WiSHFUL H2020 - GA No. 645274 D4.2

* %%
X% %

® |
* p K
/ European
- Commission
N

Wireless Software and Hardware platforms for

Flexible and Unified radio and network control

Project Deliverable D4.2

First Operational network control software platform

Contractual date of delivery: 31-12-2015

Actual date of delivery: 04-01-2016

Beneficiaries: iMinds, TCD, CNIT, TUB

Lead beneficiary: TUB

Authors: Anatolij Zubow (TUB), Mikolaj Chwalisz (TUB), Piotr Gawtowicz

(TUB), Sven Zehl (TUB), Adam Wolisz (TUB), Peter Ruckebusch
(IMINDS), Spilios Giannoulis (IMINDS), Ingrid Moerman (IMINDS),
Pierluigi Gallo (CNIT), Nicolo Facchi (CNIT), llenia Tinnirello (CNIT)

Reviewers: Pierluigi Gallo (CNIT)
Work package: WP4 — Network Control
Estimated person months: 24

Nature: R

Dissemination level: PU

Version: 1.19

Abstract:

This deliverable provides a detailed description on the capabilities and performance of the first
network control software platform that follows the Path 1 innovation strategy (black box). It also
presents a list of improvements and extensions that will be implemented in Year 2.

Keywords:
Programmable network architecture, software-defined networking, network control

WiSHFUL H2020 - GA No. 645274 D4.2

Executive Summary

This deliverable provides a detailed description on the capabilities and performance of the first
network control software platform that follows the Path 1 innovation strategy (black box). It also
presents a list of improvements and extensions that will be implemented in Year 2.

In Year 1, we have defined the global WiSHFUL architecture with its components and interfaces, the
provided basic services. Unified Programming Interface (UPI) functionality has been implemented for
two different platforms, namely, Linux-based wireless nodes and sensor nodes using the Contiki
operating system.

The focus of this deliverable is on a detailed description and implementation the Unified
Programming Interfaces for network control, whereas deliverable D3.2 addresses radio control
through UPI_R focusing on the lower layers, i.e. lower MAC and physical layer.

The following UPIs have been implemented

* A network control interface, UPI_N, for controlling the higher layers of the network protocol
stack. The UPI_N implementation is based on the development of network connector modules,
able to map platform-independent function calls into platform-specific tools and
functionalities;

* a global interface, the UPI_G, which is required for coordinated (time synchronized) remote
execution of configuration and monitoring related functions, UPI_R/N, on a group of nodes;

* a management interface, UP|_M, required for managing protocol software modules at any
layer of the network protocol stack.

The full documentation of UPI_N, UPI_G and UPI_M together with the code of the implemented
software is available in the WiSHFUL GitHub repository.

WiSHFUL

H2020 - GA No. 645274

List of Acronyms and Abbreviations

6LOWPAN
AODV
AP

BE
BLIP
COAP
CPE
CREW
CTP
CWMP
DHCP
DVB
GITAR
GTS
HGI
HTTP
ICMP
IDS

MAC
MTU
OLSR
oS
QoS
RPL
SDN
SNMP
SOAP
SSID
STA
TinyRPL
ToS
UPI
UPI_G

IPv6 over Low power Wireless Personal Area Networks
Ad-hoc On-demand Distance Vector

Access Point

Best Effort

Berkeley IP

Constrained Application Protocol

Customer Premises Equipment

Cognitive Radio Experimentation World — EU project
Collection Tree Protocol

CPE WAN Management Protocol

Dynamic Host Configuration Protocol

Digital Video Broadcasting

Generic extensions for Internet-of-Things Architectures
Guaranteed Time Slot

Home Gateway Initiative

Hypertext Transfer Protocol

Internet Control Message Protocol

Intrusion Detection System

Internet Protocol

Medium Access Control

Maximum Transmission Unit

Optimized Link State Routing Protocol

Operating System

Quality of Service

Routing Protocol for Low-Power and Lossy Networks
Software-defined networking

Simple Network Management Protocol

Simple Object Access Protocol

Service Set Identifier

Station

IPv6 Routing Protocol for Low-power and Lossy Networks (RPL)

Type of Service
Unified Programming Interface

Unified Programming Interface global

D4.2

WiSHFUL H2020 - GA No. 645274 D4.2

UPI.M Unified Programming Interface management
UPIL_N Unified Programming Interface network

UPIL_R Unified Programming Interface radio

VolP Voice over IP

VPN Virtual Private Network

WAN Wide Area Network

WiMAX Worldwide Interoperability for Microwave Access
WDS Wireless Distribution System

ZeroMQ Embeddable networking library and a concurrency framework

WiSHFUL

H2020 - GA No. 645274 D4.2
Table of contents
1 INtrodUCHION .. ———————— 7
2 General description of WiSHFUL architecture for network control................. 7
2.1 WiSHFUL COMPONENTS....ciueuiiiiineiiiieneiiiieneiiirenssitirenssisirassesirssssesissssssssesssssssenssssssensssssssnses 7
0 2 U Lo I« 1= T T 8
R B = T T oY= ol 9
D2 T8 A oo LI D £ olo 1V =] o ST USPPRRRNS 9
2.3.2 Control Program MOE]ooi ittt e e e tee e e e e e e e atba e e e e e e s eesaantaaeeeaeeeennnnes 9
2.3.3 EXECUTION SEMANTICS ..uvviiiiiiiiiiiiiiee ettt e s re e e s rae e e snaeeees 10
2.3.4 Time-Scheduled Execution of UPI FUNCLIONSc.ueiiiiiiiiiiiii ittt 10
2.3.5 Remote Execution of UPI FUNCLIONSc.coiitiiiiiiiiiieiiie ittt ettt 11
2.3.6 Time SYNCAIONIZATIONuuiiiiiiei i et e e e e e e et e e e e e e e s e aataeeeeeeeeesenstraaeaaaaeaan 12
2.3.7 Packet Forgery, Sniffing and INJECTIONccoiiiiiiiiiee et e e et e e e e 13
2.3.8 Deployments of NEW UPI FUNCLIONSceiiiiiiiiiiiiiee ettt e e aare e e e 13
3 Implementation of WiSHFUL architecture.........cccoovmeeeeecciiiiiirienreeneeeeeeees 15
3.1 Linux Networking SUDSYStEMcccveuueiiiiiiiiiiiimmmiiiiniiiiiiianmssiieeiiieesssmsssssesiisessssssssssssssseens 15
T 0 I A [Yo L= B T ol e V=T o VST PPPPR 15
3.1.2 CONLIOHEr MO ..ttt ettt ettt e sbee s be e ssneenaeees 16
3.1.3 Time-scheduled execution of fUNCLIONS........cociiiiiiiiiii e 16
3.1.4 Remote Execution Of UPI FUNCLIONS ...c.c.eiiiiiiiiiiiiii ittt e 16
3.1.5 Time SYNCAIONIZAtION ..o e e et e e e e e e e et b a e e e e e e eeseasrareeaaaeaan 17
3.1.6 Packet Forgery, Sniffing and INJECTIONccooiiiiiiiiiiee e e e e e e e 19
3.1.7 Deployments of N@W UPI FUNCLIONSccueiiiiiiiiiiiiiieiieettee et 19
3.2 Contiki Embedded OS.........i e 19
3.2.1 Controlling Contiki sensor nodes over Ethernet........cccccuvviiiiiii it 21
3.2.2 Controlling Contiki sensor nodes over [EEE-802.15.4.........cueeiiiiiiiiiiiiiieee et eeecvrereeeae e 22
4 UPI_N implementation.........oooriiii s 26
4.1 Linux Networking SUBSYSEEMc.uuiiiiiiiiiiiiiiiiiiiiiiiieiiiissninseessesssiisssnsessssssssssssssssssnsnsss 26
4.1.1 Traffic control and MONITOIING.....ccciii i e e e e e e e s r e e e e e e s e aaraeneas 26
4.1.2 Packet filtering, manipulation and MONItOrNG.........c.eeeviiiiiiiiiiiie e 29
4.1.3 Monitoring of [INK ParameEter ... e e e e e r e e e e e e aaraeeeas 30
4.2 Contiki Embedded OS.........cccooiiiiiiii e 30
4.2.1 Background on network stacks for constrained devicescccceeeeeiiiiiiieie e, 31
4.2.2 Local UPI_N COUE @XAMPIE . ..euiiiiieiiee ettt ettt e e e ettt e e e e e e e e et e e e e e e e e e s abaaaeeeaeeesennnraeneas 33
4.2.3 GITAR extensions required for enabling UPI fuNCLioNS........cccveiiiiiiiiiiiiiiieee e 34

WiSHFUL H2020 - GA No. 645274 D4.2

5 UPL_Gimplementation.........oooiiiiiiiiiisiri s nnnnnnas 37
5.1 Linux Networking sSUDSYStEMcciiieeueiiiiiiiiiiiienniiieiiiiiiiesmeiiiiiisesmsseiiissssssssssns 37
Lo A I o] = VA =1 U1 Vot o o ST 38

5.2 Contiki Embedded OS..........ciiiiiiiiiiiiiieieiinreneeestenaseseeenssesteenssessennsessennssessennssesssnnssssnes 39

6 UPI_M implementation ... 45
6.1 Linux Networking SUDSYStEMcccvuuueiiiiiiiiiiiiinniiiieiiiiiiimnmsiieeiiieesemmseesiisesssmmsssssesssseens 45

6.2 Contiki Embedded OS........ . iiiccritccrreiceerrneeeerenesesrenesessenssssseensssssesnsssssesnssnssannns 45

7 UPI_HC implementation ... s snnnnnas 45
7.1 Linux Networking SUBSYSEEMccciveuueiiiiiiiiiiiiinmiiiieiiiiiiiennsiseniiieesesssssessiisessssssssssssssseens 46

7.2 Contiki Embedded OS........ . iiricciiticcrreeeesreneeesreneseeerenessessenssssseensssssesnsssssesnsssssannns 48

8 Examples of control programs using UPIs ... 48
9 Improvements and eXtenNSIONScccccciiiiiiiiii e —————— 49
10 CONCIUSIONS ...t r e s e s e a s s s s e a s s s s nn s s s s nn s s e nnnsssrnnnsssrnnnen 50
T 2 = =Y (= o o = 51

WiSHFUL H2020 - GA No. 645274 D4.2

1 Introduction

This deliverable describes the first WiSHFUL operational network control software platform. It
describes the architecture and gives a detailed description of the implemented Unified Programming
Interfaces for network control, UPI_N, i.e. higher layers of the network protocol stack, whereas
document D3.2 is focused on radio control, i.e. lower MAC and physical layer. Full documentation
and the code of the implemented software platform is available in the WiSHFUL GitHub repository.

The focus of the network control software platform is on the description of the UPI_N definition as
well as the basic services provided by the architecture, i.e. time synchronization, time-scheduled and
remote execution of UPI functions. Moreover, we give a description of an additional global interface,
the UPI_G, which is required for coordinated (time synchronized) remote execution of configuration
and monitoring related functions, UPI_R/N, on a group of nodes. Note, that the WiSHFUL control
framework provides the capability to run node-local or global control programs, which are devised to
reconfigure network and radio behaviour. Finally, also management related functions required for
managing protocol software modules at any layer of the network protocol stack are presented,
UPI_M.

We present implementation details for the two networking platforms supported, namely i) systems
using Linux Networking Subsystem and ii) Contiki Embedded OS.

2 General description of WiSHFUL architecture for network control

2.1 WIiSHFUL components

The WiSHFUL monitoring and configuration engine (MCE), has two-tier architecture with local MCEs
residing on each wireless node and a central global MCE. The global MCE enables global control
programs to control the behaviour of each wireless device under test using the well-defined UPI-R/N
interfaces provided by each node. Moreover, the global MCE can instantiate local control programs
on each wireless node, which are executed by each node-local MCEs independently. Besides the
global control there is also the option to control each node independently using a local control
program on top of a node-local MCE.

WiSHFUL

2.2

H2020 - GA No. 645274 D4.2

e

{\ WiSHFUL UPI \

fgurat

Global MCE
Network-level
Node-level
Contiki Node Linux Node
‘WiSHFUL UPI} }WISHFUL UPI}
rol
Local MCE Local MCE

Figure 1 Overview of the components in the general WiSHFUL architecture.

UPI definition

To enable remote usage of UPI functions using the UPI_G interface, a system is required that
supports remote procedure calls. For this purpose the UPI functions must have a generic signature
that facilitates serializing function arguments during remote UPI calls. Such types of function
definitions are very flexible but error-prone in usage. For this reason, more user-friendly versions are
also required that shields end-user from the complexity by offering strongly typed interface

descriptions.

The WIiSHFUL architecture thus defines two levels of UPIs:

A generic interface that allows to facilitate serialisation of arguments

#C definition
/* Change a higher layer parameter. The following arguments expected nic_ t,
param list t where param list is a list of param t pointers.

* %
* %
* %

* %

*/

@param void* args: pointer to a list of arguments.
@param int num args: number of arguments
@return void*: pointer to return buffer.

void* UPI N setParameterHigherLayer(void* args, int num args)

#PYTHON definitions:

WiSHFUL H2020 - GA No. 645274 D4.2

def UPI N setParameterHigherLayer (args)

* A UPI helper interface that wraps the functions in more strongly typed versions:

#C definition

/* Change a higher layer parameter

* %

** @param NIC t* iface: the interface on which parameters need to be changed.
** @param param list t params: a list of parameters

** @return void*: pointer to a list of error t elements.

*/

volid* UPI N setParameterHigherLayer (NIC t* iface, param list t params)

#PYTHON definitions:

def UPI N setParameterHigherLayer (iface, param keyValues)

The second version will be offered in Python by Helper classes, in C by helper functions.

23 Basic Services

2.3.1 Node Discovery

A global control program requires functionality for automatic node discovery. WiSHFUL provides the
protocol developer an easy way to define the set of nodes he want to control. Any wireless node
belonging to the same experiment group can be controlled by a global control program using the
WIiSHFUL UPIs. From that set of nodes the user can either select all of them or just a sub-set.

The following example code-snippet shows how a global control program defines the experiment
group “MyWishFulTest” and waits until the two specified wireless nodes become available for
control:

t name of the experir t group,; only nodes of this group can be con
exp _group name = "MyWishFulTest"
¢ get reference to global UPI

global mgr = GlobalManager (exp group name)

nodes under control

nodes = []

node0 = Node("192.168.103.125")

nodel = Node("192.168.103.134")

nodes.append (node0)

nodes.append (nodel)

node discovery: wait until all specified nodes are available
discovered nodes = global mgr.waitForNodes (nodes)

2.3.2 Control Program Model

The WIiSHFUL framework follows a proactive approach. A local or global control program has to
trigger the execution of UPI functions on the wireless node under control. This polling-based

WiSHFUL H2020 - GA No. 645274 D4.2

approach might be not sufficient for each control program application. Therefore, for the future we
plan to support also a reactive approach. Here the user can define a trigger where when a certain
condition is fulfilled a registered callback function is executed.

2.3.3 Execution Semantics

The WiSHFUL MCE (local and global) supports two execution semantics. The first is a synchronous
blocking UPI call where the caller, i.e. the WiSHFUL control program (local or global), is blocked until
the callee, i.e. any UPI function, returns. The second option is an asynchronous non-blocking UPI
function call. Here any UPI call returns immediately. The caller has the option to register a callback
function so that he can receive the return value of the UPI call at a later point in time.

The following example illustrates the use of the two possible execution semantics:

if name == '_main_':
get reference to local wishful engine
local mgr = LocalManager ()
iface to use
wlan iface = 'wlanO'

: exec remote function on UPI R/N in 3 seconds
UPI RN.setParameterlLowerLayer
remote function args
UPIargs = {'cmd' : UPI_RN.IEEE80211 CHANNEL, 'iface' : wlan_iface, 'channel'
4}

Custom callback function used to receive result values from scheduled calls.
def resultCollector (json message, funcld):
log.debug('json: %s' % json message)

try:
(1) this is a blocking UPI call
rvalue = local mgr.runAt (UPIfunc, UPIargs)
log.debug('Ret value of blocking call is %s' % str(rvalue))

create callback for this function call
callback = partial (resultCollector, funcId=4711)
(2) this is a not blocking UPI call
rvalue = local mgr.runAt (UPIfunc, UPIargs, None, callback)
rvalue 1is em;Ly
except Exception as e:
log.fatal("... An error occurred : %s" % e)
teardown engine

local mgr.stop()

2.3.4 Time-Scheduled Execution of UPI Functions

Beside the possibility of immediate execution of UPI functions either using a blocking or non-blocking
scheme the WiSHFUL MCEs provide the possibility for time-scheduled execution of UP| functions at a
particular point in time. This is important if nodes need to coordinate their actions in time, e.g. a set
of nodes must perform a time-aligned switching to a new channel. The possibility for time-scheduled
execution of UPI functions is especially important for global control programs if a non-real-time
backbone networking system like Ethernet is used. In such networks we cannot expect that the
WIiSHFUL control commands are received by all nodes at the same time, e.g. due to network

10

WiSHFUL H2020 - GA No. 645274 D4.2

congestion. Moreover, network congestion and delay are also reasons for providing hierarchical
control over UPI_HC between local and global control programs.

The following example illustrates the time-scheduled execution of UPI functions:

if name == '_main__':

get reference to local wishful engine
local mgr = LocalManager ()

iface to use

wlan_ iface

exec remote function on UPI R/N in 3 seconds

m L L

UPIfunc = UPI_RN.setParameterLowerlLayer

remote function args

UPIargs = {'cmd' : UPI_RN.IEEE80211 CHANNEL, 'iface' : wlan_iface, 'channel'
4}

Custom callback function used to receive result values from scheduled calls.
def resultCollector (json message, funcld):
log.debug('json: %s' % Jjson message)

try:
now = get now full second()
set execution time to be in 3 seconds
exec time = now + timedelta (seconds=3)

create callback for each function call
callback = partial (resultCollector, funcId=4711)
this is a non-blocking time-scheduled UPI call
rvalue = local mgr.runAt (UPIfunc, UPIargs, unix time as tuple(exec time),
callback, 1)
rvalue is empty
except Exception as e:
log.fatal("... An error occurred : %s" % e)

teardown engine

local mgr.stop()

2.3.5 Remote Execution of UPI Functions

WIiSHFUL provides full location transparency. Any UPI function can be executed either locally by a
local control program or remotely by a global control program. In the latter case, the WiSHFUL global
MCE transparently serializes (marshalling) all input and output arguments. The calling semantic for
both the local and remote calls is call-by-value. This has to be considered when extending the UPIs
with additional functionality. Finally, as with the local execution also the execution of remote
functions can be time-scheduled. This is especially important if a given UPI function needs to be
executed at the same time on a set of wireless nodes.

The following example illustrates how a global control program remotely executes a UPI function to
control the behaviour of nodes:

11

WiSHFUL H2020 - GA No. 645274 D4.2

if name == '_main__':

name of the experiment group; only nodes of this group can be controlled

exp _group name = "MyWishFulTest"

get reference to global UPI
global mgr = GlobalManager (exXp group name)
radioHelper = RadioHelper (global mgr)

nodes = []

node0 = Node ("192.168.103.125") # nuc?2

nodel = Node ("192.168.103.134") # nuc3

nodes.append (node0)

nodes.append (nodel)

node discovery: wait until all specified nodes are available
nodes = global mgr.waitForNodes (nodes)

expectedNodelIps = [node.getIpAddress () for node in nodes]

log.info ('All required nodes are available ... %$s' % str (expectedNodelps))
start thread for callback, have to be done after some peer
global mgr.startResultCollector ()

Py P |
are aval.l:

ble

)]

0]

iface = 'monO'

ch = 36

try:
exec remote UPI on node(
rv = radioHelper.setRfChannelRemote (node0, iface, channel)
exec remote UPI on nodel

rv = radioHelper.setRfChannelRemote (nodel, iface, channel)
except Exception as e:

log.fatal("... An error occurred : %s" % e)
tear down engine
global mgr.stop()

To run the above global control program two steps are required. First, on each node under test we
have to start the WiSHFUL agent (included in WiSHFUL framework):

$ python start agent.py

The global controller itself can be started by calling:

$ python ex global ctrl.py

Note: the global controller passes control commands (UPI calls) to agents, which executes them
locally.

2.3.6 Time Synchronization

A wide range of WiSHFUL applications like the centralized control of channel access requires a tight
time synchronization among wireless nodes. The way the wireless nodes are time synchronized is
platform and architecture-dependent. Basically, we distinguish between systems where a backbone
network exists. Here in order not to harm the performance of the wireless network the nodes are
time synchronized using the backbone (e.g. Ethernet) and some time protocol like PTP. Wireless
nodes without a backbone have to rely on other techniques for time synchronization (e.g. GPS).

12

WiSHFUL H2020 - GA No. 645274 D4.2

2.3.7 Packet Forgery, Sniffing and Injection

WIiSHFUL provides a wide range of functionality for packet forgery, sniffing and injection. A control
programs can use this to create and inject network packets into the network stack of a node or to
receive copies of packets. All WiSHFUL nodes support the sniffing and injection on IP layer (layer 3).

2.3.8 Deployments of new UPI functions

WIiSHFUL provides an open and extensible architecture, which can be easily extended by new UPI
functions. Any new introduced UPI function can be implemented in a different way for different
platform and architecture. Therefore, in WiSHFUL for each platform there is separate network
connector module. A connector module maps the general UPI call into platform specific
implementations. Since they are mainly tailored for the underlying radio platform, they are described
in D3.2. The UPI_N functionality, provided by the connectors, is operating system specific (e.g. Linux,
Window, Contiki, TinyOS) and are grouped with the connectors for the radio platforms.

Moreover, some WiSHFUL platforms support the deployment and execution of new UPI functions
"on-the-fly" from the global control program.

The following example illustrates this:

13

WiSHFUL H2020 - GA No. 645274 D4.2

if name == ' main ':

name of the experiment group; only nodes of this group can be controlled
exp _group name = "MyWishFulTest"

get reference to global UPI

global mgr = GlobalManager (exXp group name)
nodes = []

node0 = Node ("192.168.103.125") # nuc?2
nodel = Node ("192.168.103.134") # nuc3

nodes.append (node0)
nodes.append (nodel)

node discovery: wait until all specified nodes are available
nodes = global mgr.waitForNodes (nodes)

[IRINT]

Custom callback function used to receive result values from scheduled calls.
def resultCollector (json message, funcId):
log.debug('json: %s' % json message)

[IRINT]

Custom function: print out the current configured firewall rules.

[IRINT]

def customFuncIpTables (myargs) :

import iptc
import logging

log = logging.getLogger ()

def printIpTable (table):
for chain in table.chains:
[..]

table = iptc.Table (iptc.Table.FILTER)
printIpTable (table)

try:
deploy a custom control program on each node
CtrlFuncImpl = customFuncIpTables
CtrlFuncargs = (123,)

exec in 2s

exec_time = now + timedelta (seconds=2)

callback = partial (resultCollector, funcId=99)

remote execution of a custom function

global mgr.runAt (CtrlFuncImpl, CtrlFuncargs, unix time as tuple(exec time),
callback)

except Exception as e:
log.fatal("... An error occurred : %$s" % e)

teardown engine
global mgr.stop ()

14

WiSHFUL H2020 - GA No. 645274 D4.2

3 Implementation of WiSHFUL architecture

Deploying global control in wireless networks is challenging but also promises rewards in terms of
network performance (i.e. increased reliability and QoS). The main problem is that every additional
control flow requires a certain amount of bandwidth and should thus be carefully evaluated because
in real-life networks it can have a dramatic impact on the overall network performance.

To overcome this, we facilitate both initial research exploration and advanced real-life evaluation by
offering two possible communication channels over which the control messages can be exchanged:

1. An out-of-band channel tailored for testbed experimentation that makes use of the
testbed backbone to transfer control messages”.

2. An in-band channel that uses the same physical channel as the normal data flows and can
be used during field trials or real-life deployment.

The global MCE is executed in a Linux environment and is common for all platforms. The local MCEs
are currently implemented in Linux with specific connector modules for ATH9k (Atheros cards), WMP
(Broadcom B43) and Contiki (sensor nodes) using an out-of-band channel for control flows. In Contiki
there is also a proof-of-concept implementation for a local MCE that uses an in-band channel.

3.1 Linux Networking Subsystem

Here we have to distinguish whether the devices under test have an additional interface to a
common backbone network (Ethernet). So far we have assumed that all wireless nodes have an
additional wired interface, which can be used to set-up a low-latency, high capacity out-of-band
control channel (Gigabit Ethernet). Such a requirement is fulfilled in Enterprise IEEE 802.11 networks.
For the future we plan to provide a solution using an in-band control channel.

Device
under test

<

/
-~ e

backbong y

Figure 2. Linux device under test with a dedicated backbone interface.

3.1.1 Node Discovery

For WiSHFUL nodes using Linux as operating system and having a backbone network we use the
ZeroMQ Realtime Exchange Protocol (ZRE) (http://rfc.zeromg.org/spec:36) which is a peer-to-peer
protocol for node discovery. For the automatic node discovery it is required that all devices under
test as well the global control must reside in the same LAN segment. If a wireless node has more than
one network interface card (NIC), the NIC to be used by the discovery algorithm must be configured
in both the global controller and the agents of the wireless nodes. Please edit the following variable
in constants.py:

DISCOVERY HOST TO INF = {
'himalaia' : 'ethO',
'matrix' : 'ethl'

L If a backbone network is available in real-life deployments, of course, the out-of-band solution can also be
used for providing control to the devices under test.

15

WiSHFUL H2020 - GA No. 645274 D4.2

where the key is the hostname and the value is the NIC to be used.

3.1.2 Controller Model

The mandatory proactive approach is implemented.

3.1.3 Time-scheduled execution of functions
Linux-based WiSHFUL nodes use the Advanced Python Scheduler, a Python library, for time
scheduling of UPI functions. More information can be found here:
https://apscheduler.readthedocs.org/en/latest/

3.1.4 Remote Execution of UPI Functions

The Linux-based WIiSHFUL nodes use the ZeroRPC library on top of ZeroMQ as transport layer
protocol. ZeroRPC provides the required functionality for serialization (marshalling) all input and
output UPIl arguments.

For Linux-based WiSHFUL nodes the ZeroRPC library which uses ZeroMQ as transport protocol is
used. ZeroRPC provides the required functionality for serialization (marshalling) all input and output
UPI arguments.

In order to evaluate the performance of the proposed controller framework, we measured execution
time spent by running experiments. Specifically, we are interested in comparing the execution of
local and remote UPI calls.

We measured time required to execute 1000 function calls in blocking mode. We chose four
functions:

* getHwAddr() — returns the MAC address of a particular network interface

* getipTable() — return the packet netfilter entries

* setRfChannel() — return the radio channel used by a particular WiFi interface
* setMarking() — perform flow marking

Local Control Program
For local execution of UPI functions we tested a local controller on two platforms:

¢ Intel-NUC-i5 - Intel-NUC mini-PC, Ubuntu 14.04 LTS, processor Intel-i5
* PC-i7 - PC, Ubuntu 14.04 LTS, processor Intel-i7.

Each test was repeated 10 times to calculate average execution time needed to call function 1000
times.

Intel-NUC-i5 PC-i7
Function Avg. Execution Time Avg. Execution Time
Std. Std.
(s) (s)
getHwAddr 0.024268 0.001697 0.024130 0.003183
getipTable 0.488779 0.004331 0.450982 0.008743
setRfChannel 6.943339 0.161535 4.478201 0.164465
setMarking 1.837180 0.052953 1.143227 0.036594

16

WiSHFUL

H2020 - GA No. 645274 D4.2

Global Control Program

When using a global controller the UPI functions are executed remotely. Hence the performance of
the backhaul network plays an important role. The remote WiSHFUL agent was tested on two
different platforms:

¢ Intel-NUC-i5 — Two Intel-NUC mini-PCs, Ubuntu 14.04 LTS, processor Intel-i5
* PC-i7 —Two PCs, Ubuntu 14.04 LTS, processor Intel-i7.

Each test was repeated 10 times to calculate average execution time needed to call function 1000
times.

We examined influence of RTT between two nodes on time needed to execute function 1000 times.

We used netem QDisc to artificially change queuing delay on egress interfaces.

Two Intel-NUC-i5, Avg RTT 0.352ms Two PC-i7, Avg RTT 0.489ms
Function
Avg. Execution Time (s) Std. Avg. Execution Time (s) Std.
getHwAddr 10.637399 0.6335301 5.834721 0.5159092
getipTable 11.324886 0.4444439 6.604602 0.5237034
setRfChannel 20.221329 0.8901996 13.574112 0.6672405
setMarking 12.787135 0.5414053 7.532173 0.5102143
Two Intel-NUC-i5, Avg RTT 2.334ms Two PC-i7, Avg RTT 2.389ms
Function
Avg. Execution Time (s) Std. Avg. Execution Time (s) Std.
getHwAddr 18.615671 0.2515008 14.167905 0.4131221
getipTable 19.473895 0.2331258 15.349719 0.5968861
setRfChannel 27.982911 0.3199609 23.525305 0.6204532
setMarking 20.979897 0.2283876 16.543255 0.5344376
Two Intel-NUC-i5, Avg RTT 4.562ms Two PC-i7, Avg RTT 4.326ms
Function
Avg. Execution Time (s) Std. Avg. Execution Time (s) Std.
getHwAddr 26.775350 0.2363079 22.852124 0.5229753
getipTable 27.652234 0.2179322 23.767675 0.6249199
setRfChannel 36.053753 0.2788598 33.188614 0.6600535
setMarking 29.049699 0.2264008 25.075865 0.6886534
3.1.5 Time Synchronization

For WiSHFUL nodes using Linux as operating system and having a backbone network we use the IEEE
1588 Precise Time Protocol (PTP, “IEEE standard for a precision clock synchronization protocol for
networked measurement and control systems,”) for time synchronization of the wireless nodes.

To measure the achieved precision of the time synchronization the WiSHFUL framework was used
itself (Figure 3). Specifically, we setup an experiment, which consisted of a WiSHFUL global control

17

H2020 - GA No. 645274 D4.2

WiSHFUL

program running on a server and three wireless devices under test (802.11 Linux). The WiFi device of
one WiSHFUL node was set-up to operate in monitor mode to sniff the transmitted packets by the
other two nodes. The received wireless packets in the card are timestamped in us resolution by the
hardware. We fix the time interval of the transmission of layer-2 broadcast packets in the transmitter
platform to 1s and measure the inter-packet time spacing as the metrics for the accuracy of the local
execution time. The test was measured with 1000 packets.

The following hw/sw setup was used. For the two transmitter nodes we used Ubuntu 14.04, dual-
core, x86 with a wired Ethernet NIC from Intel supporting HW timestamping. The wireless interface
was an Intel WiFi 5300 802.11n chip. For the sniffing node we used a TP link router (MIPS), OpenWRT
and using an Atheros 802.11n chipset.

The experiment set-up is shown Figure 3 whereas Figure 4 shows the achieved timing accuracy of the
scheduled transmission. We can see that the maximum timing error is bounded to microseconds
level and is not higher than 40us with a median value of 11ps.

) 0: Texec = NOW + A
35 1: runAt(3, UPI_R::sniffer, (sniff_cb,...), Texec)
—
s .
g o 3: for i=1.N: register callback
" © 1 runAt(1, UPI_R::injectFrame, (pld,...), Texec) def sniff_cb(packet p):
ya = runAt(2, UPI_R::injectFrame, (pld,...), Texec+ 15) # collect packets +
/ 8 Texec = Texec +2 S # analyze (calc time delta)
,
/ N, . ! [} g
/ . remote exec / remote exec / N \ \
' I time sync time sync \ \
! / \ N
i Lo
! UPI_G 4: execute at Texec UPI_G 4: execute at Texec | !
| skeleton UPI_R::injectFrame, (pld,...)) skeleton UPI_R::injectFrame, (pld,...)) , |
\ . |
\ Node 1 Node 2 1 /
-\ 1 1 "
\ —— - /-/ /
' 7 [: /
\ e - ! remote exec / K4 ,
N,) time sync e ,
2:Tena: . _7 L 2:Tend:
streamof - P e stream of
sniffed packets '~ -7 7 sniffed packets
T~ UPI_G 2: execute at To -
T skeleton UPI_R::sniffer -
Node 3
Collected packet trace at node 3: i pld (node)
| A I | A, | | Ay |
r——--- | r———-- | r——— - | i pld (node2)
| | | | | |
i 1 1 i 2] 2 3] 3
time

Figure 3. WiSHFUL experiment control setup to measure the precision of the time synchronization between

nodes.

18

WiSHFUL H2020 - GA No. 645274 D4.2

MSE: 136.2622, RMSE: 11.6731

T
Il

40

T
Il

25

T
!

A [mus]

T
Il

15

ol R _

A between two nodes

Figure 4. Achieved time precision.

3.1.6 Packet Forgery, Sniffing and Injection

For the Linux implementation we use the Python Scapy library for packet forgery, injection and
sniffing. Besides sniffing and injection on layer 3 we support also layer-2 operation (e.g. 802.11
frames). For more details please take a closer look at the implementation of the following two UPI_R
functions:

+

send out 802.11 broadcast link probes

IEEE80211 L2 GEN LINK PROBING = "IEEE80211 L2 GEN_LINK_PROBING"
receive 802.11 broadcast 1link probes
IEEE80211 L2 SNIFF LINK PROBING = "IEEE80211 L2 SNIFF_LINK_PROBING"

3.1.7 Deployments of new UPI functions

Linux-based WiSHFUL nodes support the deployment and execution of new UPI functions "on-the-
fly" from the global controller.

3.2 Contiki Embedded OS

Deploying global control in constrained networks such as WSNs is challenging but also promises
rewards in terms of energy usage (i.e. lifetime) and network performance (i.e. increased reliability
and QoS). The main problem is that every additional control flow requires already limited resources
(e.g. energy, bandwidth) and should thus be carefully evaluated. In research focusing on constrained
devices, this puts an extra burden on the experimenter. On the other hand, in real-life networks it
can have a dramatic impact on the lifetime and availability of the network.

By implementing an out-of-band and an in-band control channel, both initial research exploration
and advanced real-life evaluation can be supported.

19

WiSHFUL H2020 - GA No. 645274 D4.2

1. Out-of-band control is achieved by running a local MCE on the Linux Host PC of each
sensor node and one on the sensor itself. The local MCE in Linux provides a connector
module specific for Contiki that uses serial communication to relay UPI flows to the local
MCE on the sensor. The local control program is executed on the Linux host in this case.

2. In-band control is achieved by running a local MCE on each sensor that uses CoAP for
enabling interactions with a global MCE. It must however share the same physical channel
with the normal data flows. The local control program is executed on the Contiki sensor
node in this case. All sensors are decoupled except one border router that acts as a
gateway for the WSN.

Both cases however make use of the same implementation of the local MCE on the sensor node
provided by the GITAR framework. GITAR (Generic extensions for Internet-of-Things Architecture)
extends the Contiki OS with advanced control and management capabilities such as on-the-fly
software upgrades, protocol reconfiguration and monitoring. As depicted on right side of Figure 5,
GITAR offers generic cross-layer monitoring, configuration and management services. The left side of
the figure illustrates the typical IPv6 protocol stack, as used in WSNs.

Data Plane : Control &
i Management Plane
| wisHFuL UPI€—
Local
| MCE
O ' Il Services
O O .

GITA
Local MCE

Constrained Device

)

Figure 5 GITAR local MCE for use on Contiki sensor nodes.

The GITAR services can be used by protocol developers to make their protocols upgradeable,
reconfigurable and observable with only minor modifications required to the protocols itself. On the
other hand the same generic services can be used to implement the WiSHFUL UPIs. These can then
be used by both local control programs and Remote MCE agents, enabling both local and remote UPI
usage.

The GITAR services heavily rely on two databases tailored for sensor nodes with limited memory. The
local parameter DB stores references to configuration settings and monitoring values. It also allows
publishing of and subscribing to monitoring events. The local module DB allows to dynamically link
new or updated software modules.

20

WiSHFWL

3.2.1

H2020 - GA No. 645274

Controlling Contiki sensor nodes over Ethernet

D4.2

In the former case, a local MCE is executed on the Linux host PC and all configuration and monitoring
flows are supported as described in Section 3.1 and depicted in Figure 6. A connector module for
Contiki transforms UPI requests into configuration commands that are injected on the node over
serial. The serial MCE agent uses the UPI interfaces provides by GITAR to invoke the local UPI

functions.
o Global a
lobal lobal
Control UPI Control
\Program) usage \Program)
Global monitoring and
configuration services
Global MCE
Network-level A
Node-level
i (Local Control | Local Control | Linux host PC
/ Linux host PC S Prooram

\|o

a.
The

Local UPI usage

Local UPI usage

Local Local
Services Services
Contiki i - \ Contiki
TR /Remote UPI usage\ TR e
Module over Zero MQ Module
- LocalMCE - LocalMCE
Data Plane : Control & ‘ Control & : Data Plane
VW | Management Plane | Management Plane | v
Serial | ! { ([serl
MCE (4> MCE
Agent | | o = | | Agent
o COAP | h?ég' =} COAP
O UDP i || Services || Services g UDP
@iPve | [@RPL |} — {@Pve | (gRPL
© 6LowPan : Pa[;gm ‘ il 6LowPan
ContikiMAC i GITAR \ GITAR Y ilg ContikiMAC

Constrained Device

Constrained Device

Figure 6 Implementation overview of the WiSHFUL architecture applied on Contiki sensors.

Node Discovery

local MCEs in Linux use the

ZeroMQ Realtime

Exchange Protocol

(ZRE)

(http://rfc.zeromq.org/spec:36) as discussed in Section 3.1. The sensor nodes are automatically

discovered by adding a reference to an extra ‘wpan0’ network interface card in constants.py:

DISCOVERY HOST TO INF = ({
'himalaia' 'ethO0',
'matrix' 'ethl',
‘sensorX’ ‘wpan0’

21

WiSHFUL H2020 - GA No. 645274 D4.2

}
, where the key is a unique hostname for the sensor and the value ‘wpan0’.

b. Controller Model

The mandatory proactive approach is implemented. For this purpose the Contiki connector module
must emulate the blocking behaviour of the UPI functions on top of the asynchronous serial
interface. This is done by using a request response mechanism that must be fully completed before
returning the UPI function calls.

c. Time-scheduled execution of functions

The same solution is used as described in Section 3.1.

d. Remote Execution of UPI Functions

As discussed in Section 3.1. ZeroRPC on top of ZeroMQ is used to allow remote execution of UPI
functions.

e. Time Synchronization

The sensor nodes rely on the synchronization of their respective Linux host PCs (see Section 3.1).

f. Packet Forgery, Sniffing and Injection

Only packet injection is supported by activating/de-activating packet generator applications that can
operate on L2 (MAC) and above.

g. Deployments of new UPI functions

Deployment of UPI functions is foreseen in Year 2 and will use the management extensions provided
by GITAR [1].

3.2.2 Controlling Contiki sensor nodes over IEEE-802.15.4

In the decoupled scenario, without Ethernet backbone, the local MCE and control program are both
executed on the Contiki sensor device. As depicted in Figure 7, the global MCE still resides on a Linux
machine. Via the GITAR connector module, it can remotely configure, monitor and manage the
protocol stack of each sensor node. Remote access to the nodes is currently implemented using the
CoAP application layer protocol. The CoAP implementation consists of a control and management
proxy for each separate sensor network and a COAP server acting as a MCE agent for each sensor
node inside the WSN.

22

WiSHFUL H2020 - GA No. 645274 D4.2

e}

| wisHFULUPI |

Slobal monitoring

configuration

,,,,,,,,

Network-level

Node-level
Data Plane r‘.‘lana%%rr]rtwreorln&Plane r,‘lana%%r;tw?rlwt&Plane Data Plane
}WiSHFUL UPI '(— —)| WiSHFUL UPI‘

O O
O o =))
O O
O)

i Local MCE Local MCE !

Constrained Device Constrained Device

Figure 7 Implementation of the WiSHFUL architecture on Contiki sensor devices in the decoupled scenario.

The Control and Management proxy enables to implement global monitoring, configuration and
management services by maintaining a network-wide view of the current settings and state in the
network parameter DB, and by offering a central software repository. The proxy also transforms UPI
requests into a compact format to minimize the overhead in the WSN. For this purpose it can also
use the network parameter DB as a cache. Global MCE services such as synchronised execution and
node discovery can also be added on top of the proxy.

The CoAP MCE agent enables remote UPI usage over CoAP by implementing a CoAP server. Currently
only getting and setting of parameter is supported, enabling already the basic UPI interactions. For
this purpose, the CoAP MCE agent makes configuration parameters discoverable and implements a
generic interface that allows get/set a specific parameter or a group of parameters. To enable all
these interactions, protocols must store references to its parameters in the local parameter DB as
discussed in Section 3.2. More advanced monitoring and management interactions will be included in
Year 2.

23

WiSHFUL H2020 - GA No. 645274 D4.2

Local UPI usage by local control programs uses the same UPI interface as the CoAP MCE agent. The
location of the UPI function caller is thus transparent the local MCE.

a. Node Discovery

The CoAP proxy creates a single container resource that makes the entire network discoverable. The
network resource contains a sub resource for each node in the network. The node resource also
contains sub resources for the required remote services (configuration, monitoring, management,
synchronization, and discovery). Nodes are discovered by regularly sending GET request to the CoAP
discovery service, which is an observable resource.

b. Controller Model

The mandatory proactive approach is implemented for local UPI usage. For remote UPI usage, only a
reactive model can be use by the global MCE due to the high communication delays. The global
control program must thus register callback functions when invoking global UPI functions.

c. Time-scheduled execution of functions

Time-scheduled execution of functions will be implemented in Year 2 and depends on the
synchronisation services discussed in a subsequent section.

d. Remote Execution of UPI Functions

As discussed in the previous sections CoAP is used to allow remote execution of UPI functions.
Currently only get/set parameter is supported. The system can be easily extended to support more
UPI functions in Year 2.

e. Time Synchronization

Embedded sensor network nodes have in general no backbone network. This complicates the task of
time synchronization significantly as protocols like PTP cannot be executed. Moreover, it is not
possible to synchronize using external clocks (e.g. GPS) as those devices are resource constraint.

On the other hand, sensor nodes often synchronize own network clock with its neighbours over the
air.

Tight time synchronization between nodes is especially important in TSCH network, due to its slotted
nature. “TSCH adds timing information in all packets that are exchanged. This means that neighbour
nodes can resynchronize to one another whenever they exchange data” [2]. There are two methods
of synchronization in IEEE 802.15.4e: acknowledgement- and frame-based. In both cases the
difference between expected and actual time of arrival times is calculated. Detailed synchronization
policies are not defined by the standard and leave room for adaptation depending on the network
requirements. Also assignment of adequate “time source neighbour” is left open as part of network
scheduling.

f. Packet Forgery, Sniffing and Injection

Only packet injection is supported by activating/de-activating packet generator applications that can
operate on L2 (MAC) and above. For this purpose, the applications need to register a configuration
parameter that allows this.

24

WiSHFUL H2020 - GA No. 645274 D4.2

g. Deployments of new UPI functions
Deployment of UPI functions is foreseen in Year 2 and will use the management extensions provided
by GITAR [1].

25

WiSHFUL H2020 - GA No. 645274 D4.2

4 UPI_N implementation

This section introduces UPI_N, its functions and how the implementation is done for each software
platform. Note, the UPI_N covers the reconfiguration of the higher layers of the network protocol
stack of a particular wireless node whereas the UPI for radio control, UPI_R, which is described in
D3.2 allows the adaptation of the lower layers, i.e. lower MAC and physical layer. This section also
includes performance evaluation of each implementation.

Beside the possibility to use the low-level API there is the possibility to use a high-level object-orient
API which is provided by NetworkHelper (UPI_N) and RadioHelper (UPI_R) classes. In the following
we show how the implemented UPI_N functionality can be utilized using those two helper classes.

4.1 Linux Networking subsystem

An example showing a pure local control program in Linux which is using the UPI_N interface to
program flow marking is shown below:

if name == '_main_ ':
get reference to local wishful engine
local mgr = LocalManager ()
use helper for easier UPI use
netHelper = NetworkHelper (local mgr)
try:

log.info('Set Marking and TOS for flow between nodes')
flowDesc = FlowDesc(src='1.2.3.2"', dst='1.2.3.3"', prot='tcp', srcPort='21",
dstPort="423")
netHelper.setMarking (flowDesc, markId=5)
netHelper.setMarking (flowDesc, markId=55, table="mangle", chain="INPUT")
netHelper.setTosRule (flowDesc, tos=23)
except Exception as e:
log.fatal("... An error occurred : %s" % e)
} teardown engine

local mgr.stop()

The above example local controller can be executed by calling:

$ python upi n ex.py

4.1.1 Traffic control and monitoring

In this section we provide an overview of UPI_N functions for configuration of traffic control. We
implemented functions for managing Queueing Disciplines. Using provided UPIs an experimenter is
able to apply traffic shaping and prioritize flows. Moreover, we provided a UPIs functions for link
emulation, that an experimenter can use to emulate wireless links (in terms of throughput, delay,
etc.) in wired networks.

a. Support for management of Queueing Disciplines

The provided UPI_N for configuration of queueing disciplines follows object-oriented approach. It
gives an experimented a user-friendly way for managing the QDisc for each interface in SUT nodes.

26

WiSHFUL H2020 - GA No. 645274 D4.2

An example of configuration of QDisc is presented in Table 1. First, a root scheduler has to be created.
Second, queues are created and added to shaper. In our design available in D4.1, we described
that Shaper objects will be attached to scheduler. However, we decided to change naming of this
class from Shaper to Queue, because not every queue is shaping throughput, but every shaper is a
queue. Third, filters are created and attached to scheduler. Finally, the installEgressScheduler()
function is called to send QDisc configuration to SUT node, which will apply it on specified
interface. In

Table 2, the usage of UPI function for deletion of egress scheduler is presented.

We implemented Python package, called python-tc that is used in: i) controller to create QDisc
configuration in object-oriented way; ii) agent to install this configuration on specified interface.
Currently we support most of schedulers and queues available in Linux Traffic-Control subsystem,

namely: pfifo, bfifo, pfifo_fast, tbf, sfq, netem, prio, htb.

Multiple schedulers can be chained together, what gives an easy way for creation of even very
complex queueing disciplines. Traffic control can be performed on both the ingress and egress
interfaces. In the current version, counters are not supported; we will implement them during Year 2.

Filters are testing packed according to set so called 5-tuple, which is a set of: source address,
destination address, protocol, source port and destination port. A packet is tested against all filters in
order they were created until it matches some of them.

A Qdisc configuration is installed using Netlink calls to the kernel traffic-control subsystem, thus we
are not dependent on any third-party tool (e.g tc).

As mentioned earlier using provided UPIs an experimenter is able to control the packet queuing
polices in NET layer of protocol stack. It has to be noted, that we also provide a way of controlling the
packet handling in the lower MAC layer, where packets are grouped based on Type-of-Service value.
More information is provided in Section 0.

Table 1 Example of configuration and installing queuing disciplines in SUT node

#Define scheduler
prioSched = PrioScheduler (bandNum=4)

#Define queues that will be added to scheduler

pfifol = prioSched.addQueue (PfifoQueue (limit=50))

bfifo2 = prioSched.addQueue (BfifoQueue (1limit=20000))

pfifo3 = prioSched.addQueue (SfgQueue (perturb=11))

tbf4 = prioSched.addQueue (TbfQueue (rate=1000*1024, burst=1600,

1imit=10%1024))

#Define filters

filterl = Filter(name="BnControlTraffic");

filterl.setFiveTuple(src=None, dst='192.168.1.178"', prot='udp', srcPort=None,
dstPort="5001")

filterl.setTarget (pfifol)

prioSched.addFilter (filterl)

filterd = Filter(name="RestEffort");

filterd.setFiveTuple(src='10.0.0.2", dst=None, prot='tcp', srcPort='21",
dstPort=None)

filterd.setTarget (tbf4)

prioSched.addFilter (filter4)

#Install defined scheduler in node0
netHelper.installEgressScheduler (node0, 'wlanO', prioSched)

27

WiSHFUL H2020 - GA No. 645274 D4.2

Table 2 Deletion of egress scheduler in SUT node

#Delete scheduler in particular interface of node
netHelper.removeEgressScheduler (node0, 'wlanO')

b. Emulation

We provide an experimenter a way to emulate link parameters in wired network. We envision that
this functionality will be helpful for testing control programs by emulating the wireless links (of
course with some limitations) in wired.

An experimenter is able define parameters of wireless network (throughput, delay, jitter, packet loss,
etc.) and apply it to each SUT node using implemented UPI functions. Moreover, we introduce Profile
abstraction to further facilitate link emulation configuration. A profile is description of link
characteristics.

In Table 3, we present an example of configuration of link profile and usage of setProfile() to apply it to
specified interface in SUT node. In

Table 4, we show how to update already existing profile using updateProfile(). Finally, in
Table 5, it is shown how to remove profile using removeProfile() function.

We extended our python-tc package with Profile class and implemented mentioned UPI functions to
install, update and remove profile in specified interface of SUT node.

In order to emulate link characteristics in wired network, we use combination of Netem and Token
Bucket Filter (TBF) Queuing Disciplines available in Linux kernel. Netem is an enhancement of the
Linux traffic control facilities that allow to add delay, packet loss, duplication and more other
characteristics to packets outgoing from a selected network interface. Token Bucket First is
responsible for shaping the throughput of traffic passing interface.

Table 3 Example of configuration of link emulation

#Define emulation profile

profiled4G = Profile("profile3G")
profiledG.setPacketLimit (1000)

band 1Mbps = 1000 * 1000 / 8
profiled4G.setRate (band 1Mbps)
profiledG.setDelay(delay=100, jitter=10)

#Apply emulation profile to interface eth0 of nodeO
netHelper.setProfile(node0, 'eth0', profiledG)

Table 4 Example of update of emulation profile

#Update emulation profile

band 3Mbps = 3 * 1000 * 1000 / 8
profiled4G.setRate (band 3Mbps)
profiledG.setDelay(delay=70, jitter=5)

#Update emulation profile in node0
netHelper.updateProfile (nodel, 'eth0', profiledG)

28

WiSHFUL H2020 - GA No. 645274 D4.2

Table 5 Deletion of emulation profile

#Remove emulation profile from interface eth0 of node0
netHelper.removeProfile (nodeO, 'ethO")

4.1.2 Packet filtering, manipulation and monitoring

In this section we provide an overview of UPI_N function for packet filtering and manipulation. In
current version, we provide an object-oriented approach for manipulation of iptables, packet
marking and setting Type-of-Service value.

In Table 6, an example of usage of implemented UPI function to mark flows is presented. First, an
experimenter has to create FlowDesc object that describe flow in terms of 5-tuple. Second using
function setMarking(), he is able to install new rule in iptables of specified SUT node. It is possible to
specify the table and chain where new rule is to be installed. If they are not provided the default
values are used: table = ‘mangle’ and chain = ‘POSTROUTING’. An experimenter can specify also mark
value that will be assigned to packets. If not provided, our framework will take care of generation of
unique mark value. In order to delete rule from iptables, one needs to use delMarking() function.

Table 6 Example of configuration of flow marking

#Define 5-tuple that identifies flow

flowDesc = FlowDesc(src='192.168.1.1", dst="'192.168.1.12", prot='tcp',
srcPort=None, dstPort='21")

#Install iptables rule in node to mark packets of defined flow;
netHelper.setMarking(node0O,flowDesc, markId=5, table="mangle", chain="INPUT")

#If table and chain are not provided, default values are used: table="mangle",
chain="POSTROUTING"
netHelper.setMarking(node0O,flowDesc, markId=5)

#If mark value is not provided, unique value is generated automatically
netHelper.setMarking(nodeO,flowDesc)

#Delete rule used for marking flow
netHelper.delMarking(nodeO, flowDesc)

In Table 7, an example of usage of UPI function to configure setting TOS value is presented. Function
setTosRule() is used to create new rule in iptables. Arguments table and chain can be skipped, and
default (table=“mangle” and chain="OUTPUT") values will be used in such case. To remove inserted
rule, one should call selTosRule() function.

Table 7 Example of configuration of setting Type-of-Service value in packet header

#Install iptables rule in node to set TOS value in packet header of defined
flow
netHelper.setTosRule(nodeO, flowDesc, tos=25, table="mangle", chain="OUTPUT")

#Delete rule used for setting TOS value in packet header
netHelper.delTosRule (node0, flowDesc)

In order to get current iptable from SUT node, an experimenter should use getlpTable() - Table 8 -
function and pass table name as argument. It returns an object, which contain all rules of specified

29

WiSHFUL H2020 - GA No. 645274 D4.2

table. Helper function printipTable() can be used to display retrieved table description in properly
formatted way. Finally, we provide the UPI function clearipTables(), that clear all rule entries of
specified table and chain. In order to clear all chains in single call, one should call this function with
chain="ALL” argument. To clear all tables, table="ALL” and chain="ALL” arguments has to be passed.

Table 8 Example usage of iptables related UPI_N functions

#Get and print specified iptable from node
table = netHelper.getIpTable(nodel, table="mangle')
netHelper.printIpTable(table)

#Clear specified iptable and chain in node
netHelper.clearIpTables (nodeO, table="mangle", chain="ALL")

#Clear all iptables in node
netHelper.clearIpTables (nodeO, table="ALL", chain="ALL")

In our implementation we used python-iptables package, an object-oriented library that provides
wrapper via python bindings to iptables, in Linux operating systems. The advantage of this library is
that is does not call iptables binary and parses its output, but is uses directly the C-based libraries
(libiptc, libxtables).

4.1.3 Monitoring of link parameter

The UPI_G function for monitoring the available throughput and delay between two nodes is
presented in Table 9. Using this function an experimenter has an easy way to get following link
parameters: throughput seen on by sides (transmitter and receiver); average, minimal and maximal
round trip time, packet loss.

Current implementation of getlLinkParameters() is executed in two steps. First, it uses iperf
applications to measure throughput and, second, ping application to get round trip time. This
function is a part of UPI_G, because it executes different task on nodes in synchronized manner, i.e.
it has to start iperf in server mode on one node and in client mode on other one.

The function works as intended, unfortunately it has to saturate the link between two nodes to
measure the throughput. As a future work, we will re-implement this function with one link
estimation algorithm, that allows measuring link parameters without huge overhead, i.e. without
saturating it.

Table 9 The UPI_N function to get link performance parameters between two nodes

#Get parameters of link between two nodes
linkParams = netHelper.getLinkParameters (node0, nodel)

4.2 Contiki Embedded OS

Contiki is an operating systems specifically designed for constrained sensor devices in the loT era. It
supports a lightweight IPv6 compliant network stack as illustrated on the left side (a) in Figure 8. The
following protocols and standards are included: an IEEE-802.15.4-2006 compliant PHY and MAC,
6LowPan header compression, IPv6 (addressing, headers and ICMP), RPL routing, TCP/UDP transport
and CoAP. Although these standards provide many options to configure network protocols, it is hard
to change the configuration settings at run-time. The candidate configuration settings for the RPL
routing protocol in Contiki are illustrated, as an example, on the right side (b) of Figure 8.

30

WiSHFUL H2020 - GA No. 645274 D4.2

To configure the parameter of the entire network stack, it suffices to implement the
getParameterHigherLayer and setParameterHigherLayer functions. A pull based monitoring service
can be implemented using the getParameterHigherLayer function. When the local MCE is running on
the Linux host PC (i.e. in case of an Ethernet backbone), a push based monitoring service can also be
provided. In the next versions a broader range of functions will be supported.

In the remainder of this section, first a brief background on constrained devices is given. Then the
candidate configuration parameter for RPL and CoAP, as defined in their respective standards, are
explored. Then an example is given of how a particular parameter can be changed by a local control
program.

(A) Typical WSN network stack (B) Example configuration parameters

RPL parameters
RPL_STATS

. RPL OF

UDP . RPL_DEFAULT_INSTANCE

- RPL_DIO_INTERVAL_MIN

IPv6 RPL RPL_DIO_INTERVAL DOUBLINGS

COAP

. RPL_DIO_REDUNDANCY

N RPL_INIT_LINK_METRIC
6LowPan N
s RPL_DEFAULT_LIFETIME

* RPL_PROBING_INTERVAL

802.15.4 MAC N RPL_PROBING_EXPIRATION_TIM

. RPL_ MRHOF_ETX_ALPHA

802.15.4 PHY N RPL_DAO_LATENCY
RPL_DIS_INTERVAL

Figure 8 (A) IPv6 compliant network stack available in operating systems for wireless sensor networks such
as TinyOS and Contiki. (B) Candidate configuration parameters to fine-tune the RPL routing
protocol in the Contiki RPL implementation.

4.2.1 Background on network stacks for constrained devices
a. IPv6 compatible protocols and standards

This section briefly summarizes the main configuration settings in the standard IPv6 stack [3] for
constrained devices.

The network layer includes RPL [4], a proactive, distance-vector routing protocol specifically
designed for wireless sensor networks (WSNs). RPL uses control packets (DODAG Information
Object(DIO), Destination Advertisement Object(DAO) and DODAG Information Solicitation(DIS)) for
building a tree like topology, called a Destination-Oriented Directed Acyclic Graph (DODAG). Many
settings allow fine-tuning the various intervals that are used for maintaining the DODAG. Also the link
estimation algorithms can be changed and configured. Next to RPL, various parameters controlling
the IPv6 neighbour discovery [5] process can be configured. Also TCP/UDP implementations allow
configuring the number of retransmissions and various time-out settings.

The application layer protocols tailored for WSNs focus mainly on integrating the sensing and
actuating applications in the IoT. One of the most prominent examples is CoAP [6], a REST based
protocol that runs over UDP and allows defining resources (e.g. sensors and/or actuators) which can
be retrieved or changed using GET/POST/PUT methods using a response-request approach. CoAP can
be easily integrated in web-based applications and has a limited overhead. The number of
retransmissions and various time-outs and intervals used by the CoAP engine can be configured.

31

WiSHFUL

H2020 - GA No. 645274 D4.2

Alternatives [7] for CoAP are MQTT and AMQP, both run over TCP and implement a publisher-
subscriber approach managed by a message broker that allows nodes to publish and/or subscribe to
topics. Compared to COAP they have a higher overhead and are less supported by operating systems
for WSNs.

b. Configuration variables defined for RPL and CoAP (IETF standards)

The parameters currently supported are mainly focusing on CoAP [8] and RPL [9]. For this purpose
the candidate configuration settings were explored by carefully examining the standards. In principal,
each of these parameters can be reconfigured via the WiSHFUL UPIs if support for this is provided in
the protocol implementation. This can be done by making use of the GITAR extensions discussed in

Section 4.2.3.
RPL

BASE_RANK

ROOT_RANK

RPL_DEFAULT_INSTANCE

PATH_CONTROL_SIZE

DIO_INTERVAL_MIN

DIO_INTERVAL_DOUBLINGS

DIO_REDUNDANCY_CONSTANT

MIN_HOP_RANK_INCREASE

DAO_DELAY
DIO Timer

DAG Version Increment Timer

The Rank for a virtual root that might be used to coordinate
multiple roots. BASE_RANK has a value of 0.

The Rank for a DODAG root. ROOT _RANK has a value of
MinHopRanklIncrease (as advertised by the DODAG root), such
that DAGRank(ROOT_RANK) is 1.

The RPLInstancelD that is used by this protocol by a node without
any overriding policy. RPL_DEFAULT INSTANCE has a value of 0.

The value used to configure PCS in the DODAG Configuration
option, which dictates the number of significant bits in the Path
Control field of the Transit Information option. The default value
is 0. This configures the simplest case limiting the fan-out to 1
and limiting a node to send a DAO message to only one parent.

The value used to configure Imin for the DIO Trickle timer. The
default value is 3. This configuration results in Imin of 8 ms.

The value used to configure Imax for the DIO Trickle timer. The
default value is 20. This configuration results in a maximum
interval of 2.33 hours.

The value used to configure k for the DIO Trickle timer. The
default value is 10. This configuration is a conservative value for
Trickle suppression mechanism.

The value of MinHopRankIncrease. The default value is 256. This
configuration results in an 8-bit wide integer part of Rank.

The value for the DelayDAO Timer. The default value is 1 second.

One instance per DODAG of which a node is a member. Expiry
triggers DIO message transmission. A Trickle timer with variable
interval in [0,DIOIntervalMin * 2ADIOIntervalDoublings].

Up to one instance per DODAG of which the node is acting as
DODAG root. Expiry triggers increment of
DODAGVersionNumber, causing a new series of updated DIO
message to be sent. Interval should be chosen appropriate to
propagation time of DODAG and as appropriate to application
requirements (e.g., response time versus overhead).

32

WiSHFUL H2020 - GA No. 645274 D4.2

DelayDAO Timer Up to one timer per DAO parent (the subset of DODAG parents
chosen to receive destination advertisements) per DODAG.
Expiry triggers sending of DAO message to the DAOparent.

RemoveTimer Up to one timer per DAO entry per neighbor (i.e., those
neighbors that have given DAO messages to this node as a
DODAG parent). Expiry may trigger No-Path advertisements or
immediately deallocate the DAO entry if there are no DAO

parents.

COAP

ACK_TIMEOUT Timeout for CoAP ACK (2 seconds)

ACK_RANDOM_FACTOR Randomness factor to overcome synchronization effects (1.5)

MAX_RETRANSMIT Maximum number of CoAP request retransmissions (4)

NSTART Maximum simultaneous connections between CoAP clients and
servers (1)

DEFAULT_LEISURE Leisure time before responding to a multicast requests (5
seconds)

PROBING_RATE Rate in which probes can be send for reacting to unacked CoAP

requests (1 byte/second)

4.2.2 Local UPL_N code example
The following code snippets illustrate how the UPI_N:setParameterHigherLayer function can be used
by a local control program.

The first code snippet illustrates how UPI_N functions can be used by a local control program written
in Python running on a Linux host:

#Python code example for local control program on Linux using generic UPI

local mgr = LocalManager ()
iface = {'WPANO', 'CONTIKI"}
param list = {{'DIO INTERVAL MIN',1000}};
UPIargs = {'iface' : iface, 'param list' : param list}
UPIfunc = UPI N.setParameterHigherLayer
try:
#this is a blocking UPI call
error = local mgr.runAt (UPIfunc, UPIargs)
log.debug('Ret value of blocking call is %s' % str(error))
except Exception as e:
log.fatal("... An error occurred : %s" % e)

#Python code example for local control program on Linux using UPI helper classes

local mgr = LocalManager ()

UPI N = HelperUPI N()

iface = {'WPANO', 'CONTIKI"}

param list = {{'DIO INTERVAL MIN',1000}}

error = UPI N.setParameterHigherLayer(iface,param 1list) [0]

The second code snippet illustrates how the UPI_N functions can be used by a local control program
written in C running on Contiki:

33

WiSHFUL H2020 - GA No. 645274 D4.2

#C code example for local control program on sensor using generic UPI
/* Change a the DIO interval in RPL */

LocalManager* local mgr = get local manager();

NIC t iface = {WPANO,CONTIKI};

param list t params = {{DIO_ INTERVAL MIN, IR

args_t args = {{IFACE,&iface},{PARAM LIST, ¶ms}};

func_t func id = UPI N SET PARAMETER HIGHER LAYER;

error_ t result = *((error t*) local mgr->runAt (&func id, &args,0,0));

#C code example for local control program on sensor using UPI helper function
/* Change a the DIO interval in RPL */

NIC t iface = {WPANO,CONTIKI};

param list t ¶ms= {{DIO INTERVAL MIN, IR

error t result = *(UPI N setParameterHigherLayer(&iface, ¶ms));

4.2.3 GITAR extensions required for enabling UPI functions

a. Cross layer configuration and monitoring service

The cross-layer configuration service is responsible for implementing the UPI functions as well as
facilitating protocols to register configuration parameters that can be tuned and publishing
monitoring events.

In the following code snippet, the definition of the local UPI_N interface is given for use in ContikiOS.
As stated, monitoring values can be obtained via the getParameterHigherLayer function.

//C header definition of supported UPI helper functions

typedef event cb t void (event cb*) (void* args, int num _args); // event callback
function

param t* UPI N getParameterHigherLayer (NIC t* iface,param key list t* params);
error t* UPI N setParameterHigherLayer (NIC t* iface, param list t* params);
error_t UPI_N subscribeEventHigherLayer (NIC t* iface, event t events, int
num_events) ;

//C example header definition of supported generic UPI functions
param t* UPI N getParameterHigherLayer(void* args, int num args);
void* UPI_N setParameterHigherLayer(void* args, int num args);

void* UPI N subscribeEventHigherLayer (void* args, int num args);

In the following code snippet, the definition of the local UPI_N interface is given for use in Python on
the Linux host in case the local sensor MCE is running in Linux.

#Python interface definition of supported UPI helper functions
class UPI_N HELPER() :

def setParameterHigherLayer (iface,param key value):

def setParameterHigherLayer (iface,param key):

def subscribeEventHigherLayer (iface,event keys, event cbs):

#Python interface definition of generic UPI functions
class UPI_N():

def setParameterHigherLayer (args):

def getParameterHigherLayer (args):

def subscribeEventHigherLayer (args):

To enable protocols to expose their configuration parameters and monitoring capabilities, the local
MCE service provides a generic internal interface to add (a set of) parameters to the local parameter
DB. The following code snippet shows the C definition of the interface.

34

WiSHFUL H2020 - GA No. 645274 D4.2

//C example header definition enabling access to the parameter DB
error t paramDB_add parameter(param t* param);

error t paramDB_add parameter set(param set t* param);

error t paramDB_add event (event t* event);

error t paramDB add event set(event set t* events);

b. Protocol extensions

Only minor extensions are required in the protocols to make use of the local MCE service. They need
to define a param_t structure for every parameter they want to add. Also a group of parameters can
be added in a bunch by grouping them in a param_set t structure. The following code snippet
illustrates this for the RPL parameters DIO_INTERVAL MIN and DIO_INTERVAL DOUBLINGS. They are
both separately added with paramDB_add parameter and added as a bunch with
paramDB_add_parameter_set.

typedef struct param {

uintlé t uid;

uint8 t type;

uint8 t len;

void* (* get) (struct param* p);

error t (* set) (void* value, struct param* p);
} param t;

typedef struct param set {
uintlé t uid;
uint8 t num param;
param_t params[];

} param set t;

void* getRPLParameter (struct param* p) {

if (p->uid == RPL_DIO INTERVAL MIN)
return rpl->dio_interval min;
else if (p->uid == RPL DIO INTERVAL DOUBLINGS)

return rpl->dio_interval doublings;
return NULL;
}

error t setRPLParameter (void* value, struct param* p) {
if (p->uid == RPL_DIO INTERVAL MIN) {
rpl->dio_interval min = *((uintl6_t*) value);
return SUCCESS;
}
else if (p->uid == RPLiDIOilNTERVALiDOUBLINGS) {
rpl->dio _interval doublings = *((uint8 t*) wvalue);
return SUCCESS;
}
return FAIL;
}

param t rpl dio interval min = {RPL DIO INTERVAL MIN,UINT16 T,

sizeof (uintl6é t),getRPLParameter,setRPLParameter};

param_t rpl dio interval doublings = {RPL DIO INTERVAL DOUBLINGS,UINT8 T,
sizeof (uint8 t),getRPLParameter,setRPLParameter};

param t params[2] = {rpl dio interval min,rpl dio interval doublings};
param_set t rpl param set = {RPL_PARAMETERS,”,params};

//A) either add parameters separately:

paramDB_add parameter (&rpl dio interval min);
paramDB_add parameter (&rpl dio interval doublings);
//B) either add parameters grouped in a set:
paramDB_add parameter set (&rpl param set);

35

WiSHFUL H2020 - GA No. 645274 D4.2

c. Evaluation

The local MCE extensions require a minimal amount of ROM and RAM memory for implementing the
UPIl interfaces in the CoAP MCE agent and the local parameter database.

Table 10 Memory usage of the local MCE in Contiki.

Component ROM RAM
Fixed Fixed

CoAP MCE agent 770 167

parameter DB 494 4

The overhead for exposing parameters inside protocols depends on the number of parameters and
how the getter and setter methods are implemented. In the table below, the minimal requirements
are given for RPL and CoAP. To achieve this result, a single getter and setter function was defined in
both RPL and CoAP that just returns / changes the value without doing any local processing (type
checking, input validation, restarting of timers...).

Table 11 Memory required for the protocol specific extensions. The results are shown for RPL and CoAP. Also
included is the minimal memory required to define a parameter or a set of parameters.

Component ROM (bytes) RAM
RPL extensions 128 24
CoAP extensions 88 16
param_t definition 8 2
param_set_t definition 6 2

36

WiSHFUL

H2020 - GA No. 645274

5 UPI_G implementation

D4.2

This section introduces UPI_G, its available network functions and how the implementation is done
for each software platform. The UPI_G is required for coordinated (time synchronized) remote
execution of configuration and monitoring related functions on a group of nodes. The experimenter
can execute on a set of nodes any UPI_N/R function. This is possible as WiSHFUL provides time
synchronization among wireless nodes either using their backbone/GPS (out-of-band) or in-band. The
way the wireless nodes are time synchronized is platform and architecture-dependent. In case of
Linux-based system with wired NIC we use the PTP protocol on the wired Ethernet backbone.

This section also includes performance evaluation of each implementation.

5.1 Linux Networking subsystem

Below an example is shown of a global control program, which is using the UPI_G interface to set the
radio channel on a set of IEEE 802.11 Linux-based nodes by performing remote calls to the

corresponding UPI_R/N interfaces.

if name == '_main__':
name of the experiment group,; only nodes of this group can
exp _group name = "MyWishFulTest"
¢t get re:eieA”e to global UPI
global mgr = obalManager(exp group_name)
nodes = []
node0 = Node ("192.168.103.125") #
nodel = Node ("192.168.103.134") #

node0)
nodel)

nodes.append
nodes.append

node discovery: wait until all specified nodes are av
nodes = global _mgr.waitForNodes (nodes)
} start thread for callback, have to be done after some peer

global mgr.startResultCollector ()

iface = 'monO'
channel = 36
try:
UPIfunc = UPI RN.setRfChannel
UPIargs = {'iface' : iface, 'channel' : channel}

rvalue = global mgr.runAt (nodes, UPIfunc, UPIargs)
except Exception as e:
log.fatal ("

o

. An error occurred : %s" % e)

global mgr.stop()

Beside the possibility of synchronous remote execution of any UPI_R/N function the UPI_G interface
also allows the asynchronous time-scheduled execution, which is illustrated,
example. Here we are using the UPI_G function to find out whether two nodes are in communication
range or not. Specifically, we set one node in reception mode (sniffing) at t=now+2s whereas the

other node is generating link probing packets at t=now+3s, i.e. 1 s later.

in the following

def testTwoNodesCommunicationRange (self, nodel, node2, mon dev=

nodes = []

'mon2',

MINPDR=0.9) :

37

WiSHFUL H2020 - GA No. 645274 D4.2

nodes.append (nodel)
nodes.append (node?2)
rxPkts = {}

def csResultCollector (json message, funcId):
time_val = json _message['time']
peer node = json message['peer']
messagedata = json message['msg']
self.log.info ('CommRange callback %d: receives data msg at %s from %s : %s'
% (funcId, str(time val), peer node, messagedata))
if messagedata is None:
rxPkts['res'] = 0
else:
rxPkts['res'] = int (messagedata)

try:
now = get now full second()
UPIfunc = UPI_RN.getParameterLowerlLayer

UPIargs = {'cmd' : UPI RN.IEEE80211 L2 SNIFF LINK PROBING, 'iface'
mon_dev, 'ipdst' : "1.1.1.1", 'ipsrc' : "2.2.2.2", 'sniff timeout' : 5}
exec time = now + timedelta (seconds=2)

self.log.debug (' (1) sniff traffic at %s' % str(nodel))

callback = partial (csResultCollector, funcId=l)

self. upi g.runAt ((nodel), UPIfunc, UPIargs, unix time as tuple(exec time),
callback)

UPIfunc = UPI_RN.getParameterLowerlLayer

UPIargs = {'cmd' : UPI RN.IEEE80211 L2 GEN LINK PROBING, 'iface' : mon dev,
'num_packets' : 255, 'pinter' : 0.01, 'ipdst' : "1.1.1.1", 'ipsrc' : "2.2.2.2"}
exec time = now + timedelta (seconds=3)

self.log.debug('(2) gen traffic at %s' % str(node2))
self. upi g.runAt ((node2), UPIfunc, UPIargs, unix time as tuple(exec time))

while len (rxPkts)==0:
time.sleep (1)

except Exception as e:
self.log.fatal ("An error occurred (e.g. scheduling events in the past): %s"
% e)

calc PDR

pdr rxPkts['res'] / float (255)
minPdrFloat = float (MINPDR)

if pdr >= minPdrFloat:
return True

else:
return False

5.1.1 Library Functions

Complex behaviour consists of compound UPI calls. In the previous example in order to find out
whether two nodes are in communication range we used the two UPI functions, namely,
UPI_RN.IEEE80211_L2_SNIFF_LINK_PROBING and UPI_RN.IEEE80211_L2_GEN_LINK_PROBING in
coordinated way. Because such compound functionality is frequently used we provide libraries
functions stored in a code repository for that.

In the following we present two compound functions provided by the software library by WiSHFUL
library for wireless nodes using the 802.11 technology. Specifically, the NetworkFunctionHelper is
used.

(1) Estimation of the nodes in reception range, i.e. the hearing map:

38

WiSHFUL H2020 - GA No. 645274 D4.2

wvhich nodes are in carrier sensing range and which not

networkFuncHelper.getNodesInCommuﬁicationRange(nodes, wifi iface, rfCh)

tes

isInComms

Here nodes is the set of nodes under test, wifi_iface the WiFi interface and rfCh the radio channel to
be used.

(2) Estimation of the nodes in carrier sensing range.

Protocols like IEEE 802.11 and 802.15.4 use listen-before-talk medium access schemes that is called
physical carrier sensing. Unfortunately, such protocols are suffering from performance issues to the
hidden-terminal problem. There is a large research area dedicated to improving the performance by
solving this problem. Via the proposed UPI functionality, experimenters, can easily obtain
information about which wireless nodes are inside and which are outside their carrier sensing range
enabling them to solve the hidden-terminal problem.

which nodes are 1n carrier sensing range and which not

isInCss = networkFuncHelper.getNodesInCarrierSensingRange (nodes, wifi iface, rfCh)

Here nodes is the set of nodes under test, wifi_iface the WiFi interface and rfCh the radio channel to
be used.

5.2 Contiki Embedded OS

As stated global control is possible in two manners:

1) Executing the local MCE on the Linux host of each sensor node.
2) Executing the local MCE on the sensor node itself inside Contiki.

The former case uses the ZeroRPC over ZeroMQ method as described in the previous section. The
latter case enables a custom form of remote procedure calls over CoAP. Currently the following two
UPI_N functions can be called remotely:

def setParameterHigherLayer (interface, param key value):
def getParameterHigherLayer (interface, param key):

In principle, all configuration settings of the Contiki network stack can be made (remotely)
reconfigurable. A code snippet of a global control program that uses UPI_G to change the RPL
parameters DIO_INTERVAL MIN and DIO_INTERVAL _DOUBLINGS is given below.

1.

if name == ' main

name of the exp. group; only nodes of this group can be controlled
exp _group name = "MyWishFulTest"

get reference to UPI G
global mgr = GlobalManager (exp group name)

nodes = []

node0 = Node("192.168.103.125") # sensorl
nodel = Node("192.168.103.134") # sensor2
node2 = Node("192.168.103.232") # sensor3

nodes.append (node0)
nodes.append (nodel)
nodes.append (node?2)

node discovery: wait until all specified nodes are available
nodes = global mgr.waitForNodes (nodes)

try:
iface = {'WPANO', "CONTIKI"}

39

WiSHFUL H2020 - GA No. 645274 D4.2

param list = { {'DIO INTERVAL MIN',1000},
{'DIO INTERVAL SLINGS',10}};

UPIargs = {'iface' : iface, 'param list' : param list}
UPIfunc = UPI N.setParameterHigherLayer

error = global mgr.runAt(nodes, UPIfunc, UPIargs)

for node in nodes:

log.debug('Ret value of blocking call is %s' % error (node))
except Exception as e:
log.fatal ("An error occurred : %s'" % e)

tear down
global mgr.stop()

In year two more functions will be added especially those that enable monitoring certain events in
the network. In the remainder of this Section a more detailed discussion about the internals of the
UPIl_G implementation over CoAP approach is given.

a. Choosing an appropriate protocol for enabling remote access.

Selecting the appropriate application layer protocol for exchanging configuration messages across
the network is very important because this will have a high impact on the resource efficiency of the
overall solution. Several candidates were compared in [10] and evaluated based on the device
memory requirements and message size overhead.

The most dominant application layer protocol for constrained loT devices today is CoAP. It has built-
in support for resource (e.g. parameter) discovery and block wise (e.g. batch configuration) transfers.
From a functional viewpoint, all required features are present. Since CoAP is tailored for constrained
devices, the memory and CPU requirements are limited. Moreover, the message overhead is also
minimal because the CoAP header is very small and UDP is used as transport protocol. With
portability and compatibility in mind, CoAP is also a logical choice because it is well supported by
nearly all embedded OSs (Contiki, TinyOS, RiOT) and easily integrate-able in web-based systems since
it is REST based.

An alternative for CoAP is MQTT [11], a publish-subscribe system with a central MQTT broker that
runs over TCP. MQTT clients can publish or subscribe to topics (e.g. parameters). For each parameter,
two topics are required: (1) one published by the sensor node for supporting the get operation; and
(2) one published by the configuration server for supporting the set operation. Because of this, MQTT
will have a much higher device memory overhead. Also the message overhead will be bigger since it
runs over TCP. Moreover, it is less supported because only a Contiki implementation is available.
Other alternatives are AMQP and XMPP. Both also use TCP as transport protocol and have much
higher device memory requirement and message overhead since they are not tailored for
constrained devices.

To conclude, CoAP is the most appropriate application layer protocol to support dynamic
reconfiguration, as also indicated in [10].

b. Communication flow between different entities

Figure 9 illustrates the communication flow between the different entities in the architecture; the
active components are depicted using white boxes and bold text. CoAP is used by the GITAR
connector module running on the Global MCE to configure node j. For this purposes, the control and
management proxy translates the HTTP requests/responses into CoAP requests/responses and vice-
versa.

40

WiSHFUL H2020 - GA No. 645274 D4.2

<<server =<=gerver== @
GLOBAL MCE GITAR configuration server
Global <<59050f>@ <<Sensor== @ <<sensor>> @
Control bOI’del' I'Outer node | nodeJ
<
preram Network Parameter Q
Database Local ParamDB Local ParamDB Local ParamDB
k___-./
Global MCE ||| | Global SITARMCE |) ocal GiTaR Local GITAR Local GITAR
SOTVICOS MCE services MCE services MCE services
GITAR Control and Mgmt.
Connector Proxy () | cosomce agent | | coasmcz agent |
AN
L) 5TTD (_co= Ce)| | L3
) || Ceee uoe IECN B

|

SLowPan

02.15.4 MA|

o ps

3215

M —
l SLow®;

d b 302.15.4
-0 Fuice Unuw byice Drivers ;
' 802154

02.15.4 P+

. J

Figure 9. The communication flow between the different entities in the architecture. The white
boxes with bold text depict the active components in this example.

The intermediate sensor nodes (e.g. border router and node i) do not process the COAP message but
forward it to the destination using RPL. Packets coming from the sensor network are injected directly
in the Linux IPv6 stack by the border router. The CoAP MCE agent processes the requests and uses
the Local GITAR MCE services to reconfigure the protocols.

c. Efficient usages of CoAP for remote reconfiguration

The CoAP memory requirements constitute of the fixed overhead for the CoAP engine (8.5 kB
ROM/1.5kB RAM [6] and the variable amount of ROM occupied by the CoAP resources. The
additional memory overhead for exposing configuration settings hence depends on the number of
CoAP resources required to expose the parameters. Three granularity levels are considered: (1) a
CoAP resource per configuration parameter; (2) a CoAP resource per protocol; and (3) one CoAP
resource for the entire network stack.

CoAP is a text-based protocol and resources are identified using unique string names encoded in the
resource URI. Both need to be stored in the ROM memory of each sensor device. Depending on the
granularity level, the string name of each parameter (1), protocol (2) or stack (3) is stored in memory
causing extra ROM overhead. Moreover, when using granularity level (2) or (3), also parameters still
need to be identified. This can be done using either unique names, encoded in the URI query
variable, or unique IDs, encoded in the payload.

The following combinations of resource granularity and identification method are possible:

* A resource per parameter enables direct addressing of parameters without requiring any
transformation. It is the most straightforward for integration in browsers using add-ons such
as Copper [12] The ROM overhead, on the other hand, will be high because for each parameter
the string name must be stored and a resource must be defined.

41

WiSHFUL H2020 - GA No. 645274 D4.2

* A resource per protocol groups parameters on a protocol level. They are addressed indirectly
via the protocol resource implying that an if-else structure is required in the GET/POST/PUT
handlers for identifying the correct protocol parameter. The total ROM overhead is the
memory required for storing the protocol name, the fixed CoAP resource overhead and, per
parameter, the identification (unique name or ID) and if-else overhead.

* A resource for the entire stack has the advantage that there is looser coupling with the
protocols, compared to the previous options. A tight coupling implies that a protocol update
also require updating the CoAP resources(s) that enables remote reconfiguration of the
protocol. The third approach, however, requires an explicit implementation of a parameter
database that can be used by the generic resource to manipulate configuration settings and by
the protocols to (de-)register parameters. The ROM overhead now includes the fixed CoAP
resource overhead, parameter database implementation and, per parameter, the unique
name or ID.

In order to make well-founded decisions, the impact on the ROM memory usage for different
granularities was analysed using stub resources in Contiki for CoAP. This allowed devising a
mathematical model that could be applied on in the default Contiki IPv6 network stack, giving an
estimate of the overhead for adding reconfiguration. Also the parameter identification method in
level (2) and (3) was investigated. Figure 10 gives an overview of the ROM overhead estimated for
the different resource granularities and identification methods.

12000 -
11000 -
10000 -
9000 -
8000 -
7000 -
6000 -
5000 -
4000 -
3000 -
2000 -
1000 -

unique names unique IDs

B One resource per parameter ™ One resource per protocol ™ One generic resource

Figure 10 Estimated ROM overhead for different resource granularities and identification methods. The
results were obtained by considering the candidate configuration parameters defined in the
default Contiki IPv6 network stack.

The results clearly show that a single generic resource requires 80% less memory (1.2 kB) compared
to a resource per parameter (11.6 kB) and 60% less compared to a resource per protocol (4.5kB).
Using unique IDs instead of names also has a major impact. Given the size in ROM of the default
Contiki IPv6 stack (+-30kB), using a single generic CoAP resource and unique IDs is the preferred
choice. However, if memory is not a major concern, also the second option that defines a resource
per protocol and uses unique parameter IDs can be used. For this purpose, the parameter DB allows
to add and get both single parameters and a set of parameters, as defined in Section 4.2.3.

42

WiSHFUL H2020 - GA No. 645274 D4.2

d. Preliminary evaluation

The UPI_G interface of the standard Linux global MCE was used to generate the parameter change
requests. The sensor code was developed in Contiki 3.0 and executed on a Zolertia Z1 (16MHz CPU,
92KB ROM, 10KB RAM and an IEEE-802.15.4 compliant transceiver). A single resource combined with
a parameter repository is used for configuring the network stack. All communication between the
different entities is COAP based. On Linux libCoAP [13] is used while in Contiki the ERBIUM CoAP[6]
engine is utilized.

The average latency for changing parameters depends on the number of PUT/POST requests needed
to perform a batch configuration on all nodes. It is measured on the CoAP management proxy by
calculating the delay between the first request and last response. The average latency is an
important performance indicator because it defines the duration in which the network is in an
inconsistent state. Figure 11 illustrates the average latency in seconds for one to twenty POST/PUT
requests (e.g. number of nodes) in steps of four. Also the standard deviation over all experiments is
indicated. The results clearly show that the average latency scales with the number of POST/PUT
requests (e.g. nodes).

3.5 1
Average
3 - Latency
[sec]
2.5 1
2 .
1.5 1
1 -
0.5 -
=
1 4 8 12 16 20

Number of POST/PUT requests

Figure 11 Average latency for increasing number of POST/PUT requests (e.g. nodes). Also the standard
deviation is denoted on the chart.

From a functional viewpoint the basic interactions (e.g. get/set parameter) were tested using the
Copper Firefox add-on, which allows sending CoAP requests and responses. Also a python module
was developed for integrating the in-band global control of sensor networks into the WiSHFUL
architecture. Since only a subset of the WiSHFUL UPIs is currently available, the full integration of in-
band control over CoAP will be completed in Year 2.

Figure 12 shows results of the node discovery process. For each of the discovered nodes the
available protocols and their configuration parameters are also listed.

43

WiSHFUL

@ - o localhost/node1/wishful_control/proto1 - Mozilla Firefox
/ @ localhost/node1/wi... x \ &

€ coap://localhost:5683/node1/wishful_control/proto1

EYoiscover ©@ring EJcer EJrost Edpur EJoELeTE B Observe

localhost:5683

¥4 localhost:5683 Header Value
@ .well-known Type
@ core Code
*@ nodet Message D
¥@ wishful_control

@© coap
® csmMA @ Incoming | £ Rendered | &) Outgoing

Payload

@© contikiMAC |
@RPL
@ proto1
@ proto2
¥@ node2
»@® wishful_control
>@® node3
>@ nodes
¥@® nodes
¥@ wishful_control
@© coap
®csma
@© contikiMAC
@RPL

Payload | Text *

H2020 - GA No. 645274

Behavior v

Option Value Info

D4.2

wEe 93 A OEH0 =
CoAP 18

& Debug Control Reset
Token

Request Options
Accept

Content-Format

application/json =
Block1(Req.) Block2 (Res.) Auto
x x| O
Size1 Size2
alsize x ze X
Observe
x
ETag
e hex x
IF-Match

anETa x
IF-None-Match
Uri-Host Uri-Port
x| [n/s x
Proxy-Uri
x
Use Proxy-Scheme option

Resnnnce Ontinne

Figure 12 Screenshot of Copper Firefox extensions illustrating the node discovery over CoAP (e.g. in-band
control channel). The same interactions can be done from a python module, integrated in the

WIiSHFUL architecture.

Figure 13 illustrates the result of the get parameter operation that retrieves all the parameters of the

ContikiMAC protocol on node 1.

® - o localhost/node1/wishful_control/ContikiMAC - Mozilla Firefox
[localhost/nodet/wi... x \ &b

€ coap://localhost:5683/node1/wishful_control/ContikiMAC
EYoiscover @ring EJcer EJPosT

localhost:5683

putT EJoeteTE E)observe Payload | Text 3

Behavior v

2.05 Content (Blockwise) (Download Finished)

V4> localhost:5683 Header Value
v@ .well-known Type Confirmable
® core Code 2.05 Content
v@® node1 MessageID 21859
N Token empt
+® wishful_control Py
® coap Payload (194)
® csmMA & Incoming | 3 Rendered Outgoing

@© contikiMAC
@RPL
@ proto1
@© proto2
¥@® node2
¥ @ wishful_control
@© coap
® csmA
@© contikiMAC
@RPL
@ proto1
@ proto2
¥© node3
¥@® wishful_control
@© coap
® csmA
@© ContikiMAC

Option Value Info
Content-Format application/json 50
Block2 0(256 B/block) 1byte

parameters:
[(length 4)
{
name: channel_check_rate
value: 8

name: cca_count_max
value: 2

name: cca_count_max_tx
value: 6

name: listen_time_after_packet_detected
value: 409

wEe 93 A OE O =

CoAP 18
& Debug Control Reset
Token
x
Request Options
Accept
Content-Format
application/json =
Block1(Req.) Block2 (Res.) Auto
x k x| O
Size1 Size2
totalsize x| | tot x
Observe
ege x
ETag
use he x
IF-Match
ETag x
IF-None-Match
Uri-Host Uri-Port
x x

Proxy-Uri
X
(] Use Proxy-Scheme option

Resnonse Ontinns

Figure 13 Screenshot of Copper Firefox extensions illustrating the getParameter operation over CoAP (e.g. in-

band control channel).

Figure 14 demonstrates how parameters can be set using the setParameter operation. For this
purpose a CoAP put request is send. In this example the channel _check rate and some test
parameters are changed in ContikiMAC on node 2.

44

WiSHFUL H2020 - GA No. 645274 D4.2

® — o localhost/node2/wishful_control - Mozilla Firefox

[localhost/node2/wi... x \ &b

€ coap://localhost:5683/node2/wishful_control?channel_check_rate&test3&tests vl w8 O 3 A OWE 8 =
CYoiscover @ring JceT drosT EJrut EJDELETE R Observe Payload |Text 3| Behavior v CoAP 18
localhost:5683 & Debug Control Reset
Token
vl lhost:5683
ocalhos! Header Value option Value Info G
v@ .well-known Type Accept
® core Code .
+® node1 Message ID
1 Token - Content-Format
¥@ wishful_control
@® coap Payload application/json v
\:/CSMA & Incoming €3 Rendered Outgoing Block1 (Req.) Block2 (Res.) Auto
@ contikiMAC {"parameters*: [{"name":"channel_check_rate","type":"3","value":"16"},{"name": "test5", "type":"3","value":"10"}, * *
@RPL {"name": "test3®, "type": 4" "value":"-4"}]} Beq T
@® proto1 x
@ proto2 Observe
¥@© node2
¥@® wishful_control ETag
@ coap
© csma IF-Match
@ contikiMAC
@RPL
IF-None-Match
@® proto1 . .
Uri-Host Uri-Port
® proto2
*® node3 *
+@® wishful_control Proxy-Url
@ coap
@ csMA Use Proxy-Scheme option
® contikiMAC - Re<nnnce Ontinns

Figure 14 Screenshot of Copper Firefox extensions illustrating the setParameter operation over CoAP (e.g. in-
band control channel).

6 UPI_M implementation

This section introduces UPI_M, its functions and how the implementation is done for each software
platform.

All management related functions are grouped in the UPI_M interface because they are required for
managing protocol software modules at any layer, thus spanning both UPI_R and UPI_N. Moreover,
software management requires functionality on both the local and global level.

6.1 Linux Networking Subsystem

As far as no management related functions were implemented for Linux-based systems. All required
software modules for the network protocol stack must be available after deployment phase.

6.2 Contiki Embedded OS

Currently the GITAR extensions enable to dynamically link new/updated modules to an already
deployed Contiki system. This is a condition sine qua non when on-the-fly-code updates are required.
In Year 2 management related functions for deploying and installing software modules in sensor
networks will be heavily investigated.

7 UPI_HC implementation

Besides pure local and pure global control programs there is the option to write hierarchical control
programs allowing the simultaneous use of local and global control programs. Such a hierarchical
architecture requires an inter control program interface, the UPI_HC, which is described in the
following for each software platform.

A hierarchical control system is a form of control system in which a set of controllers is arranged in a
hierarchical tree. The controllers are communicating over network connections hence resulting in a
hierarchical networked control system. The defining feature of such system is that control and
feedback signals as well as collected and possibly aggregated radio & network data are exchanged
among the components in the form of messages through a network.

45

WiSHFUL H2020 - GA No. 645274 D4.2

There is a need for hierarchical controllers because some control functions need to be partitioned
into a locally executed part due to real-time radio constraints and limitations of communication
network protocol (e.g. limited bandwidth, delay), and those that need a global system view and
global coordination to form a meaningful control decision (e.g. coordination between heterogeneous
networks).

7.1 Linux Networking subsystem

We provide an implementation for hierarchical control for Linux-based systems. The current
implementation has the following known limitations:

* Depth of hierarchical tree is 2, i.e. global control program on top and the local control
programs running on the nodes as leafs,

* The global control program can instantiate "on-the-fly" any arbitrary local control program
which will be executed at node-level and control its behavior: start & stop,

* The local control programs are able to communicate control messages to the global control
program using UPI_HC interface whereas currently there is no support for communication of
control messages from the local to the global control programs.

Below an example is shown of a hierarchical control program. Here the global control program is
using the HierarchicalManager to set-up the local control programs on the nodes. In the presented
example the local control programs are periodically estimating the airtime utilization of the wireless
channel and switches to a new random channel if the value exceeds some given threshold.
Moreover, the local control program uses the UPI_HC (see upiHCImpl) to inform the global control
program about the newly selected channel. Finally, after five seconds the global control program
stops the execution of the local control programs.

if name == ' main ':

O the exg t g

g

exp_group_name = ”MleshFﬁlTest”

get refe

hc mgr HierarchicalMgnager(expigroupiname)

rence to UPI H(

nodes = []
node0 = Node ("192.168.103.125") # 1
nodel = Node("192.168.103.134") +#

nodes.append (node0)
nodes.append (nodel)

111 specified nodes ar

noae a

very: aic 11

nodes = hcimgr.&aitForNodes(nodes)

Start thread 1I0r calloq

</

hc mgr.startResultCollector ()

try:

1 to be executed lo

C m control progr

def customLocalController(ch util threshold):

import agent

import time

import logging

from random import randint

reference
global upiRNImpl #
global upiHCImpl #

log = logging.getLogger ()

while not upiHCImpl

.stopIsSet():
estimate current channel load

UPIargs = {'cmd' : UPI RN.IEEE80211 CHANNEL AIRTIME UTILIZATION, 'iface'

'mon0"'}
ch util = upiRNImpl.getParameterLowerLayer (UPIargs)

46

WiSHFUL H2020 - GA No. 645274 D4.2

if ch_util > ch_util threshold:

channel utilization becomes too high; choose new channel
new_ch = randint (0, 9)
UPIargs = {'cmd' : UPI_RN.IEEE80211 CHANNEL, 'iface' : 'monO', 'channel'

new_ch}
upiRNImpl.setParameterLowerLayer (UPIargs)
inform global control program about new channel

upiHCImpl.transmitCtrlMsgUpstream (new ch)
time.sleep (1)

return True

using UPI HC

numCBs = {}
numCBs['res'] = 0

Custom callback function used to receive result values from scheduled calls.

nun

def resultCollector(json message, funcId):
time val = json message['time']
peer node = json message|'peer']
messagedata = json message['msg']
numCBs['res'] = numCBs['res'] + 1

Custom callback function used to receive control messages from local control programs.
def ctrlMsgCollector (json message) :
time val = json message['time']
peer node = json message|'peer']
msg_data = json message['msg']
log.info('Global ctrl program receives ctrl msg at %s from $%s
(str(time_val), peer node, msg data))

%s' %

register callback function for collecting results

hc_mgr.setCtrlCollector (ctrlMsgCollector)

get current time

= get now_ full second()
deploy a custom control program on each node
CtrlFuncImpl = customLocalController
CtrlFuncargs = (0.9,

now = get now full second()

exec immediately
exec_time = now + timedelta (seconds=2)

nodes = hc_mgr.getNodes ()

try:
this is a non-blocking call

callback = partial (resultCollector, funcId=99)

isOntheflyReconfig = True

hc _mgr.runAt (nodes, CtrlFuncImpl, CtrlFuncargs, unix time as tuple(exec_time),

callback, 1, isOntheflyReconfig)
exec_time = now + timedelta (seconds=5)

callback = partial (resultCollector, funcId=99)
hc _mgr.runAt (nodes, UPI RN.stopFunc, (None,), unix time as tuple(exec time),

callback, 1, False)

except Exception as e:
log.fatal ("An error occurred : %$s" % e)

busy waiting
while numCBs['res'] < 2:
time.sleep (1)
except:
log.warning ('HC failed!')

47

WiSHFUL H2020 - GA No. 645274 D4.2

7.2 Contiki Embedded OS

Currently no UPI_HC implementation is available for Contiki. In Year 2 the solution with an in-band
control channel over CoAP will be extended to allow also interactions between a global control
program and local control programs on the nodes.

8 Examples of control programs using UPIs

The section gives implementation details of the control programs used in the showcases.

The following example shows how a global control program can use the UPI_N to connect an 802.11
wireless node running in station mode to an 802.11 AP:

UPIfunc = UPI RN.setParameterLowerLayer

~7 .

UPIargs = {'cmd' : UPI_RN.IEEE80211 CONNECT_TO_AP, 'iface' : 'wifi2',6 'ssid' : 'effman-nuc2'}

rvalue = global mgr.runAt (STANodes, UPIfunc, UPIargs, None)

Here we have to define the name of the wireless interface and the SSID of the AP the station should
connect to.

The next example shows how to get the HW address (MAC) of a particular network interface using
the RadioHelper class:

HW address

radioHelper.getHwAddrRemote (laptop, 'wifi2')

Finally, this example shows that with the help of UPI_G and UPI_N we are able to set-up packet flows
on the application layer, i.e. TCP/IP:

log.info('Installing applications in node0 and nodel')
serverApp = ServerApplication ()

serverApp.setStartTime (Time.Now () + Time.Seconds (2))
serverApp.setPort (5012)

serverApp.setProtocol ("TCP")
netHelper.installApplication(nodel, serverApp)

clientApp = ClientApplication()
clientApp.setStartTime (Time.Now () + Time.Seconds (4)
clientApp.setDestination (nodel.getIpAddress())
clientApp.setPort (5012)
clientApp.setProtocol ("TCP")
clientApp.setTransmissionTime (6)
netHelper.installApplication(node0, clientApp)

48

WiSHFUL H2020 - GA No. 645274 D4.2

9 Improvements and extensions

It includes a list of improvements and extensions to be implemented in Year 2 and should be aligned
with the use cases to be implemented in Year 2.

Finally, also hierarchical control programs can be designed where UPI_HC, allows also the
transmission of control messages from the global to the local control programs. Note: so far the
UPI_HC is limited to pro-active, push based, message exchange between the local control programs
and the global control program. A reactive, event based, message exchange system is required to
enable all inter control program interactions via UPI_HC.

So far only a proactive controller model is supported. However, a reactive approach would be
particularly helpful when designing low-latency control programs or when large amounts of data, e.g.
streaming data, need to be processed. Therefore, we plan to extend the WiSHFUL controller in Year 2
to support reactive control.

Currently, we support two operation systems, namely, i) Linux-based and ii) Contiki-based systems.
For Year 2 we plan to provide support for the Microsoft Windows platform which is often used as a
platform for Software-defined Radio (SDR) as well as TinyOS as another option for sensor networks.

49

WiSHFUL H2020 - GA No. 645274 D4.2

10 Conclusions

In this deliverable, we describe the first release of the WiSHFUL software architecture for network
control, which comprises of two main components: i) the WiSHFUL control framework, for providing
a global view of the solution under test to the experimenter and defining the network control logics,
and ii) the unified UPI_N interface for monitoring and configuring the higher layers of the network
protocol stack (higher MAC and above) of the nodes.

With the help of the UPI_N interface for network control defined in this document and the UPI_R for
radio control which is presented in D3.2 it is possible to program the datapath, i.e. setting per-flow
specific wireless transmission settings like transmission power and MAC prioritization. Therefore, the
packets belonging to a particular flow are identified using the 5-tuple (IP src/dst, src/dst port, ToS)
and tagged using the UPI_N interface whereas the transmission settings to be chosen depend on the
tag and can be programmed using the UPI_R interface.

The UPI_N implementation is based on the development of network connector modules, able to
map platform-independent function calls into platform-specific tools and functionalities (which may
vary as a function of the platform capabilities). The implementation details for the supported
platforms, based on Linux and Contiki.

50

WiSHFUL H2020 - GA No. 645274 D4.2

11

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

(10]

(11]

[12]

(13]

References

Ruckebusch, P., De Poorter, E., Fortuna, C. and Moerman, I., 2016. GITAR: Generic extension for Internet-
of Things ARchitectures enabling dynamic updates of network and application modules. Ad Hoc Networks,
36, pp.127-151.

T. Watteyne, Ed. Using IEEE 802.15.4e Time-Slotted Channel Hopping (TSCH) in the Internet of Things
(loT): Problem Statement https://tools.ietf.org/html/rfc7554

Sheng, Z., Yang, S., Yu, Y., Vasilakos, A., Mccann, J. and Leung, K., 2013. A survey on the ietf protocol suite
for the internet of things: Standards, challenges, and opportunities. Wireless Communications, IEEE, 20(6),
pp.91-98.

Tsiftes, N., Eriksson, J. and Dunkels, A., 2010, April. Low-power wireless IPv6 routing with ContikiRPL. In
Proceedings of the 9th ACM/IEEE International Conference on Information Processing in Sensor Networks
(pp. 406-407). ACM.

Narten, T., Nordmark, E., Simpson, W., and H. Soliman, "Neighbor Discovery for IP version 6 (IPv6)", RFC
4861, DOI 10.17487/RFC4861, September 2007, <http://www.rfc-editor.org/info/rfc4861>.

Kovatsch, M., Duquennoy, S. and Dunkels, A., 2011, October. A low-power CoAP for Contiki. In Mobile
Adhoc and Sensor Systems (MASS), 2011 IEEE 8th International Conference on (pp. 855-860). IEEE.

Luzuriaga, J.E., Perez, M., Boronat, P., Cano, J.C.,, Calafate, C. and Manzoni, P., 2015, January. A
comparative evaluation of AMQP and MQTT protocols over unstable and mobile networks. In Consumer
Communications and Networking Conference (CCNC), 2015 12th Annual IEEE (pp. 931-936). IEEE.

Shelby, Z., Hartke, K., and C. Bormann, "The Constrained Application Protocol (CoAP)", RFC 7252, DOI
10.17487/RFC7252, June 2014, <http://www.rfc-editor.org/info/rfc7252>.

Winter, T., Ed., Thubert, P., Ed., Brandt, A., Hui, J., Kelsey, R., Levis, P., Pister, K., Struik, R., Vasseur, JP.,
and R. Alexander, "RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks", RFC 6550, DOI
10.17487/RFC6550, March 2012, <http://www.rfc-editor.org/info/rfc6550>.

Karagiannis, V., Chatzimisios, P., Vazquez-Gallego, F. and Alonso-Zarate, J., 2015. A Survey on Application
Layer Protocols for the Internet of Things. Transaction on loT and Cloud Computing, 3(1), pp.11-17.

Hunkeler, U., Truong, H.L. and Stanford-Clark, A., 2008, January. MQTT-S—A publish/subscribe protocol
for Wireless Sensor Networks. In Communication systems software and middleware and workshops, 2008.
comsware 2008. 3rd international conference on (pp. 791-798). |IEEE.

Kovatsch, M., 2011, June. Demo abstract: human-CoAP interaction with copper. In Distributed Computing
in Sensor Systems and Workshops (DCOSS), 2011 International Conference on (pp. 1-2). IEEE.

Bergmann, O., 2012. libcoap: C-Implementation of CoAP. URL: http://libcoap. sourceforge. net, Date of
access 21.12.2015

51

