'eth0', profile4G)   

	

Listing	8.	Deletion	of	emulation	profile	

1. #Remove emulation profile from interface eth0 of node0   
2. controller.remove_netm_profile(node0, 'eth0')   

	

3.2.5 Packet	filtering	and	manipulation	
In	this	section	we	provide	the	UPI_N	function	for	packet	filtering	and	manipulation.	We	provide	an	
object-oriented	 approach	 for	manipulation	 of	 iptables	 [20],	 packet	marking	 and	 setting	 Type-of-
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Service	value.	The	complete	list	of	the	UPI_N	for	managing	the	packet	filtering	and	manipulation	is	
presented	in	Table	9,	these	UPI_N	are	implemented	in	module	module_net_linux.	

	

Table	9.	UPI_N	functions	for	packet	filtering	and	manipulation	

Function	 Description	

clear_nf_tables	 Clear	all	entries	in	all	iptables	

get_nf_table	 Get	specific	iptable	and	its	entries	

set_pkt_marking	 Add	 iptable	 rule	 for	 marking	 all	 packets	 belonging	 to	 a	 flow	
identified	with	the	given	5-tuple	

del_pkt_marking	 Remove	rule	used	to	mark	given	flow	from	iptable	

set_ip_tos	 Add	 iptable	 rule	 for	 setting	 TOS	 (Type-of-Service)	 field	 in	 all	
packets.	

del_ip_tos	 Remove	rule	used	to	set	TOS	field	from	iptable	

	

In	Listing	9,	an	example	is	presented	where	we	use	the	implemented	UPI	function	to	mark	flows.		

	

Listing	9.	Example	of	configuration	of	flow	marking	

1. #Define 5-tuple that identifies flow   
2. flowDesc = FlowDesc(src='192.168.1.1', dst='192.168.1.12', prot='tcp', srcP

ort=None, dstPort='21')   
3.    
4. #Install iptables rule in node to mark packets of defined flow;   
5. controller.setMarking(node0,flowDesc, markId=5, table="mangle", chain="INPU

T")   
6.    
7. #If table and chain are not provided, default values are used: table="mangl

e", chain="POSTROUTING"   
8. controller.setMarking(node0,flowDesc, markId=5)   
9.    
10. #If mark value is not provided, unique value is generated automatically   
11. controller.setMarking(node0,flowDesc)   
12.    
13. #Delete rule used for marking flow   
14. controller.delMarking(node0, flowDesc)   

In	 our	 implementation	 we	 used	 python-iptables[21]	 package,	 an	 object-oriented	 library	 that	
provides	wrapper	via	python	bindings	to	iptables,	in	the	Linux	operating	system.	The	advantage	of	
this	library	is	that	it	does	not	call	iptables	binary	nor	parse	its	output,	but	it	interfaces	directly	to	the	
C-based	libraries	(libiptc,	libxtables).	It	results	in	lower	latencies	and	higher	flexibility.	
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3.3 UPI_N	functions	supported	in	Contiki	OS	
Currently	there	no	UPI_N	functions	defined	which	are	specific	for	Contiki	platforms.		

	

3.4 UPI_N	attributes	supported	on	all	platforms	

3.4.1 Traffic	control	
The	currently	supported	generic	UPI_N	attributes	are	listed	in	Table	10.	All,	except	one,	operate	on	
the	 application	 layer.	 They	 are	 implemented	 by	 the	 module_net_linux,	 module_net_iperf	 and	
module_net_contiki.	

Table	10.	UPI_N	attributes	for	traffic	control		

Attribute	Name	 Type	 Description	

APP_DATA_RATE	 Parameter	 Configures	the	data	rate	of	the	application	

APP_MSG_SIZE	 Parameter	 Configures	the	application	message	size.	

APP_MSG_DESTINATION	 Parameter	 Configures	the	application	destination.	

APP_PER_PACKET_RX_STATS	 Event	 Event	 triggered	 each	 time	 a	 packet	 is	
received.	

APP_PER_PACKET_TX_STATS	 Event	 Event	 triggered	 each	 time	 a	 packet	 is	
transmitted.	

APP_STATS	 Measurement	 Cumulative	application	statistics.		

IP_STATS	 Measurement	 Cumulative	IP	layer	statistics.	

	

3.5 UPI_N	attributes	supported	in	Linux	OS	
All	UPI_N	attributes	 supported	 in	 Linux	OS	are	accessed	using	proper	 setter	and	getter	 functions	
described	in	section	3.2.	For	example,	we	use	set_iface_ip_addr	and	get_iface_ip_addr	functions	to	
set	and	get	IP	address	attribute.		

	

3.6 UPI_N	attributes	supported	in	Contiki	OS	
The	 currently	 supported	 control	 attributes	 are	 mainly	 focusing	 on	 the	 Contiki	 IPv6	 stack,	 more	
specifically	 in	the	RPL	routing	protocol	 [],	as	this	 is	 the	main	routing	protocol	that	 is	standardized	
for	 wireless	 sensor	 networks	 today	 and	 is	 set	 as	 the	 target	 for	 Y2	 showcases.	 Other	 control	
attributes	from	different	(sub)	 layers	such	as	CoAP	[15],	6LowPan,	 IPV6	Neighbour	Discovery,	etc.	
can	 however	 be	 added	with	minimal	 effort.	 Candidate	 attributes	 are	 listed	 in	 Section	 3.8.1.	 The	
candidates	were	chosen	after	carefully	examining	the	relevant	standards.	

	

3.6.1 Topology	detection	and	routing	control	
As	stated,	Table	11	lists	parameters	specific	to	the	RPL	routing	protocol.	
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Table	11.	UPI_N	attributes	for	topology	detection	and	routing	control	supported	in	Contiki	OS	

Attribute	 Type	 	

RPL_DIO_INTERVAL_MIN	 Parameter	 The	 value	 used	 to	 configure	 lmin	 for	 the	
DIO	 Trickle	 timer.	 	 The	 default	 value	 is	 3.		
This	configuration	results	in	Imin	of	8	ms.	

RPL_DIO_INTERVAL_DOUBLINGS	 Parameter	 The	 value	 used	 to	 configure	 Imax	 for	 the	
DIO	 Trickle	 timer.	 The	 default	 value	 is	 20.	
This	 configuration	 results	 in	 a	 maximum	
interval	of	2.33	hours.	

RPL_DIO_REDUNDANCY_CONSTANT	 Parameter	 The	 value	 used	 to	 configure	 k	 for	 the	DIO	
Trickle	timer.	The	default	value	 is	10.	 	This	
configuration	 is	 a	 conservative	 value	 for	
Trickle	suppression	mechanism.	

RPL_DEFAULT_LIFETIME_UNIT	 Parameter	 Default	 route	 lifetime	 unit.	 This	 is	 the	
granularity	 of	 time	 used	 in	 RPL	 lifetime	
values,	in	seconds.	

RPL_DEFAULT_LIFETIME	 Parameter	 Default	 route	 lifetime	 as	 a	multiple	 of	 the	
lifetime	unit.	

RPL_MIN_HOP_RANK_INCREASE	 Parameter	 The	 value	 of	 MinHopRankIncrease.	 The	
default	 value	 is	 256.	 	 This	 configuration	
results	 in	 an	 8-bit	 wide	 integer	 part	 of	
Rank.	

RPL_OBJECTIVE_FUNCTION	 Parameter	 Updates	the	objective	function	used	to	for	
link	estimation	and	path	cost	calculation.	

RPL_DAG_LIFETIME	 Parameter	

	

Maximum	 lifetime	 of	 a	 DAG.	 When	 a	
DODAG	 is	 not	 updated	 since	
RPL_CONF_DAG_LIFETIME	 times	 the	
DODAG	maximum	DIO	interval	the	DODAG	
is	removed	from	the	list	of	DODAGS	of	the	
related	instance,	except	if	it	is	the	currently	
joined	DODAG.	

RPL_PROBING_INTERVAL	 Parameter	 RPL	 probing	 interval.	 Probes	 will	 be	 sent	
periodically	 to	 keep	 parent	 link	 estimates	
up	to	date.	

RPL_DIS_START_DELAY	 Parameter	 Added	delay	of	 first	DIS	 transmission	after	
boot.	

RPL_DIS_INTERVAL	 Parameter	 Interval	of	DIS	transmission.	

RPL_STATS	 Measurement	 Statistics	gathered	during	RPL	operation.	

	

3.7 UPI_N	function	list	
In	 this	 section,	 we	 report	 the	 definitive	 list	 of	 the	 UPI_N	 functions	 supported	 by	 WiSHFUL,	
implemented	 to	 perform	 network	 related	 actions.	 The	 last	 two	 columns	 indicate	 if	 they	 are	
implemented	for	the	Contiki	OS,	Linux	OS	or	both.	
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Table	12.	Support	for	UPI_N	functions	in	Linux	and	Contiki	OS	

Function	 Type	 Contiki	 Linux	

set_parameters	 Generic	 X	 X	

get_parameters	 Generic	 X	 X	

get_measurements	 Generic	 X	 X	

get_measurements_periodic	 Generic	 X	 X	

subscribe_events	 Generic	 X	 X	

get_network_info	 Generic	 X	 X	

get_iface_hw_addr	 Network	address	management	 X	 X	

set_ip_address	 Network	address	management	 X	 X	

get_iface_ip_addr	 Network	address	management	 X	 X	

set_ARP_entry	 Network	address	management	 	 X	

get_ARP_entry	 Network	address	management	 	 X	

install_application	 Traffic	control	 	 X	

start_application	 Traffic	control	 X	 X	

stop_application	 Traffic	control	 X	 X	

create_packetflow_sink	 Traffic	control	 X	 X	

destroy_packetflow_sink	 Traffic	control	 X	 X	

start_packetflow	 Traffic	control	 X	 X	

stop_packetflow	 Traffic	control	 X	 X	

get_route_table	 Topology	detection	and	routing	
control	

X	 X	

clear_route_table	 Topology	detection	and	routing	
control	

X	 X	

add_route	 Topology	detection	and	routing	
control	

X	 X	

remove_route	 Topology	detection	and	routing	
control	

X	 X	

get_neighbor_table	 Topology	detection	and	routing	
control	

X	 X	

clear_neighbor_table	 Topology	detection	and	routing	
control	

X	 X	

add_neighbor	 Topology	detection	and	routing	
control	

X	 X	

remove_neighrour	 Topology	detection	and	routing	
control	

X	 X	

gen_layer2_traffic	 Topology	detection	and	routing	
control	

X	 X	
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inject_frame	 Topology	detection	and	routing	
control	

X	 X	

sniff_layer2_traffic	 Topology	detection	and	routing	
control	

X	 X	

install_egress_scheduler	 Traffic	control	queuing	disciplines	 	 X	

remove_egress_scheduler	 Traffic	control	queuing	disciplines	 	 X	

set_netem_profile	 Traffic	control	emulation	 	 X	

update_netem_profile	 Traffic	control	emulation	 	 X	

remove_netem_profile	 Traffic	control	emulation	 	 X	

set_per_link_netem_profile	 Traffic	control	emulation	 	 X	

update_per_link_netem_profile	 Traffic	control	emulation	 	 X	

remove_per_link_netem_profile	 Traffic	control	emulation	 	 X	

clear_nf_tables	 Traffic	control	Packet	filter		 	 X	

get_nf_table	 Traffic	control	Packet	filter	 	 X	

set_pkt_marking	 Traffic	control	Packet	manipulation	 	 X	

del_pkt_marking	 Traffic	control	Packet	manipulation	 	 X	

set_ip_tos	 Traffic	control	Packet	manipulation	 	 X	

del_ip_tos	 Traffic	control	Packet	manipulation	 	 X	

	

3.8 Candidate	UPI_N	extensions	
This	subsection	gives	a	none-exhaustive	list	of	the	candidate	UPI_N	extensions	that	can	be	added	in	
year	 3	 of	 the	 project,	 on	 a	 per	 need	basis,	 to	 the	 current	 set	 of	UPI_N	 functions	 and	 attributes.	
However,	 if	an	experimenter,	either	within	the	WiSHFUL	consortium,	open	call	partner	or	a	third-
party	collaborator,	requires	another	UPI_N	extension,	it	will	be	integrated	with	higher	priority	if	it	is	
feasible.	Moreover,	 for	each	of	 the	candidate	UPI_N	extensions,	 the	applicability	on	all	platforms	
remains	 to	 be	 inspected.	 Hence,	 the	 subdivision	 made	 in	 this	 subsection	 between	 UPI_N	
functionality	that	is	supported	on	all	platforms	or	only	supported	on	a	subgroup	of	platforms	can	be	
different	in	a	future	implementation.	

	

3.8.1 Candidate	control	functions	
The	possible	UPI_N	control	attributes	 that	can	be	added	 in	year	3	of	 the	project	are	 listed	 in	 the	
following	subsections.	

	

3.8.1.1 Traffic	control	
The	 networking	 subsystem	 in	 both	 the	 Linux	 and	 Contiki	 support	 TCP	 and	 UDP	 communication.	
Hence	 it	 should	be	possible	 to	offer	a	unified	 set	of	 control	 attributes	 that	 allow	 to	monitor	and	
change	the	behaviour	of	TCP	connections	or	UDP	streams.	Note	however	that	Contiki	only	supports	
a	 limited	number	of	TCP	and	UDP	 sockets	due	 to	memory	 restrictions.	 This	 should	be	 taken	 into	
account	when	implementing	the	candidate	UPI_N	attributes	listed	in	Table	13.	
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Table	13.	List	of	candidate	UPI_N	functions	for	traffic	control	

Attribute	 Type	 Description	

IPv6_TIME_TO_LIVE	 Parameter	 The	 IP	 TTL	 (time	 to	 live)	 of	 IP	
packets.	

IPv6_REASSEMBLY_MAXAGE	 Parameter	 Maximum	 time	 an	 IP	 fragment	
should	wait	in	the	reassembly	buffer	
before	it	is	dropped.	

TCP_INITIAL_RETRANSMISSION_TIMEOUT	 Parameter	 The	 initial	 retransmission	 timeout	
for	TCP	segments.	

TCP_MAX_SEGMENT_RETRANSMIT	 Parameter	 Maximum	 number	 of	 segment	
retransmission	 before	 the	
connection	is	aborted.	

TCP_MAX_SYN_RETRANSMIT	 Parameter	 Maximum	 number	 of	 SYN	 segment	
retransmissions	before	a	connection	
request	is	considered	unsuccessful.	

TCP_TIME_WAIT_TIMEOUT	 Parameter	 Dictates	 how	 long	 a	 connection	
should	stay	in	the	TIME_WAIT	state.	

TCP_RECEIVE_WINDOW	 Parameter	 The	size	of	 the	advertised	 receiver's	
window.	

TCP_	SOCKET_STATS	 Measurement	 Cumulative	 statistics	 for	 a	 TCP	
socket.	

UDP_SOCKET_STATS	 Measurement	 Cumulative	 statistics	 for	 a	 UDP	
socket.	

TCP_CLIENT_CONNECTED	 Event	 Triggered	when	a	 client	 connects	 to	
a	TCP	server.	

UDP_CLIENT_CONNECTED	 Event	 Triggered	when	a	 client	 connects	 to	
an	UDP	server.	

	

3.8.1.2 Topology	detection	and	routing	control	
Neighbour	discovery	is	a	very	important	aspect	of	routing	protocols	in	multi-hop	wireless	networks.	
The	 ICMPv6	protocol	offers	numerous	configuration	parameters	 that	can	be	tweaked	to	optimize	
the	neighbor	discovery	process.	 Both	 Linux	 and	Contiki	 support	 the	 ICMP	protocol,	 albeit	 that	 in	
Contiki	 only	 a	 subset	 of	 attributes	 is	 available.	 Table	 14	 lists	 the	 control	 attributes	 related	 to	
neighbour	 discovery	 that	 are	 currently	 supported	 as	 compile	 time	 constants	 in	 Contiki.	 With	
minimal	effort	they	can	be	exposed	as	UPI_N	attributes.	

	

Table	14.	List	of	candidate	UPI_N	functions	for	topology	detection	and	routing	control	

Attribute	 Type	 Description	

ND_MAX_RTR_SOLICITATION_DELAY	 Parameter	 Interval	 between	 router	
solicitations.	

ND_MAX_RTR_SOLICITATIONS	 Parameter	 Max	number	of	consecutive	
router	solicitations.	
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ND_MAX_RTR_ADVERTISEMENT_INTERVAL	 Parameter	 Max	 interval	 between	
router	advertisements.	

ND_MIN_RTR_ADVERTISEMENT_INTERVAL	 Parameter	 Min	 interval	 between	
router	advertisements.	

ND_RTR_LIFETIME	 Parameter	 Lifetime	 of	 a	 router	
advertisement.	

ND_MAX_INITIAL_RTR_ADVERTISEMENT_INTERVAL	 Parameter	 Max	 interval	 between	
initial	 router	
advertisements.	

ND_MAX_INITIAL_	RTR_ADVERTISEMENTS	 Parameter	 Max	 number	 of	 initial	
router	advertisements.	

ND_MIN_RTR_ADVERTISEMENTS_DELAY_TIME	 Parameter	 Max	 delay	 between	 router	
advertisements.	

ND_MAX_	RTR_ADVERTISEMENT_DELAY_TIME	 Parameter	 Max	 delay	 between	 router	
advertisements.	

ND_NEIGHBOR_DISCOVERED	 Event	 Triggered	when	 a	 neighbor	
is	discovered.	

	

3.8.2 Candidate	control	attributes	for	Contiki	OS	
The	following	candidate	attributes	are	specific	to	protocols	inside	the	Contiki	OS.	

	

3.8.2.1 Traffic	control	
CoAP	 [22]	 and	 6LowPan	 [23]	 are	 two	 widely	 adopted	 standards	 in	 wireless	 sensor	 networks.	
Therefore,	 it	 makes	 sense	 to	 provide	 experimenters	 the	 possibility	 to	 change	 the	 behaviour	 of	
these	protocols.	Table	15l	ists	the	possible	control	attributes.	

	

Table	15.	List	of	candidate	UPI_N	attributes	for	traffic	control	

Attribute	 Type	 	

6LOWPAN	
_PACKET_REASSEMBLY_MAXAGE	

Parameter	 Timeout	 for	 packet	 reassembly	 at	 the	
6lowpan	layer.	

COAP_ACK_TIMEOUT								 Parameter	 Timeout	for	CoAP	ACK	(2	seconds)	

COAP_ACK_RANDOM_FACTOR		 Parameter	 Randomness	 factor	 to	 overcome	
synchronization	effects	(1.5)	

COAP_MAX_RETRANSMIT					 Parameter	 Maximum	 number	 of	 CoAP	 request	
retransmissions	(4)	

COAP_NSTART													 Parameter	 Maximum	simultaneous	connections	between	
CoAP	clients	and	servers	(1)		

COAP_DEFAULT_LEISURE				 Parameter	 Leisure	time	before	responding	to	a	multicast	
requests	(5	seconds)		

COAP_PROBING_RATE							 Parameter	 Rate	in	which	probes	can	be	send	for	reacting	
to	unacked	CoAP	requests	(1	byte/second)	
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4 Additional	UPI	interfaces	
This	 section	 presents	 the	 status	 of	 the	 rest	 of	 the	 defined	 UPI	 interfaces,	 i.e.	 UPI_G	 for	 global	
control,	UPI_M	for	management	and	UPI_HC	for	hierarchical	control.	

4.1 Global	control	using	UPI_G	
UPI_N	and	UPI_R	functions	consist	of	a	set	of	primitives,	which	are	executed	locally	on	a	wireless	
node.	 Exploitation	 of	 a	 UPI	 function	 can	 be	 done	 directly	 on	 the	 node	 itself	 (using	 the	 Local	
Monitoring	and	Control	Engine	MCE)	or,	under	the	coordination	of	the	global	controller	(using	the	
Global	MCE).	In	this	second	case	we	exploit	the	global	UPI	(UPI_G)	to	run	it.	The	UPI_G	is	required	
for	 coordinated	 (time	 synchronized)	 remote	 execution	 of	 configuration	 and	 monitoring	 related	
functions	 on	 a	 single	 node	 or	 a	 group	 of	 nodes.	 The	 UPI_G	 is	 responsible	 for	 relaying	 issued	
UPI_N/R	function	calls	to	intended	node(s).	In	our	implementation	the	UPI_G	is	a	part	of	Controller	
object.		The	experimenter	can	execute	any	UPI_N/R	function	on	a	selected	group	of	nodes.		

Within	 UPI_G,	WiSHFUL	 also	 defines	 functions	 with	more	 complex	 behaviour	 that	 operate	 on	 a	
heterogeneous	group	of	nodes	and	combine	several	UPI_R/N	 functions	 to	create	a	network-wide	
view	on	the	node	topology.	Table	16	lists	the	UPI_G	functions	that	are	currently	available.	

	

Table	16.	List	of	functions	in	UPI_G	interface	

Function	 Description	

estimate_nodes_in_carrier_sensing_range	 Estimates	which	nodes	are	in	carrier	sensing	range	
and	which	not	

is_in_carrier_sensing_range	 Estimates	if	a	node	is	in	carrier	sensing	range	

estimate_nodes_in_communication_range	 Estimates	 which	 nodes	 are	 in	 communication	
range	and	which	not	

is_in_communication_range	 Estimates	if	a	node	is	in	communication	range	

	

4.2 Management	using	UPI_M	
All	management	 related	 functions	are	grouped	 in	 the	UPI_M	 interface	because	 they	are	 required	
for	managing	protocol	 software	modules	at	any	 layer.	Moreover,	 software	management	 requires	
functionality	on	both	the	 local	and	global	 level.	UPI_M	is	 responsible	 for	deploying,	 installing	and	
activating	 software	 packages.	 For	 example,	 we	 use	 the	 UPI_M	 interface	 to	 deploy	 the	 radio	
program	on	platform.	Table	17	presents	the	UPI_M	provided	by	WiSHFUL.	

Table	17	.	List	of	function	in	UPI_M	interface	

Function	 Description	

send_radio_program	 This	function	allows	to	send	a	radio	program	to	one	or	more	nodes.	

send_execution_engine	 This	 function	 allows	 to	 send	 the	 execution	 engine	 to	 one	 or	 more	
nodes.	

	

4.3 Hierarchical	control	using	UPI_HC	
The	local	control	program	consists	of	a	piece	of	software	 implementation,	which	runs	 locally.	The	
implementation	 of	 the	 local	 controller	 can	 be	 done	 directly	 on	 the	 node	 itself,	 under	 the	
coordination	of	the	global	controller.	In	this	last	case,	it	can	be	defined	on	the	global	controller,	and	
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then	 it	 is	 remotely	 sent	 and	 run	 to	 remote	wireless	 node	 through	 the	Hierarchical	UPI	 functions	
(UPI_HC)	provided	by	WiSHFUL.	Hierarchical	UPI	 functions	allowing	 the	simultaneous	use	of	 local	
and	global	control	programs.		A	hierarchical	control	system	is	a	form	of	control	system	in	which	a	
set	 of	 controllers	 is	 arranged	 in	 a	 hierarchical	 tree.	 The	 controllers	 are	 communicating	 over	
network	 connections	 hence	 resulting	 in	 a	 hierarchical	 networked	 control	 system.	 The	 defining	
feature	 of	 such	 system	 is	 that	 control	 and	 feedback	 signals	 as	 well	 as	 collected	 and	 possibly	
aggregated	radio	&	network	data	are	exchanged	among	the	components	in	the	form	of	messages	
through	a	network.	The	Table	18	presents	the	UPI_HC	provided	by	WiSHFUL.	

	

Table	18.	List	of	functions	in	UPI_HC	interface	

Function	 Description	

start_local_control_program	 Execute	a	given	control	program	on	local/remote	node	

stop_local_control_program	 Stops	 execution	 of	 a	 given	 control	 program	 on	
local/remote	node	

send_msg_to_local_control_program	 Hierarchical	 control	 function	allows	 the	global	 control	
program	to	send	messages	to	local	control	programs.	

send_upstream	 Local	 control	 program	 sends	message	 in	 user-defined	
format	to	global	control	program.		
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5 Details	of	WiSHFUL	control	framework	2.0	for	Linux	OS	
The	WiSHFUL	control	framework	was	prototypically	implemented.	Particular	attention	was	paid	to	
enhance	code	re-usability	and	support	for	different	programming	languages	as	well	as	enabling	the	
use	of	specialized	external	software	libraries.		

The	main	prototype	is	implemented	in	Python	language,	that	makes	it	possible	to	run	on	multiple	
different	host	 types	 (Linux,	OpenWRT,	Mac	OS	and	Windows)	and	allows	for	rapid	prototyping	of	
control	 programs.	 An	 overview	of	 the	 implementation	 is	 presented	 in	 Figure	 5.	 As	we	 used	 only	
standard	and	common	Python	libraries,	we	are	able	to	run	and	test	our	implementation	on	multiple	
platforms,	including	x86,	ARM	and	MIPS.	In	order	to	also	support	constrained	devices,	a	lightweight	
C	version	of	the	agent-side	of	the	framework	was	also	implemented	in	Contiki	–	see	Section	0.		

In	 order	 to	 support	 delayed	 and	 time-scheduled	 function	 execution,	 the	 Agent	 class	 is	 equipped	
with	a	scheduler	(Python	Apscheduler[24]).	Note	that	when	coordinating	multiple	nodes	by	means	
of	time	scheduled	execution,	the	nodes	in	the	network	must	have	common	notion	of	a	global	clock	
(e.g.	obtained	through	use	of	GPS	or	time	protocols	like	PTP	or	NTP).	

	
Figure	5.	Implementation	overview	of	WiSHFUL	control	framework	

	

5.1 WiSHFUL	Control	Framework	Class	Diagram	
The	UML	diagram	in	Figure	6	presents	the	WiSHFUL	Control	Framework	in	more	detail.	It	shows	the	
interface	description	as	well	as	the	most	important	components.	
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<<Interface>>

UPI_R

<<Interface>>

UPI_N

<<Interface>>

UPI_HC

LCPDescriptor

-id
+Message::recv()

+close()

Controller

+new_node_callback(callback)
+node_exit_callback(callback)
+set_default_callback(callback)
+add_callback(callback,	UPI_pointer)

+Controller::delay(Time)
+Controller::node(node_id)

+UPI_N::net()

+Controller::blocking(Boolean)

+UPI_R::radio()

+UPI_R::iface(String)
+set_tx_power(Double)
+Double::get_tx_power()
...

+load_config(String)

+start()
+stop()

+create_packetflow_sink(args)
...

+UPI_HC::hc()

GCPDescriptor

-id
+Message::recv()
+send_upstream(Message)+send(Message)

+LCPDescriptor::start_local_control_program(function_pointer)
+stop_local_control_program(prog_id)
+send_msg_to_local_control_program(Message)

LocalController

+LocalController::delay(Time)

+UPI_N::net()

+LocalController::blocking(Boolean)

+UPI_R::radio()

+Controller::callback(callback)

+LocalController::callback(callback)

+LocalController::exec_time(Time)

+Controller::exec_time(Time)

+add_callback(callback,	UPI_pointer)
+set_default_callback(callback)

+add_module(args)

+set_controller_info()

+Controller::nodes(<List>	node_id)
+Controller::group(group_id)

Agent

+load_config(String)
+add_module(args)

+Boolean::is_upi_supported(UPI_pointer)

+get_capabilities()
+Controller::callback(callback)

+LocalController::get_local_controller()

<<Interface>>

UPI_G

+estimate_nodes_in_carrier_sensing_range(args)
+is_in_carrier_sensing_range(args)
+estimate_nodes_in_communication_range(args)

...
+is_in_communication_range(args)

+install_egress_scheduler(args)

+UPI_G::global()
+GCPDescriptor::get_global_control_program()

+Boolean::is_stopped()

<<Interface>>

UPI_M

+send_radio_program(args)
+send_execution_engine(args)

	
Figure	6.	WiSHFUL	control	framework	(UML	class	diagram).	
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5.2 Deployment	
We	adopted	yaml	format	for	preparation	and	storage	of	the	configuration	of	the	Agent	(class	that	
implements	 local	 MCE	 from	 WiSHFUL	 architecture)	 and	 the	 Controller	 	 (class	 that	 implements	
global	MCE	from	WiSHFUL	architecture).	Such	a	configuration	file	is	loaded	by	an	Agent/Controller	
on	 its	 initialization	 and	 contains	 deployment	 information.	 In	 case	of	 the	WiSHFUL	Agent	 it	 is	 the	
description	of	 the	device	modules	 to	 be	 started.	 For	WiSHFUL	Agent	 and	Controller	 you	have	 to	
provide	 the	module	 to	be	used	 for	discovery	of	WiSHFUL	nodes.	 In	order	 to	 load	device	module,	
one	 has	 to	 specify	 its	 source	 (source	 file	 or	 Python	module)	 and	 give	 a	 name	 of	 the	 class.	 It	 is	
possible	 to	 pass	 dictionary	 of	 arguments	 to	 class	 constructor	 using	 kwargs	 attribute.	 A	 Device	
Module	 is	 additionally	 given	 a	 name	 of	 device	 that	 it	 is	 serving.	 It	 is	 stored	 in	 device	 attribute.	
Listing	10	showed	an	example	of	configuration	file.	

	

Listing	11.	Example	of	configuration	file	for	deployment	

1. ## agent config file   
2. agent_info:   
3.   name: 'agent_123'   
4.   info: 'agent_info'   
5.   iface: 'lo'   
6. modules:   
7.   discovery:   
8.       module : wishful_module_discovery_pyre   
9.       class_name : PyreDiscoveryAgentModule   
10.       kwargs: {"iface":"lo", "groupName":"wishful_1234"}   
11.   simple:   
12.       module : wishful_module_simple   
13.       class_name : SimpleModule2   
14.       interfaces : ['wlan0', 'wlan1']   
15.   iperf:   
16.       module : wishful_module_iperf   
17.       class_name : IperfModule   
18.    
19.    
20. ## controller config file   
21. controller:   
22.     name: "Controller"   
23.     info: "WiSHFUL Controller"   
24.     dl: "tcp://127.0.0.1:8990"   
25.     ul: "tcp://127.0.0.1:8989"   
26. modules:   
27.     discovery:   
28.         module : wishful_module_discovery_pyre   
29.         class_name : PyreDiscoveryControllerModule   
30.         kwargs: {"iface":"lo", "groupName":"wishful_1234", "downlink":"tcp:

//127.0.0.1:8990", "uplink":"tcp://127.0.0.1:8989"}  	

5.3 Support	of	other	Programming	Languages	
Since	 our	 prototype	 is	 implemented	 around	 ZMQ	 library,	 that	 is	 available	 for	most	 of	 the	main	
programming	languages,	support	of	other	programming	languages	like	C/C++	is	possible.		

The	prototype	developed	for	constrained	sensor	devices	exploits	the	hardware	abstraction	features	
of	the	Contiki	OS	to	be	as	platform	independent	as	possible.	Currently	it	is	already	successfully	used	
on	both	MSP430	and	ARM-Cortex-M	based	microcontrollers.	The	current	communication	bus	uses	
the	CoAP	library	which	is	widely	supported	in	wireless	sensor	networks.	
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5.4 Integration	with	External	Software	Libraries	
A	wide	 range	of	 specialized	open-source	 software	 libraries	and	 tools	 for	data	processing,	mining,	
visualization,	machine	learning,	etc	exists	today.	We	argue	that	a	control	framework	has	to	provide	
integration	with	such	external	tools	in	order	to	be	flexible	and	adopted	widely.	This	section	gives	a	
brief	overview	of	currently	supported	integration	with	external	software.	

	

5.4.1 Python	Scientific	Packages	
As	 WiSHFUL	 control	 programs	 are	 written	 using	 the	 Python	 programming	 language,	 network	
developers	 can	 easily	 import	 any	 Python	module	 within	 a	 control	 program.	 There	 exists	 a	 wide	
range	 of	 scientific	 libraries	 for	 Python	 language	 including	 tools	 for	 data	 mining	 (SciPy),	 data	
processing	(NumPy),	machine	learning	(Tensorflow,	PyBrain),	etc.	

	

5.4.2 Node-RED	Integration	
Flow	graphs	are	a	great	abstraction	model	with	sufficient	flexibility	in	order	to	be	able	to	program	
complex	control	behavior.	Node-RED	is	a	tool	used	by	Internet-of-Things	(IoT)	community	for	wiring	
together	hardware	devices,	APIs	and	online	services	in	new	and	interesting	ways.	It	was	selected	as	
the	 best	 candidate	 to	 be	 used	 as	 a	 frontend	 of	 the	 intelligence	 framework	 as	 it	 is	 described	 in	
D10.2.	Besides	being	used	for	that	purpose,	Node-RED	can	also	be	used	to	graphically	setup	a	chain	
of	 UPI	 function	 calls	 in	 order	 to	 be	 executed	 either	 periodically	 or	 event/user	 driven.	 That	 was	
made	possible	by	a	new	Node-RED	connector	 component	 called	UPI_exec-node.	This	 component	
can	communicate	with	a	Global	Control	Program	(GCP)	and	exchange	messages	using	JSON	in	order	
to	pass	commands	for	UPI	execution	to	the	GCP	and	receive	feedback	on	their	results.	By	being	able	
to	define	UPI	calls	within	node-RED	we	can	easily	 setup	graphically	simple	control	program	 loops	
and	 reuse	 existing	 ones	 to	 create	 complex	 control	 programs.	 Since	 Node-RED	 supports	 reuse	 of	
implemented	 flow	graphs	 as	 objects	 using	 a	 hierarchical	 object	 oriented	 approach	 to	build	more	
complex	chains,	in	general	we	can	offer	the	exact	same	functionality	as	if	the	user	was	writing	the	
control	 program	 directly	 with	 Python	 no	 matter	 how	 complex	 the	 scenario	 can	 get.	 For	 more	
information	on	the	implementation	please	refer	to	D10.2,	chapter	2.2.		

	

5.4.3 Mininet	Integration	
In	 order	 to	 offer	 the	 developer	 an	 easy	 way	 to	 test	 its	 own	 network	 control	 programs,	 before	
deploying	 them	 in	 a	 real	 testbed,	 our	 framework	 can	 be	 executed	 in	Mininet	 [25],	 a	 container-
based	 emulation	 which	 is	 able	 to	 emulate	 large	 network	 topologies	 on	 a	 single	 computer.	
Specifically,	 we	 use	 Mininet-WiFi	 [26],	 [27]	 which	 allows	 rapid	 prototyping	 and	 experimental	
evaluation	of	control	programs	for	wireless	environments	by	augmenting	the	well-known	Mininet	
emulator	 with	 virtual	 802.11	WiFi	 stations	 and	 access	 points.	 Hence,	 it	 allows	 the	 emulation	 of	
control	programs	requiring	access	to	the	higher	802.11	MAC	protocol	stack,	aka	SoftMAC	[28].	

	

5.4.4 Network	Function	Virtualization	Integration	
Software	 Defined	 Radio	 (SDR)	 is	 a	 radio	 communication	 system	 where	 components	 typically	
implemented	 in	 hardware	 are	 instead	 implemented	 in	 software	 on	 a	 personal	 computer	 or	
embedded	 system.	 SDR	 systems	 are	 typically	 difficult	 to	 program,	 as	 building	 a	 functional	 radio	
requires	 extensive	 programming	 knowledge	 and	 radio	 system	 expertise.	We	 have	 recently	 been	
investigating	a	way	 to	ease	 the	design	of	 fully	 functional	 radios	by	 integrating	SDR	with	Network	
Function	Virtualization	(NFV).	
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NFV	is	typically	defined	as	“an	innovative	technology	to	effectively	abstract	network	functionalities	
and	implement	them	in	software”	[29].	In	traditional	NFV	deployments,	network	functions,	such	as	
routing	decisions,	are	separated	from	the	local	devices	and	implemented	as	modularized	software.		

In	Year	2	of	the	WiSHFUL	project,	TCD	has	been	using	its	expertise	in	SDR	to	evaluate	its	integration	
with	NFV.	We	have	proposed	an	architecture,	which	is	described	in	a	journal	magazine	paper	that	
has	been	submitted	to	 IEEE	Communications	Magazine	and	 is	currently	under	review.	The	title	of	
the	paper	is:	Flexible	Fine-Grained	Base	Station	with	Network	Functions	Virtualization:	Benefits	and	
Impacts).	 The	 integration	 of	 SDR	 and	 NFV	 can	 significantly	 ease	 the	 development	 and	 re-
configurability	of	SDR	systems.	

	

5.4.4.1 Architecture	Overview	
To	 briefly	 explain	 this	 architecture,	we	 consider	 a	 LTE	 transmitter	 (USRP	 1	 in	 Figure	 7),	which	 is	
composed	 of	 a	 Fast	 Fourier	 Transform	 (FFT),	 Resource	 Element	 (RE)	 mapper,	 transmitter	
processing,	 Forward	 Error	 Correction	 (FEC),	 and	 the	Medium	Access	 Control	 (MAC).	We	describe	
each	layer	of	the	figure	as	follows:	

• VNF	 Composition	 Layer:	 a	 Virtual	 Network	 Function	 (VNF)	 (a	 LTE	 transmitter	 in	 our	
example)	is	composed	by	chaining	VNF	Containers	that	implement	radio	functionality.	Each	
VNFC	is	a	black	box	that	receives	data,	that	ranges	from	digital	signal	samples	in	the	case	of	
the	FFT,	to	user	and	control	data	in	the	case	of	FEC.	VNFCs	are	chained	in	such	a	way	that	
the	result	of	data	processing	of	one	VNFC	forwards	to	the	next	VNFC	in	the	chain;	

• VNFC	 Execution	 Layer:	 the	 execution	 of	 VNFCs	 is	 performed	 on	 top	 of	 the	 processing	
resources.	 NFV	 replaces	 the	 conventional	 virtual	 machines,	 with	 Virtualized	 Deployment	
Units	 (VDUs).	 VNFCs	 in	 the	 same	VDU	 share	 the	 host	memory,	 allowing	 fast	 information	
transfer	mechanisms,	e.g.,	Direct	Memory	Access	(DMA).	The	main	benefit	of	this	approach	
is	the	removal	of	a	dedicated	hypervisor,	thus	presenting	almost	no	performance	overhead;	

• Infrastructure	Layer:	encompasses	the	hardware	infrastructure	such	as	Universal	Software	
Radio	Peripheral	(USRPs),	computers,	and	routing	devices.	

This	architecture	allows	for	experimenters	to	easily	create	fully	functional	radios	by	instantiating	a	
set	of	VNFCs	 (from	a	database	of	VNFCs	 in	a	 server	machine)	and	chaining	 them	 in	a	way	 that	 it	
implements	a	baseband	signal	processing.	Experimenters	also	can	reconfigure	VNFCs	parameters,	
similar	 to	 what	 is	 currently	 done	 in	 baseband	 processing	 functions	 implemented	 as	 software	
modules	 in	 SDR.	 Moreover,	 the	 air-interface	 can	 be	 adapted	 on-the-fly	 by	 adding	 or	 removing	
functionalities,	such	as	VNFCs	that	implement	carrier	aggregation,	error	detection,	or	according	to	
service	needs.	As	on-the-fly	adaptation	of	radios	based	on	network	conditions	 is	a	very	promising	
topic,	we	describe	how	the	SDR/NFV	integration	enables	it	in	the	remainder	of	this	section.	

	

5.4.4.2 Context-aware	and	on-the-fly	radio	adaptation	
As	we	have	shown,	the	integration	of	SDR/NFV	isolates	the	radio	functionalities	independent	of	the	
VNFC.	 This	 isolation	 allows	 specific	 VNFCs	 to	 be	 configured	 or	 even	 replaced	 on-the-fly	 without	
impacting	the	operation	of	other	VNFCs.		

We	 plan	 to	 design	 a	 solution	 utilizing	 the	 intelligent	Markov	 Chain	 (development	 in	WP	 10	 and	
further	 described	 in	 D10.4)	 to	 automatically	 adapt	 the	 radio	 by	 monitoring	 the	 context	 of	 the	
wireless	 network	 by	 selecting	 and	 provisioning	 specific	 VNFCs	 that	 can	 improve	 the	 wireless	
transmission	performance.	
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Figure	7.	SDR	and	NFV	Integration	Architecture	

	

5.4.4.3 Network	Control	Framework	support	
The	instantiation	and	configuration	of	VNFCs	will	require	the	design	and	development	of	a	new	set	
of	UPIs	 for	 the	Network	 Control	 Framework.	 For	 example,	UPIs	 to	 control	 the	 lifecycle	 of	 VNFCs	
such	 as	 instantiation,	 de-instantiation,	 and	 migration	 of	 VNFCs.	 Moreover,	 we	 envision	 UPIs	 to	
configure	VNFCs	generic	parameters,	such	as	memory	and	processing	resources	allocated,	as	well	
as	 specific	 parameters,	 such	as	 the	MCS	 for	 a	VNFC	 implementing	 the	modulation.	 Table	19	 lists	
some	of	the	UPIs	that	are	required	in	WiSHFUL	to	support	the	most	essential	NFV	operations.		

	

Table	19.	Set	of	UPIs	for	NFV	

Function	 Description	

install_vnfc	 Install	 a	 specific	 VNFC	 in	 a	 given	 processing	
resource.	

uninstall_vnfc	 Uninstall	a	specific	VNFC.	

chain_vnfc	 Chain	two	VNFCs.	The	output	of	the	first	VNFC	will	
be	forwarded	as	input	to	the	second	VNFC.	

configure_vnfc	 Configure	parameters	of	a	specific	VNFC.	

create_vdu	 Create	 an	 empty	 VDU	 in	 a	 specific	 processing	
resource.	

	

For	 example,	 Figure	 8	 shows	 the	 creation	of	 a	 virtualized	 LTE	 receiver	 (as	 illustrated	 in	 Figure	 7)	
using	the	UPIs	presented.	For	the	sake	of	simplicity,	we	omitted	the	VNFC	database.		
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• First,	the	WiSHFUL	controller	must	create	the	VDU	to	store	the	VNFC	in	execution	in	a	
specific	processing	resource	(Step	1).		

• Second,	the	Controller	 instantiates	the	VNFC	in	the	VDU	(Step	2).	This	step	clones	a	VNFC	
from	the	database,	moves	it	to	the	processing	resource	and	starts	its	execution	(the	VNFC	
execution	will	stall	as	it	has	no	data	to	process).		

• Third,	the	VDU	creation	and	VNFC	instantiation	is	repeated	in	PC	2	(Step	3	and	4).		
• Finally,	all	VNFCs	are	chained	in	the	proper	order	(Step	5).		

Although	step	5	 looks	 simple	 in	 the	 figure,	 it	 is	probably	 the	most	 complex,	as	 it	 can	 require	 the	
configuration	of	intermediate	routing	devices	between	PC	1	and	PC	2	(or	more	PCs,	depending	on	
how	much	the	global	controller	decides	to	distribute	the	VNFCs).	We	highlight	that	it	is	possible	to	
design	UPIs	 that	encapsulate	all	 the	creation	process	of	virtual	 radios.	For	example,	 the	WiSHFUL	
UPI	“create_virtual_radio”	could	perform	all	these	operations	automatically.	

	
Figure	8.	LTE	radio	transmitter	creation	using	NFV	

	

5.5 Evaluation	
In	this	section	we	analyze	the	performance	of	our	prototypical	implementation	with	respect	to	two	
categories:	 i)	basic	network	operation	and	 ii)	 scalability	with	 respect	 to	 the	number	of	controlled	
network	nodes.	

5.5.1 Basic	Network	Operation	
Observing	and	modifying	the	network	state	by	means	of	executing	API	functions	is	a	basic	building	
block	 of	 WiSHFUL	 operations,	 its	 performance	 is	 of	 great	 importance	 on	 the	 overall	 system’s	
performance.	We	identified	latency	for	network	state	monitoring	and	UPI	function	execution	as	an	
important	performance	metric.	

For	 this	measurement,	 the	 experiments	were	 conducted	 using	 three	 different	 network	 nodes:	 i)	
high	 performance	 Intel	 i7-4790,	 ii)	 small-form-factor-PC	 based	 on	 Intel	 NUC	 and	 iii)	 low-power	
single-board	ARM	Cortex-A8	machines	(BeagleBone).	All	three	nodes	were	equipped	with	a	single	
802.11	network	device.	For	the	evaluation	of	the	performance	of	local	calls	we	implemented	a	local	
control	program	whereas	for	remote	calls	a	global	controller	running	on	a	different	node	connected	
by	Gigabit-Ethernet	was	 used.	We	measured	 the	 latency	 of	 executing	 API	 functions,	 both	 locally	
and	remotely.	

WiSHFUL
Controller PC 1 PC 2

1. create_vdu
— Create VDU 2.1—

2. install_vnfc
— Install MAC—
— Install FEC — 

— Install RX Proc — 

3. create_vdu
— Create VDU 2.2—

4. install_vnfc
— Install RE demap—

— Install FFT — 

5. chain_vnfc

5.1 chain_vnfc
— Chain VNFCs 
     in VDU 2.1 — 5.2 chain_vnfc

— Chain VNFCs 
     in VDU 2.2 —
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Table	 20	 shows	 the	median	 (mean)	 and	 99th	 percentile	 of	 the	 latency	 when	 executing	 a	 single	
blocking	local	API	function	call,	get_interfaces()	which	returns	the	available	wireless	interfaces	of	a	
wireless	node.	

	

Table	20.	Latency	for	executing	single	blocking	local	function	call.	

Latency	 Median	 99	%ile	

Intel	(i7-4790,	3.6	GHz)	 0.4017	ms	 0.5009	ms	

Intel	NUC	(i5-4250U,	1.3	GHz)	 0.7627	ms	 1.3986	ms	

BeagleBone	(ARM	armv7l,	1	GHz)	 10.0138	ms	 11.4258	ms	

	

Further,	 Table	 21	 shows	 the	 results	 when	 executing	 the	 same	 function	 remotely.	 Note	 that	 the	
network	overhead	for	the	execution	of	this	API	call	is	around	2300	Bytes	per	call.	From	the	results	
we	can	conclude	that	the	latency	of	performing	an	API	call,	locally	or	remotely,	is	sufficient	low	to	
be	considered	for	real-world	control	applications.	However,	when	using	slow	ARM	SoCs	the	latency	
is	11	−	25×	larger	as	compared	to	i7-4790	which	might	be	insufficient.	However,	we	argue	that	the	
WiSHFUL	agent	can	be	easily	implemented	in	a	low-level	programming	language	like	C.	

	

Table	21.	Latency	for	executing	single	blocking	remote	function	call.	

Latency	 Median	 99	%ile	

Intel	(i7-4790,	3.6	GHz)	 1.2896	ms	 1.5042	ms	

Intel	NUC	(i5-4250U,	1.3	GHz)	 2.6748	ms	 3.1662	ms	

BeagleBone	(ARM	armv7l,	1	GHz)	 14.5829	ms	 16.4588	ms	

	

5.5.2 Scalability	
Another	 important	 performance	 metric	 is	 scalability.	 A	 key	 feature	 of	 our	 framework	 is	 its	
distributed	 architecture	 for	 scale-out	 performance.	 As	 the	 number	 of	 network	 nodes	 to	 be	
controlled	grows	the	demand	on	the	control	plane	increases.		
For	this	measurement,	the	experiments	were	conducted	in	the	ORBIT	testbed	[18]	consisting	of	i7-
4790	x86	machines.	The	number	of	controlled	network	nodes	was	varied	from	one	to	87	nodes.	A	
single	 central	 control	program	was	executing	API	 calls,	 get_interfaces(),	on	each	node	using	non-
blocking	calling	semantic.	We	measured	the	latency	to	get	the	results	from	all	nodes.		
The	results	are	shown	in	Figure	9.	It	takes	less	than	25	ms	on	average	to	execute	a	non-blocking	API	
call	on	all	87	network	nodes	simultaneously.	Note,	that	the	latency	per	API	call	decreases	with	the	
number	 of	 nodes,	 i.e.	 2.37	ms	 vs.	 0.24	ms	 (i.e.	 21	ms	 divided	 by	 87	 nodes)	 for	 1	 and	 87	 nodes	
respectively.	This	is	because	non-blocking	calls	are	executed	in	parallel.		
Note,	that	with	87	nodes	and	a	API	calling	rate	of	10	Hz	the	control	plane	workload	at	the	central	
controller	 is	 already	 high,	 i.e.	 16	 Mbit/s.	 In	 order	 to	 reduce	 it	 the	 use	 of	 hierarchical	 or	 local	
controllers	is	advisable.	
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Figure	9.	Latency	for	executing	single	non-blocking	API	function	call	on	a	set	of	nodes.	

	

5.6 Future	work	
In	year	3	of	the	project,	the	WiSHFUL	framework	will	continuously	be	improved	and	extended.	The	
following	subsections	list	the	envisaged	improvements	and	extensions	for	each	platform.	

	

5.6.1 Framework	improvements	

5.6.1.1 Efficient	UPI	execution	on	a	common	subset	of	nodes	or	devices	
It	should	be	possible	to	create	a	subset	of	nodes	that	share	a	common	feature	such	as	device	class	
or	UPI	capabilities,	and	to	execute	UPI	 functions	on	all	members	of	that	subset.	For	this	purpose,	
the	ZMQ	topic	routing	and	CoAP	group	communication	features	can	be	exploited,	allowing	for	an	
efficient	implementation.	

5.6.1.2 Integrate	time	synchronization	services	as	a	WiSHFUL	framework	module	
The	ability	to	dynamically	deploy	framework	modules	is	a	nice	feature	of	the	WiSHFUL	framework	
because	 it	 allows	 the	 experimenter	 to	 select	 the	 required	 support	 services	 for	 its	 experiment.	
Currently	only	node	discovery	is	implemented	as	a	framework	module.	The	same	approach	should	
be	taken	for	integrating	time	synchronization	services.	

5.6.1.3 Framework	support	for	UPI	events	
Control	 programs	 need	 a	 way	 to	 send	 as	 well	 as	 receive	 events	 generated	 by	 the	 framework,	
devices	 and	 other	 control	 programs.	 Events	 originated	 from	 devices	 will	 be	 usually	 used	 in	 a	
reactive	control	approach,	e.g.	every	time	a	network	device	is	not	able	to	receive	a	frame	correctly,	
it	will	generate	a	FrameLostEvent.	 In	order	 to	be	notified	about	specific	event,	a	control	program	
will	 have	 to	 subscribe	 to	 specific	 event	 type.	 Furthermore,	 an	 event	mechanism	 can	 be	 used	 to	
realize	 communication	 between	 global	 and	 local	 control	 programs	 (i.e.	 in	 case	 of	 hierarchical	
control),	where	those	programs	communicate	with	each	other	by	exchanging	events	defined	in	UPI	
as	well	as	user-defined	events.		

	

5.6.2 Support	to	P4	
The	P4	[30]	is	high-level	language	for	programming	forwarding	plane	of	packet	processors.	The	P4	
language	 is	 i)	 protocol-independent,	 meaning	 it	 is	 not	 designed	 for	 any	 specific	 protocol,	 but	 it	
provides	a	way	to	express	protocol	formats	in	a	common	syntax;	and	ii)	target-independent,	i.e.	the	
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P4	program	can	be	executed	across	different	platforms,	 including	NPUs,	FPGAs,	 software	and	 re-
configurable	hardware	switches.	

P4	 introduces	 an	 abstract	 switching	 model	 (Figure	 10),	 where	 switch	 containing	 a	 set	 of	
programmable	stages	that	packets	travel	successively.	First,	 incoming	bits	are	parsed	into	packets	
by	sequence	of	parsers.	Then,	packets	enter	an	ingress	pipeline	consisting	of	a	sequence	of	match-
action	 tables	 that	may	modify	 the	 packet	 header	 before	 sending	 it	 to	 the	 next	 one.	 The	 ingress	
pipeline	determines	the	egress	port(s)	that	is	set	in	packet	metadata,	and	the	queue	where	to	send	
packet.	The	ingress	pipeline	may	take	following	actions	to	a	packet:	forward,	replicate,	drop,	sent	to	
control	 plane.	Next	 stage	 on	 packet	way	 is	 Buffering	 subsystem	 that	 is	 responsible	 for	 switching	
and/or	 replicating	 packets	 to	 output	 ports.	 The	 Egress	 Pipeline	 also	 consists	 of	 a	 sequence	 of	
match-action	tables	 for	 further	packet	processing.	Finally,	packets	are	sent	 to	output	port,	where	
de-parser	serializes	them.		

	
Figure	10.	P4	Abstract	Forwarding	Model,	source:	[P4lang].	

	

We	aim	to	provide	support	for	a	P4	module	in	WiSHFUL	control	framework	that	is	able	to	start	P4	
engine	 and	 load	 a	 P4	 program	 into	 it.	 Three	 P4	 engines	 should	 be	 available,	 namely:	 l2_switch,	
simple_switch		and	simple_router.	Each	of	them	offers	different	Buffering	Subsystem,	for	example,	
simple_switch	allows	defining	multicast	group	containing	multiple	output	ports	and	send	packet	to	
this	group,	while	simple_router	allows	only	for	sending	packet	to	single	output	port.	

The	programs	for	those	engines	are	developed	using	the	P4	language	whose	syntax	is	similar	to	C	
language.	Using	P4	framework,	we	have	developed	a	switch	operating	on	pure	802.11	frames.	 	 In	
order	 to	achieve	 it,	we	have	 implemented	header	definitions	of	all	802.11	headers	and	RadioTap	
headers	and	created	parsers	sequence	for	incoming	packets.	
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6 Details	of	WiSHFUL	control	framework	2.0	for	Contiki	OS	
In	 year	 1	 basic	 support	 was	 given	 to	 configure	 and	monitor	 sensor	 devices	 by	 exposing	 control	
attributes	 (configuration	 parameters,	 measurements	 and	 monitoring	 events).	 This	 basic	 version,	
only	 supported	 out-of-band	 control	 in	 testbed	 environments.	 The	main	 control	 functionality	was	
implemented	on	 the	 Linux	PC,	 hosting	on	 its	USB	ports	 attached	 sensor	 devices.	A	 custom	 serial	
protocol	was	used	to	access	the	control	attributes.	

In	 year	 2	 a	more	 advanced	 framework	was	developed	 that	 supports	 changing	 and	observing	 the	
behavior	 using	 both	 control	 attributes	 (i.e.	 parameters,	 measurements	 and	 events)	 and	 control	
functions	 (i.e.	 UPI_R/N).	 For	 the	 latter,	 an	 RPC	 engine	 needed	 to	 be	 implemented	 that	 supports	
remote	calls	to	UPI_R/N	functions	implemented	on	the	device.	Figure	11	gives	a	high	level	overview	
of	the	blocks	that	were	required	to	enable	full	UPI	support	on	sensor	devices.	

	
Figure	11.	High	level	overview	of	the	implementation	of	WiSHFUL	for	constrained	sensor	devices.		

	

The	 upper	 part	 of	 Figure	 11	 is	 identical	 to	 the	 general	 framework	 architecture.	 A	 Linux	 node	
executes	a	global	control	program	by	using	the	WiSHFUL	middleware	to	instantiate	a	network-wide	
controller.	 The	agent	modules	 are	 replaced	by	 a	broker	 agent	 that	 acts	 as	 a	 relay	 for	 the	 sensor	
network.	The	broker	agent	is	responsible	for	the	following	subtasks:	

• Transforms	the	ZMQ	RPC	UPI	calls	to	the	format	used	in	the	sensor	network.	
• Expose	the	discovered	sensor	nodes	that	support	WiSHFUL	to	the	WiSHFUL	middleware	by	

spawning	a	stub	agent	for	each	discovered	sensor	node.	
• Expose	the	sensor	node	UPI	capabilities	via	the	stub	agents.	
• Provide	support	services	such	as	synchronization	for	time-scheduled	operation.	

The	broker	agent	heavily	relies	on	the	features	provided	by	the	GITAR	middleware.	GITAR	offers	a	
generic	 solution	 to	 integrate	a	vertical,	 i.e.	 cross-layer,	 control	plane	within	 the	protocol	 stack	of	
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constrained	 sensor	 devices.	 Figure	 12	 illustrates	 the	 GITAR	 Middleware	 on	 a	 Contiki	 node.	 It	
contains	the	following	building	blocks:	

• A	generic	RPC	engine	that	allows	to	remotely	expose	and	execute	UPI_R/N	functions.	To	
enable	local	control	programs,	the	RPC	engine	also	provides	a	local	interface	(not	shown	on	
the	figure)	exposing	UPI_R/N	internally.	

• An	attribute	repository	that	allows	to	remotely	control	UPI_R/N	attributes.	The	attributes	
are	exposed	by	providing	a	connector	module	that	implements	the	generic	UPI_R/N	
functions	listed	in	Section	3.1	(e.g.	set_parameter,	get_parameter).	

• Protocol	connector	modules	embedded	in	each	protocol	layer	implementing	UPI_R/N	
functions	and	providing	UPI_R/N	attributes.	The	available	UPI_N	attributes	are	listed	in	
Section	3.6	.	

• A	communication	wrapper	that	is	able	to	parse/create	control	messages.	As	depicted	in	the	
figure,	CoAP	is	used	by	default	as	application	layer	protocol.	

• 	

	
Figure	12.	Overview	of	the	GITAR	Middleware	on	a	Contiki	Node.	The	middleware	contains	an	RPC	engine,	

an	attribute	repository	and	a	communication	module.	The	protocol	connector	modules	(little	
green	boxes)	are	embedded	in	each	protocol	layer.	

	

The	GITAR	middleware	exposes	the	implemented	UPI_R/N	functions	and	attributes	per	connector	
module	and	per	device	to	the	broker	agent.	The	following	subsections	explain	GITAR	more	in	detail.	

	

6.1 RPC	Engine	
Listing	12	contains	a	simplified	code	snippet	that	illustrates	how	the	RPC	calls	are	executed	on	the	
sensor	device.	First	the	function	must	be	correctly	identified	using	the	get_RPC_func	method.	The	
available	UPI_R/N	functions	are	grouped	per	connector	module,	 identified	by	a	unique	connector	
ID,	within	each	connector	functions	are	also	uniquely	identified	by	a	function	ID.	Second,	a	pointer	
to	the	argument/return	buffer	is	created	and	the	length	of	the	arguments	is	determined	using	the	
get_datatype	method.	 Then	 the	 RPC	 function	 is	 called	 using	 rpc_func->exec().	 Finally,	 the	 return	
buffer	is	copied	in	the	TX	response	buffer	of	the	communication	wrapper.	

Listing	12.	Code	snippet	from	the	GITAR	middleware	on	constrained	sensor	devices	that	executes	a	remote	
procedure	call	received	from	a	global	control	program.	Note	that	most	error	handling	is	removed	
from	the	code	snippet	for	readability	reasons.	

1. func_hdr_t* func_hdr = (func_hdr_t*) &rx_buf[pos];   
2.    
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3. // Get the rpc_func using the connector ID and function ID   
4. RPC_func_t* rpc_func = get_RPC_func(func_hdr->connector_id, func_hdr-

>func_id);   
5.    
6. // Set a pointer to the arguments of the function if it has any.   
7. void* args = &rx_buf[pos + sizeof(func_hdr_t)];   
8.    
9. // Length of the arguments. Calculate the length of the arguments based on 

their datatypes.   
10. uint32_t args_len = 0;   
11. for(uint8_t i=0;i<rpc_func->num_args;i++){   
12.     datatype_t* arg_dt = get_datatype(rpc_func->args_datatypes[i]);   
13.     args_len += arg_dt->size;   
14. }   
15.    
16. // Set a pointer to where the function should write the return data.   
17. void* ret = &tx_buf + tx_buf_len + sizeof(ret_hdr_t);   
18.    
19. // Execute the function.   
20. // Length of the return data.   
21. uint32_t ret_len = 0;   
22. e = rpc_func->exec(callback, func_hdr-

>num_of_args, args, args_len, ret, TX_BUF_SIZE - tx_buf_len, &ret_len);   
23.    
24. // Construct and write the ret_hdr in the tx buffer.   
25. ret_hdr_t ret_hdr = {func_hdr->connector_id, func_hdr->func_id, e};   
26. memcpy(tx_buf + tx_buf_len , &ret_hdr , sizeof(ret_hdr_t));   
27. tx_buf_len += sizeof(ret_hdr_t) + bytes_written;   

	

Listing	13	defines	the	RPC	headers	used	in	the	control	messages.	The	definitions	of	the	structures	
that	correspond	to	the	RPC	functions	and	RPC	connectors	are	also	given.	

	

Listing	13.	Definition	of	the	RPC	headers,	functions	and	connector	structs.	

1. typedef struct func_hdr {   
2.     uint8_t connector_id;   
3.     uint8_t func_id;   
4.     uint8_t num_of_args;   
5. } __attribute__((__packed__)) func_hdr_t;   
6.    
7. typedef struct ret_hdr {   
8.     uint8_t connector_id;   
9.     uint8_t func_id;   
10.     error_t ret_code;   
11. } __attribute__((__packed__)) ret_hdr_t;   
12.    
13. typedef struct RPC_func {   
14.     error_t (*exec)(uint8_t num_args ,void* args, const uint32_t args_len, 

void* ret_buffer, uint32_t ret_buffer_len, uint32_t* ret_len);   
15.     uint8_t uid;   
16.     uint8_t ret_type;   
17.     uint8_t num_args;   
18.     uint8_t* args_datatypes;   
19. } RPC_func_t;   
20.    
21. typedef struct RPC_connector {   
22.     uint8_t uid;   
23.     uint8_t num_func;   
24.     RPC_func_t** rpc_funcs;   
25. } RPC_connector_t;   
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6.2 Attribute	repository	
A	reference	to	each	control	attributes	is	maintained	in	the	attribute	repository.	They	are	added	by	
the	 protocol	 specific	 connector	 modules	 using	 the	 add_parameter,	 add_event	 and	
add_measurement	 methods.	 The	 generic	 connector	 module	 implements	 the	 get/set	 parameter,	
subscribe_event	 and	 read_measurement(_periodic)	 UPI_R/N	 functions.	 When	 one	 of	 these	 are	
called,	 the	 generic	 get_attribute	 method	 is	 used	 to	 obtain	 a	 reference	 to	 the	 requested	 control	
attribute.	Then	the	following	actions	are	executed	based	on	the	UPI	function	at	hand:	

• In	case	of	a	configuration	parameter,	the	getter	or	setter	method	of	the	parameter	is	
called.	

• In	case	of	a	monitoring	event,	an	event	listener	is	registered	using	the	
register_eventlistener	method.	

• In	case	of	a	(periodic)	monitoring	measurement,	either	the	read	method	is	called	on	the	
measurement	or	a	periodic	report	listener	is	created	using	the	
create_periodic_measurement	method.		

The	signature	of	these	methods	and	the	type	definitions	of	parameters,	events	and	measurements	
are	listed	in	Listing	14.	

	

Listing	14.	Attribute	repository	methods	and	type	definitions	of	parameters,	events	and	measurements.	

1. typedef struct ctrl_attr {   
2.     uint16_t uid;   
3.     uint8_t type;   
4.     uint8_t len;   
5. } ctrl_attr_t;   
6.    
7. typedef struct param {   
8.     ctrl_attr_t hdr;   
9.     void* (* get)(struct param* p);   
10.     error_t (* set)(struct param * p,  void* new_value, const uint8_t new_v

alue_len);   
11. } param_t;   
12.    
13. typedef struct event_listener {   
14.     struct event_listener* next;   
15.     uint32_t event_duration;   
16.     error_t (*exec)(struct event* e);   
17. } event_listener_t;   
18.    
19. typedef struct event {   
20.     control_hdr_t hdr;   
21.     void* value;       
22.     event_listener_t* listener_lst;   
23.     uint8_t num_listeners;   
24. } event_t;   
25.    
26. typedef struct report_listener {   
27.     struct report_listener* next;   
28.     uint32_t period;   
29.     uint8_t max_reports;   
30.     error_t (*exec)(struct measurement* m);   
31. } report_listener_t;   
32.    
33. typedef struct measurement {   
34.     control_hdr_t hdr;   
35.     void* value;   
36.     void* (* read)(struct measurement* m);   
37.     report_listener_t* listener_lst;   
38.     uint8_t num_listeners;   
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39.     uint8_t is_periodic;   
40. } measurement_t;   
41.    
42. //functions to add control attributes   
43. error_t attr_repo_add_parameter(param_t* p);   
44. error_t attr_repo_add_measurement(measurement_t* m);   
45. error_t attr_repo_add_event(event_t* e);   
46.    
47. //functions to add get reference to attribute by UID.   
48. ctrl_attr_t* attr_repo_get_attribute(uint16_t uid);   
49.    
50. //functions to register an event or a periodic measurement listener.   
51. error_t attr_repo_register_eventlistener(event_t* e, event_listener_t* list

ener);   
52. error_t attr_repo_create_periodic_measurement(measurement_t_t* e, report_li

stener_t* listener);   

	

The	 simplified	 code	 snippet	 in	 Listing	 15	 illustrates	 how	 the	 generic	 protocol	 connector	module	
uses	the	attribute	repository	to	implement	the	set_parameters	UPI_N	function.	

	

Listing	15.	Implementation	of	the	set_parameters	UPI_N	function	called	via	the	RPC	engine.	

1. //RPC set_parameter function.   
2. error_t set_parameters(uint8_t num_args ,void* args, const uint32_t args_le

n, void* ret_buffer, uint32_t ret_buffer_len, uint32_t* ret_len){   
3.     uint8_t* args_ptr = (uint8_t*) args;   
4.     uint8_t* ret_ptr = (uint8_t*) ret_buffer;   
5.     uint8_t num_params = *args_ptr   
6.     args_ptr+=sizeof(uint8_t);   
7.     memcpy(ret_buffer, &num_params, sizeof(uint8_t));   
8.     ret_len+=sizeof(uint8_t)   
9.     ret_ptr+=ret_len;   
10.     for(int i = 0; i<num_params; i++){   
11.         uint16_t param_uid = *((uint16_t*) args_ptr);   
12.         ctrl_attr* p = attr_repo_get_attribute(param_uid);   
13.         uint8_t new_value_len = *(args_ptr + sizeof(uint16_t));   
14.         uint8_t* new_value = (args_ptr + sizeof(uint16_t) + sizeof(uint8_t)

);   
15.         error_t e = p->set(p, new_value, new_value_len);   
16.         memcpy(ret_ptr, ¶m_uid, sizeof(uint16_t));   
17.         ret_len+=sizeof(uint16_t);   
18.         memcpy(ret_ptr+ret_len, &e, sizeof(error_t));   
19.         ret_len+=sizeof(error_t);   
20.         args_ptr = args_ptr + sizeof(uint16_t) + sizeof(uint8_t) + new_valu

e_len;   
21.         ret_ptr = ret_ptr + ret_len   
22.     }   
23.     return SUCCESS;   
24. }   

	

6.3 Protocol-specific	connector	modules	
The	only	modification	required	in	the	protocol	stack	are	the	definitions	of	the	control	attributes	and	
functions	 that	are	 to	be	exposed.	They	are	grouped	per	protocol	 in	a	protocol	 specific	 connector	
module.	 Each	 of	 these	 connector	 modules	 is	 responsible	 for	 implementing	 a	 (subset)	 of	 the	
UPI_R/N	functions	and	attributes	and	registering	them	in	the	RPC	engine	and	attribute	repository.	
It	is	also	responsible	for	providing	a	local	interface	for	local	control	programs	towards	the	available	
UPI_R/N	functions	and	attributes.	
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The	code	snippet	in	Listing	16	shows	an	example	IPv6	connector	module	with	an	implementation	of	
the	UPI_N	add_route	function.	A	remote	call	to	this	function	ends	up	executing	add_route_rpc.	This	
function	 parses	 the	 arguments,	 calls	 the	 local	 variant,	 add_route_local	 and	 formats	 the	 return	
buffer.	 The	 example	 also	 illustrates	 how	 RPC	 functions	 and	 connector	modules	 are	 defined,	 and	
how	the	connector	modules	are	added	to	the	rpc_engine.	

	

Listing	 16.	 Example	 protocol	 specific	 connector.	 In	 this	 example	 the	 UPI_N	 function	 add_route	 is	
implemented	 and	 exposed	 both	 locally	 and	 remotely	 by	 the	 IPv6	 connector	 module.	 Also	
included	 in	 the	 example	 is	 the	 definition	 of	 the	 RPC	 function	 and	 registering	 of	 the	 local	 and	
remote	connector	modules.	

1. error_t add_route_local(uip_ipaddr_t *ipaddr, uint8_t length, uip_ipaddr_t 
*next_hop){   

2.     uip_ds6_route* r = uip_ds6_route_add(ipaddr, length, next_hop);   
3.     if(r == NULL) return FAIL;   
4.     return SUCCESS;   
5. }   
6. error_t add_route_rpc(uint8_t num_args ,void* args, const uint32_t args_len

, void* ret_buffer, const uint32_t ret_buffer_len, uint32_t* ret_len){   
7.     uint8_t* args_ptr = args;   
8.     uip_ipaddr_t* ipaddr = ((uip_ipaddr_t*) args_ptr);   
9.     args_ptr+=sizeof(uip_ipaddr_t);   
10.     uint8_t length = *(args_ptr);   
11.     args_ptr+=sizeof(uint8_t);   
12.     uip_ipaddr_t* next_hop = ((uip_ipaddr_t*) args_ptr);   
13.     error_t ret_val = add_route_local(ipaddr, length, next_hop);   
14.     memcpy(ret_buffer, &ret_val, sizeof(error_t));   
15.     ret_len+=sizeof(error_t);   
16.     return SUCCESS;   
17. }   
18. RPC_FUNC(add_route,ADD_ROUTE_UID,INT8_T,3,STRUCT,UINT8_T,STRUCT);   
19. RPC_FUNC(get_ip_table,GET_IP_TABLE_UID,STRUCT_T,0,VOID);   
20. RPC_FUNC(clear_ip_table,CLEAR_IP_TABLE_UID,INT8_T,0,VOID);   
21. RPC_CONNECTOR(IPv6_rpc_connector, IPV6_CONNECTOR_ID, NUM_IPV6_FUNCTIONS, &g

et_ip_table, &clear_ip_table, &add_route);   
22. LOCAL_CONNECTOR(IPv6_local_connector, IPV6_CONNECTOR_ID, NUM_IPV6_FUNCTIONS

, &get_ip_table, &clear_ip_table, &add_route);   
23. rpc_engine_add_rpc_connector(IPV6_CONNECTOR_ID,&IPv6_rpc_connector);   
24. rpc_engine_add_local_connector(IPV6_CONNECTOR_ID,&IPv6_local_connector);   

	

6.4 Communication	wrapper	
Due	to	the	constrained	nature	of	the	sensor	devices,	a	suitable	protocol	is	required	to	transfer	the	
control	messages	containing	the	RPC	calls	(e.g.	the	communication	bus).	Given	the	wide	support	for	
CoAP	 (Constrained	 Application	 layer	 Protocol)	 in	 sensor	 networks	 (e.g.	 supported	 by	 Contiki,	
TinyOS,	 OpenWSN,	 RioT	 OS,	 etc..)	 it	 was	 chosen	 as	 the	 protocol	 used	 for	 setting	 up	 the	
communication	bus.	Nevertheless,	the	GITAR	RPC	engine	remains	generic,	making	it	possible	to	use	
an	 alternative	 communication	 bus	 as	 long	 as	 it	 supports	 the	 interactions	 discussed	 in	 the	 next	
sections.	

	

6.5 Node	discovery	
The	communication	diagram	in	Figure	13	illustrates	the	node	discovery	procedure	inside	the	GITAR	
middleware.	The	GITAR	Discovery	service	on	 the	node	side	 (right)	 initiates	 the	procedure.	 It	uses	
the	communication	wrapper	to	notify	the	discovery	server	of	its	presence.	This	triggers	the	GITAR	
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Discovery	service	on	the	broker	agent	side	(left)	to	spawn	a	new	agent	stub	and	retrieve	the	node	
UPI	 capabilities	 (i.e.	UPI_R/N	 functions	 and	attributes).	 The	GITAR	Discovery	 service	on	 the	node	
side	queries	the	RPC	engine	and	attribute	repository,	and	returns	the	UPI	capabilities.	This	triggers	
the	GITAR	Discovery	service	on	the	broker	agent	side	to	create	connector	module	stubs	based	on	
the	returned	information.	

	
Figure	13.	Communication	diagram	illustrating	the	node	discovery	flow	inside	the	GITAR	middleware.	

	

6.6 Remote	UPI	function	execution	
Figure	 14	 illustrates	 the	 control	 flow	 required	 to	 execute	 a	 remote	 UPI	 call	 originating	 from	 a	
WiSHFUL	 global	 control	 program.	 The	 remote	 UPI	 call	 is	 targeted	 to	 a	 connector	 module	 stub	
hosted	by	an	agent	stub	on	a	Linux	host.	It	is	forwarded	using	the	Gitar	Middleware	to	the	required	
Contiki	node.	For	this	purpose,	the	RPC	engine	on	the	Linux	Node	transforms	the	RPC	call	and	uses	
the	communication	wrapper	to	send	a	RPC	request.	The	request	is	processed	by	the	RPC	engine	on	
the	Contiki	node	and,	finally	the	remote	UPI	call	is	executed	by	the	protocol	connector	module.	The	
result	of	this	operation	is	then	returned	to	the	connector	module	stub.	

	
Figure	14.	Generic	flow	for	executing	a	remote	UPI	function	originating	from	a	WiSHFUL		

global	control	program.	
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7 Conclusions	
In	 this	 deliverable,	 we	 describe	 the	 second	 release	 of	 the	 WiSHFUL	 software	 architecture	 for	
network	 control.	 The	 architecture	 features	 two	 main	 components:	 i)	 the	 WiSHFUL	 control	
framework,	that	simplifies	prototyping	of	novel	wireless	networking	solutions	requiring	cross-layer	
control	 coordinated	 among	 multiple	 heterogeneous	 wireless	 network	 nodes,	 and	 ii)	 the	 unified	
UPI_N	 interface	 for	monitoring	 and	 configuring	 the	 higher	 layers	 of	 the	 network	 protocol	 stack	
(higher	MAC	and	above)	of	the	nodes.		

In	WiSHFUL	framework	the	control	programs	representing	controller	logic	can	be	implemented	in	a	
local,	central	or	hierarchical	manner.	This	allows	to	place	time-sensitive	control	functions	close	to	
controlled	device,	off-load	resource	hungry	control	programs	to	powerful	servers	and	make	them	
work	 together	 to	 control	 the	 entire	 network.	 To	 this	 end,	 the	 control	 framework	 provides	 the	
following	 programming	 interfaces:	 i)	 UPI_G	 –	 global	 control	 of	 network	 devices,	 ii)	 UPI_M	 -	 for	
management	 of	 network	 devices,	 and	 iii)	 UPI_HC	 –	 for	 hierarchical	 control,	 i.e.	 communication	
between	global	and	local	control	programs.	

The	UPI_N	 implementation	 is	based	on	the	development	of	network	connector	modules,	able	 to	
map	platform-independent	function	calls	into	platform-specific	tools	and	functionalities.	The	UPI_N	
interfaces	 implemented	 in	 year	 2	 contains	 function	and	attributes	organized	 in	 following	 groups:		
i)	 Address	 management,	 ii)	 Protocol	 attribute	 manipulation,	 iii)	 Traffic	 control,	 and	 iv)	 Topology	
detection	 and	 routing	 control.	 The	 UPI_N	 are	 mostly	 supported	 for	 Linux	 and	 Contiki	 operating	
systems.		
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