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the higher-layers of the network protocol stack of the WiSHFUL programmable network nodes. The
specification is based on the generalization of two architectures, namely Linux-based devices and
embedded devices based on Contiki. By exposing a high-level programming interface, easy
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time synchronized) execution of configuration and monitoring related functions an additional UPI is
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also covers all management related functions provided by UPI_M required for managing protocol
software modules at any layer of the network protocol stack.
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Executive Summary

This public deliverable will report on the software architecture for network control and its unified
programming interfaces. The document will serve as a guideline for the implementation of the basic
network control software platform that will be offered for the first open calls at the end of year 1.

First, we present the different network architectures used in the testbeds of the project partners.
Second, we generalize these architectures in a common network architecture, in which the concrete
hardware is abstracted. By exposing a high-level programming interface, i.e. UPI_N, easy
programming of upper MAC, network, routing and higher layers is enabled. For coordinated
execution of configuration and monitoring related functions an additional UPI is defined, the UPI_G,
allowing network-wide operations on a group of nodes. Finally, this document also covers all
management related functions required for managing protocol software modules at any layer of the
network protocol stack. A multitude of examples programmed by using the proposed interfaces,
namely UPI_N, UPI_G and UPI_M are also presented.
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1 Introduction

WISHFUL aims to expand the software defined networking concepts to the edge of the Internet,
mainly targeting all wireless devices between, and including, the broadband access gateways and the
end devices. This is very challenging because the targeted devices are very heterogeneous in terms of
capabilities, networking scenarios and supported applications.

This deliverable describes the software architectures provided by the WiSHFUL consortium for
supporting network control. The different network architectures used in the testbeds of the project
partners (e.g. CREW at TUB and w.iLab.t at IMINDS) are integrated into WiSHFUL and offered to
experimenters of novel services and protocols by means of a common programming model and
unified interface for network control.

This deliverable focuses on the configuration, control and monitoring of the higher layers of the
network protocol stack on a particular or a set of wireless node(s). By exposing a high-level
programming interface, easy programming of upper MAC, network, routing and higher layers is
enabled. For coordinated (i.e. time synchronized) execution of configuration and monitoring related
functions an additional UPI is defined, the UPI_G, allowing network-wide operations on a group of
nodes. Finally, this document also covers all management related functions required for managing
protocol software modules at any layer of the network protocol stack.

This deliverable describes: i) the mapping of requirements for network control into the WiSHFUL
programmable network architecture, ii) the design of a platform-independnet network control
interface and the mapping of this interface to the different platforms; iii) global control interface
allowing network-wide operations on a group of nodes, iv) unified management interface and v)
some utilization examples.

For the first year activities of the project we will focus on unified control of wireless local area
networks (IEEE 802.11) and wireless sensor networks (IEEE 802.15.4/6LowPan) which are based on
the GNU-Linux and Contiki-OS network architectures. The developed solutions will provide a basic
abstraction layer for controlling the higher layer network protocols. In year two, we aim to provide a
more advanced abstraction of network control and we will extend to other wireless technologies
(Bluetooth, LoRA, SDR) based on the input and demands from the open call experiments.
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2 Programmable Network Architectures available in WiSHFUL

In our vision, programmable network architectures is soft- and hardware platforms that expose a
high-level programming interface, which allows easy programming and control of the higher layers of
the network protocol stack (i.e. data-plane functionality). In order to simplify programming of such
platforms an appropriate abstraction is required.

The two different network architectures that are available in WiSHFUL and that will be offered to
experimenters are in yearl are 1) architectures based on GNU-Linux and 2) embedded device based
on Contiki/TinyOS.

2.1 GNU-Linux

Most wireless network architectures today are based on open source GNU-Linux. Examples are IEEE-
802.11 wireless devices, which use OpenWrt [1], a Linux distribution optimized for embedded
devices like Access Points (AP) and Routers to route network traffic. Linux-based systems are very
flexible with respect to configuration and run-time control of the networking stack. The generic low-
level Netlink API allows the transfer of miscellaneous networking information between the kernel
space and the user space processes. The majority of networking utilities, such as iproute2 and the
utilities used for configuring a mac80211-based wireless driver, use Netlink to communicate with the
Linux kernel from user space.

2.2 Contiki/TinyOS

In contrast to Linux-based systems, operating systems for sensor networks like TinyOS [2] and Contiki
[3] are optimized for very resource-limited, energy-efficient devices. Hence they rarely expose any
APl for providing networking information and allowing changing configuration parameters,
monitoring protocol statistics or observing QoS. Moreover, most fine-tuning of protocol software
needs to be done at compile and therefore cannot be changed at runtime. This is problematic
because for each configuration value that needs to change, the firmware of the devices must be
updated.

3 Mapping UPI_N Requirements into WiSHFUL Programmable Network
Platforms

The advanced programming interface (APl), exposed by the WiSHFUL programmable network
platforms, allow to easily program the mechanisms on higher-layers (upper MAC, network, routing,
transport layers) without knowing the internal details of the platform. Examples of such
programmable platforms are Linux-based systems and embedded device based on Contiki/TinyOS.
WIiSHFUL aims to provide an unified APl that allows the programming of all those platforms in a
similar fashion.

The functional requirements for unified network control using UPI_N as identified in D2.1 can be
classified into two groups:

¢ configuration-related functions,
* monitoring-related functions.

The first group allows the configuration of networking, packet filtering and manipulation, routing,
scheduling, traffic control and the wireless mode (so-called upper MAC). Examples are the setup of
network configuration of interfaces/bridges and the configuration of firewall and Quality of Service
(QoS). Moreover, these functions allow us to alter the behaviour of the different layers of the
network protocol stack. The latter group is related to monitoring of parameters/variables of the
upper layers of the network protocol stack. Examples are the tracking of IP connections as well as the
monitoring of the network queue size and routing link metrics.
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In case of GNU-Linux-based systems the low-level Netlink APl allows us to implement the
configuration related functions by providing a proper mapping to the corresponding functions in the
UPI_N. This possibility is not given by embedded OSs used in sensor networks like TinyOS and Contiki
and must therefore be implemented. Moreover, in general a specific protocol (e.g. routing protocol)
is in such embedded OSs is selected and configured at compile time, not at runtime. In order to allow
dynamic reconfiguration we have to provide modifications in embedded OS like Contiki/TinyOS.

In case of Linux-based systems most of the monitoring related functions can be implemented using
again the Linux Netlink API which allows us to monitor INET sockets, routing tables, etc. Hence, we
have to provide a proper mapping to the Linux Netlink API. Again the situation is more complicated
with embedded devices where such a generic APl is missing. Here we have to implement the
required monitoring capabilities in the network stack.

Besides the functional requirements, there are also optional requirements regarding the consistency
of node configuration. There are situations where the execution of a batch of configuration functions
needs to be performed in a transactional context to prevent configuration inconsistencies at the
node level (e.g. an 802.11 AP configured with parameters that do not work well together). That
means any change on a parameter is not executed on a node immediately but waits until the end of
the transaction scope.

Finally, there are also requirements regarding the performance in terms of delays between local
controller calls (using UPI_N) and platform latencies on reconfiguration/information. In order to keep
latencies low the UPI_N should be directly mapped on the underlying networking subsystem, i.e. in
case of Linux a direct mapping on Netlink API is desirable instead of using tools like iptables for
packet filtering.

3.1 Linux Networking Subsystem

Wireless networks based on GNU-Linux already provide a generic low-level APl (Netlink API [4] [5])
for configuration and monitoring protocol statistics. Netlink allows the transfer of miscellaneous
networking information between the kernel space and user space processes. Most networking
utilities such as iproute2 use Netlink to communicate with the Linux kernel from user space. Netlink
provides a standard socket-based interface for user space processes and a kernel space API for
internal use by kernel modules.

Unfortunately, Netlink is a low-level API and therefore hard to use. Therefore, we aim to provide
high-level functions in UPI_N which are mapped on the related low-level Netlink functions. To enable
WISHFUL UPI a local controller must be able to observe the behaviour of the full network protocol
stack and to perform direct configurations of each protocol layer. To avoid inconsistency the
execution of a batch of configuration functions is performed in a transactional context by a
transaction manager. Most of the monitoring related functions can be directly mapped to the Linux
Netlink API. However, some statistics (e.g. STAs associated to an AP in 802.11) are not directly
available and hence must be implemented.

Not always a complete, full-fledged GNU-Linux is used. More often Linux distributions like OpenWrt
optimized for embedded devices are widely used. The main components of OpenWRT are the Linux
kernel, util-linux, uClibc and BusyBox. All components have been optimized for size, to be small
enough for fitting into the limited storage and memory available in home routers. The downside is
that not all the functionalities, provided by a full Linux distribution, are available on those devices.

Figure 1 illustrates how the general WISHFUL architecture is applied to Linux-based devices. The
local configuration and monitoring adaptation module allows the direct execution of configuration
and monitoring related functions. The global control (see chapter 6) is supported by basic services
like the node discovery, messaging service, time synchronization and transaction management.
Moreover, both the local as well as the global controller(s) have access to software repository
providing a way for deployment of new software on the wireless nodes (e.g. new Routing protocol)
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and managing its life-cycle. These functions will be discussed in depth in Section 7 and are mentioned
here for the sake of completeness. The messaging service based on a high-performance
asynchronous messaging library like ZeroMQ [6] which allows a very efficient and fast exchange of
control information between the global controller and the nodes under control.

Global Controller

' 1
UPIHC UPI HC

I
UPIG
. . Coordinated execution -
Global configuration,
P d Meta-data sw
monitoring an = S repository repository
management Remote Stub ime istribute B
& (zeroMQ) synchronization transaction ploceldcorely
v Remote UPI over ZeroMQ v
<t Remote Remote -
UPIN skeleton TCP ubpP skeleton UPIN
E (zZeromQ) (zeromQ) o
= [}
E 3
< - . - - o
= Services (time Services (time s
o > synchronization, _ synchronization, 4_ c
O » transaction, IPv4/v6 hostapd transaction, 8
f_g scheduling) scheduling) =
S macg0211 mac80211 S
UPIR Local configuration Local configuration -
< & monitoring 802.11 radio 802.11 radio & monitoring UPIR
(Netlink API) (Netlink API) )

Figure 1. WISHFUL architecture applied to Linux devices with example of IEEE 802.11 stack.

3.2 Sensor Networks

Opposed to Linux systems, operating systems for sensor networks (TinyOS, Contiki) rarely expose an
API for changing configuration parameters, monitoring protocol statistics, observing QoS or obtaining
flow information. Moreover, most fine-tuning of protocol software needs to be done at compile time
by changing the value of static defines. This is problematic because for each configuration value that
needs to change, the firmware of the devices must be updated.

To enable WIiSHFUL UPIs, the existing software on such devices needs to be extended with control
plane functionality that allows a local control program to observe protocol behaviour and directly
change the protocol configuration. The added control plane must also allow remote access by a
global control program. This also implies that the control plane incorporates coordination functions,
allowing a global control program to change configuration on multiple devices within certain time
boundaries (e.g. change channel on all nodes). Beside the control plane extension, the existing
protocol software also needs to be adapted so that it exposes configuration parameters as variables
that can be set/get.

Since the available memory on such devices is very limited, each extension must be as small as
possible. For instance, using string names to identify protocol parameters introduces too much
overhead for practical use. Hence, parameters must be identified using unique IDs. Also the protocol
overhead for allowing remote access by a global control program must be optimized for such devices.
This is necessary for enabling operation on low bit-rate interfaces and, in case of battery powered
devices, energy constrained devices.

Figure 2 illustrates how the general WiSHFUL architecture can be applied on sensor devices. The local
monitoring and configuration engine implements a parameter repository that allows discovering and
changing configuration parameters. The parameter repository can also be accessed remotely from
the global control program using the global monitoring and configuration engine. For this purpose

10
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the global engine provides a global parameter repository, which has a network-wide view on all
available parameters.

Global Control Program €

UPI_HC UPI_HC

Global

Monitoring &
Configuration
Engine

Remote UPl-usage over COAP

v A 4
\ APP | \ APP
\ COAP | \ COAP
\ UPD | \ UPD
Local IPvé ‘ IPvé Local
Control RPL \ RPL Control
Program 6LowPan \ bLowPan Program
CSMA
Local Monitor CONTIKIRDC TAISC Local Monitor
Config Engine 802.15.4Radio Config Engine

Figure 2. WiSHFUL architecture applied on sensor devices with example Contiki protocol stack.

On the figure COAP [7] is as an example application layer protocol for exchanging the control
information between the local and global configuration and monitoring engine. It is however
perfectly possible to use another application protocol for this purpose.

Providing the capability of monitoring protocol statistics and QoS or flow information is less
straightforward. This is because it is up to the protocol developer to update changes in the protocol
behaviour by making statistics, QoS or flow info available through parameters or events. For this the
protocols need to be adapted in such a way that monitoring information can be shared with control
programs. For this purpose, the parameter repository incorporates functions that enable registering
the change of monitoring values or propagating events.

COAP can be used for exchanging the monitored information by using its “observe” functionality.
COAP clients, used by the global monitoring and configuration engine, can register for parameter
updates to retrieve monitoring information. The COAP servers, implemented on the local monitoring
and configuration engines, will notify the global engine each time a parameter (i.e. monitoring
information) is updated. Another possibility is to use “periodic COAP resources” to receive periodic
updates of monitoring information. This is especially useful to allow the aggregation of monitoring
information on the local engine, thereby reducing the monitoring data that needs to be transferred.

The global monitoring and configuration engine also provides additional services for coordination
and synchronization. These services are necessary for enabling synchronized execution of actions on
a group of nodes via UPI_G. For example, when a protocol needs to be updated or activated, this
needs to be done on all nodes synchronously. When synchronization is not feasible, other
coordination mechanisms need to be provided that ensure correct execution on each node in the
network. Coordination is also required for performing a batch of configuration settings as a single
transaction.

11



WiSHFUL H2020 - GA No. 258301 D41

3.2.1 TinyOS

TinyOS supports IPv6 in the BLIP network stack (Berkeley IP). BLIP[8] uses 6LowPan[9][10] [11] and
TinyRPL[12][11]. There is also support for ICMP, DHCP, TCP, UDP and COAP. The BLIP interfaces
include the possibility to configure certain parts of the network stack. Also an interface is provided
that allows monitoring the IP statistics.

Beside the IPv6 stack there is also an implementation of the ZigBee protocol stack and there are
many non-standard networking protocols implemented such as the Collection Tree Protocol and
DYMO.

3.2.2 Contiki
Contiki provides three flavours of network protocol stacks:

¢ |Pv6[13] with ICMP, 6LowPan[9][10] and RPL routing[8][12]
¢ |Pv4[14] with ICMP and AODV routing
* Rime[15] modular routing stack

TCP and UDP transport layers are also supported together with application level protocols such as
DHCP, HTTP and COAP.

In Contiki, configuration of all network stacks is done via hard-coded defines. Only limited support for
monitoring the network stack is provided via the Rime statistics module.

3.2.3 GITAR

GITAR (Generic extensions for Internet-of-Things Architectures [16]) provides control and
management plane extensions for constrained devices such as sensor nodes. The extensions are
generic, meaning that they can be applied on existing Internet-of-Things operating systems such as
Contiki and TinyOS. Currently the main extension is a dynamic linker and loader that allows adding or
updating software modules from the MAC layer up to the application layer. For this purpose a kernel
layer is added in between the hardware abstraction layer (including basic OS primitives) and the
other software modules (network protocols and applications).

The kernel layer will be extended with a monitoring and configuration engine for observing protocol
behaviour and changing protocol settings in a generic fashion. This extension will also incorporate
dynamic memory management that allows changing queue sizes which is crucial for traffic control
mechanisms such as shaping and policing.

4 Abstracting Network Architectures

Although different networking architectures (Linux vs. embedded OS like TinyOS) generally support
different features, there is an interesting common set of functionalities (implemented in different
ways) that could be abstracted for the definition of UPI_N. Therefore, in the following we discuss the
proper abstraction level for the common set of functionalities at the different layers considered by
UPI_N:

* network configuration & monitoring;

* routing configuration & monitoring;

¢ traffic control (QoS) & monitoring;

* packet filtering and manipulation (firewall configuration) & monitoring;
¢ scheduling flows over multiple outbound interfaces;

* connection tracking;

* wireless mode control (upper MAC).

We can abstract network configuration and monitoring using a common definition of network
interfaces, which can be applied on any underlying technology (e.g. WiFi or Bluetooth). Each

12
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interface has a name (e.g. wlan0 or pan0), an address (IP, BT_ADDR), an MTU and can be configured
as a gateway (WiFi AP and Bluetooth Master). Similarly, each interface allows monitoring the
TX_qgueue length and the link statistics (number of RX/TX packets, packet errors, dropped packets,
and collisions).

Routing configuration and monitoring can be abstracted using a common notion of routes where
each route has a destination, a gateway (e.g. next hop), an outgoing interface and a route lifetime
and priority. Routing tables can also be abstracted by offering generic functions for adding, deleting
and listing routes. For monitoring purposes, we consider an abstract notion of routing metrics like
hop count, latency, jitter, path bandwidth, path MTU and path reliability.

The abstraction of traffic control capabilities requires that we can configure queuing disciplines for
bandwidth management (traffic shaping) and flow priorization (QoS). For this purpose, we need
generic functions that allow adding queues and configuring the properties of schedulers (e.g. egress
vs. ingress), shapers (e.g. rate and ceil) and filters (e.g. priority bands and matching rules). With
respect to monitoring it is important that we define a proper abstraction for identifying QoS
requirements (latency, jitter, throughput, reliability) of packet flows. The common notion of type of
service (ToS) already available in IP offers a good starting point.

For the configuration of the firewall the following abstraction level seems to be appropriate. Here we
have the concepts of zones, forwarding’s, redirects and rules. For each of them we can provide a
proper function in the UPI_N. A firewall itself can be expressed by the common notion of a table
which consists of chains. Each chain contains a number of filtering rules that are sequentially
processed until one matches. Each rule defines a policy or action (accept, drop, queue or return)
that is executed when the rule matches.

Connection tracking is extremely important in order to build networks that can adapt dynamically to
changing traffic requirements. A connection can generally be expressed as a flow with a source and a
destination address (e.g. IP) and port (e.g UDP/TCP). Each flow stores the timestamp when it is
created, allowing to monitor the addition of flows. The requirements of a flow are expressed using
ToS information.

In contrast for the configuration of the upper MAC which covers wireless management functions it is
harder to find a proper abstraction which is due to the wide variety of the different wireless
technologies. Here we can only provide generic functions that allow setting properties.

5 Unified network control interface

In the following we define the UPI_N interface and adaptation modules towards each WiSHFUL
programmable architecture (mapping the general function into platform-specific functions and
compiling the general language into platform-specific programs).

Our objective is to provide a high-level object-oriented API to the higher parts of the network
protocol stack configuration and monitoring.

5.1 UPL_N Interface Definition

An overview of the UPI_N interface definition is given in Figure 3. UPI_N enables access to seven
abstract components that can be used to control the network stacks: 1) network management, 2)
routing management, 3) traffic control, 4) connection tracking and flow scheduling over multiple
interfaces, 5) firewalling 6) configuration of wireless mode and, an optional interface, 7) transaction
management. Each of those components is described in the following sections. The support of
transaction management will be considered during the second year activities of the project.
Moreover, it cannot be supported on some resource-limited devices (e.g. sensor networks).
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Beside the abstract components also components are added that enable control and monitoring in a
generic fashion via parameter and event exchanges. These components can be used when no
suitable abstraction can be identified or when it is not feasible to implement the high-level OO API.

UPI_N

+getConnectionTracking() : ConnectionTracking
+getTrafficControl() : TrafficControl

+getFirewall() : Firewall

+getNetworkManager() : NetworkManager
+getRoutingManager() : RoutingManager
+getWirelessModeControl() : WirelessModeControl
+getGenericConfiguration() : GenericConfiguration
+getGenericMonitor() : GenericMonitoring
+getTransactionManager() : TransactionManager
+getMultipleinterfaceScheduler() : MultipleInterfaceScheduler

All configuration & monitoring
functionality not covered by
the other components

ConnectionTracking TrafficControl Firewall GenericConfiguration

+getSupportedParameters()
+getParameter()
+getParameterList()
+setParameter()

+getFlows() : Interface +getinterface() : Interface +getTable() : <nicht spezifiziert>

NetworkManager

RoutingManager

WirelessModeControl

TransactionManager

+setParameterList()

+getinterfaces() +addRoute() +getinterface() : Interface +startTx() GenericMonitoring
+createlnterface() +delRoute() +commit()
+getGateways() +getRoutes() +abort()

+getSupportedMonitoringEvents()
+subscribeMonitoringEvent()
+subscribeMonitoringEventList()
+getMonitoringValue()
+getMonitoringValuelist()
+monitoringEventUpdated()
+monitoringEventListUpdated()

optional
MultiplelnterfaceScheduler P

+scheduleFlowOnlface()

Figure 3. Overview of the UPI_N interface definition.

5.1.1
The network configuration and monitoring functions aim to provide:

Network configuration and monitoring

* on-the-fly configuration of interfaces, bridges and IPv4/v6 address assignment;
¢ dynamic routing management;
* monitoring of address assignment and changes as well as gateways.

The following example illustrates the run-time configuration of a bridge between two interfaces,
wlan0 and eth0, and the address configuration:

net mgr = UPI N::getNetworkManager ()

iface = net mgr.createInterface (name="my bridge”)
iface.addPort (net mgr.getInterfaces().get (“wlan0”))
iface.addPort (net mgr.getInterfaces () .get (“eth0”))

iface.addIP(*10.0.0.1/24")
The list of configured gateways can be obtained by:
1listOfGWs = net mgr.getGateways()

Figure 4 illustrates how the network management aspects can be abstracted in an object oriented
fashion. The NetworkManager class allows getting and creating interfaces. For each interface the
default gateway can be obtained. Each interface is identified by an IP address and a name. The
supported addressing families (IPv4 and IPv6) can also be obtained from the interfaces class.
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UPI_N

+getNetworkManager() : NetworkManager

Gateway NetworkManager Interface

0..* 1 1 0.* [-name
-addr
i ® -address
|da?e | ® +getinterfaces() -txglen
-default

:cretztetlnterface() +addPort()
getGateways() +getAddressFamilies()
1
0.*
AF_INET

AddressFamily AF_INET6

Any other like AF_BLUETOOTH, ... -broadcast “netmask
- - -id K I—
netmask —[> _addr

-addr

Figure 4. The network configuration related part in UPI_N.

5.1.2 Routing configuration and monitoring

The main objective of this part of the UPI_N is the manipulating of entries in the routing table. Such
functionality can be used by routing daemons, e.g. OLSRd is used to provide ad-hoc mesh networking
in 802.11 networks. Note, you have to set the table attribute in Route in case you need more than
one routing table.

The following example shows how to create a route entry in a specific routing table:
route mgr = UPI N::getRoutingManager ()
route mgr.addRoute (Route (out_i face="ethl”, gateway=710.1.1.1", table="myRTable”))

Figure 5 illustrates the functions defined by the RoutingManager class to manipulate the routing
table and the generic parameters defined in the Route Class that allow configuring and monitoring
each route.

UPI_N

+getRoutingManager() : RoutingManager

Route

-gateway
-metrics

'type O..*
-family

-scope ® +addRoute()

-table +delRoute()

-desti.nation +getRoutes()
-out_iface

-priority

RoutingManager

Metrics

-mtu

Figure 5. The Routing related part in UPI_N.
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5.1.3 Traffic control and monitoring

The objective of the traffic control related part of UPI_N is queuing disciplines for bandwidth
management (traffic shaping) and packet priorization (QoS) (Figure 6). The identified basic concepts
which are translated into classes are schedulers, shapers, counters and filters. Via the traffic control
class, one or more schedulers can be added to each interface. Traffic control can be performed on
both the ingress and egress interfaces. Multiple schedulers can be attached to a single wireless
interface (one for each packet queue) thus allowing the network layer to control how packets are
handled by the lower MAC (part of UPI_R). On each scheduler one or more shapers and filters can be
added allowing fine-grained traffic control. For monitoring purposes, also counters can be added to
schedulers.

UPI_N

+getTrafficControl() : TrafficControl

Scheduler
Interface “type
TrafficControl -name -direction
i@ | +createEgressScheduler(eing. queuelD : int) (@————{Params @
+createlngressScheduler() +addShaper()
. * *
+getinterface() : Interface 11.. +startShaping() 1 1. +getShaper() 0{*
+getScheduler() +addFilter()
+getCounter() sh
| aper
Counter 0.1 0.1 —raFe
| -ceil

-sent_bytes _mtu
-sent_pkts Filter -quantum
—drop[f)eq -match 1 |prio
-overlimits _prio -level
requeues L* +addFilter()
-backlog_bytes +getCounter()
-backlog_pkts |
-packetlog_requeues _l

Figure 6. The traffic control related part of UPI_N.

Figure 7 shows the packet flow from the traffic control towards lower MAC. The traffic control
performs a packet classification into different queues. Theses queues are associated with different
MAC programs and radio configurations using the UPI_R interface (see D3.1), therefore the traffic
control works also on the wireless data-plane (lower MAC/PHY).
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IP layer

'

Traffic control

Lower MAC

'

PHY

Network interface

Figure 7. Packet flow through traffic control towards lower MAC.

The following example illustrates traffic shaping where the traffics destined to 10.20.10.2 and
10.20.10.3 are treated differently, i.e. shaped to 256 and 128 kbyte/s respectively:

tc mgr = UPI_N::getTrafficControl()
iface = tc mgr.getInterface (“wlan0”)

tc mgr.createEgressScheduler (0) .addShaper (rate="256") .addFilter (match=""dst
10.20.10.27)

tc mgr.createEgressScheduler (0) .addShaper (rate="128") .addFilter (match=""dst
10.20.10.37)

tc mgr.startShaping()

5.1.4 Packet filtering, manipulation and monitoring

The objective is to provide a generic high-level packet filtering and manipulation (packet mangling)
framework which allows a dynamic reconfiguration of packet filtering rules (e.g. for firewall). The
related functionality is shown in Figure 8. It is inspired by the Netfilter framework used in the GNU-
Linux kernel. The identified core classes are Table which contains a number of Chains that consist of
Rules. On each Rule one or more Matches are defined. If a Match is success the corresponding Target
action will be executed. Moreover, from the monitoring points of view, Counter allows us to get
information about flows (e.g. on layer 2 like the number of transmitted Bytes) which can again be
identified by specific Rules.

In contrast to tools like iptables (which allow the programming of the Netfilter) the UPI_N provides a
high-level object-oriented view on the packet filtering, manipulation and monitoring.

The following example marks packets destined to IP address 192.168.1.100 with nfmark 6. This is
achieved by operating on the MANGLE packet matching table and by adding a proper rule to the
POSTROUTING chain:

fw = UPI N::getFirewall ()
rule = Rule(dst=7192.168.1.100")
rule.createTarget () .setMark (6)

fw.getTable (“"MANGLE”) .getChain ("POSTROUTING”) .insertRule (rule)
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+getFirewall() : Firewall
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Firewall

+getTable() : Table

5.1.5

ACCEPT
DROP
QUEUE
RETURN

D4.1

Policy

NAT
MANGLE Chain
RAW Table -name
_name +getRules()
+getChain() : Chain ¢ :Irzsi;tczl;{ljg() I
4  |+createChain() 1 0..* P Rule
+lush() +delete() PN e
+setPolicy() dst
1 -ds
ACCEPT \ +getCounter() dport
DROP |_ 0.* -sport
QUEUE Target -protocol
RETURN -in_iface
-out_iface
Match +setMark() 7proto
-mark +createMatch()
-src_range J ’+createTarget()
-dst_range 1 +getMatches()
-mac_source 0* +getTarget()
-state +getCounter()
Counter
-packets
-bytes

Scheduling flows over multiple outbound interfaces

Figure 8. The packet filtering/manipulation (firewall) related part of the UPI_N.

Wireless devices like smart-phones have multiple interfaces (WiFi, 3/4G, Bluetooth). Hence, we need
a way for a given application flow to configure its interface preference. An example is to perform
bulk data download over WiFi because it does not introduce connection costs. VolP traffic on the

other hand can be transmitted over 4G because it gives a continued connectivity and higher QoS.

The left part of Figure 9 illustrates the concept of flow scheduling for multiple interfaces. Using
UPI_N (Figure 9, right) the user has to possibility to configure the mapping of application flows
(FlowMatchingRule) to outbound interfaces (Interface) via the MultipleinterfaceScheduler class. The

following pseudo-code example illustrates this:

iface sched

net mgr = UPI N::getNetworkManager ()

wlan iface =
cellular iface

iface_sched. scheduleFlowOnIface (FlowMatchingRule (17proto="£ftp”),

net mgr.getlInterfaces() .get (“wlan0”)

net mgr.getlInterfaces() .get (“wwan0”)

UPI N: :getMultipleInterfaceScheduler ()

// WIFI

// 3G/4G

egress_iface)

iface sched.scheduleFlowOnIface (FlowMatchingRule (17proto="skypeout”), egress iface)

Here we use layer7 classification to steer VolP calls (Skype) to the 3G/4G network while using the
WiFl interface for FTP bulk data transfer.
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UPI_N

Application | 1 11 +getMultipleInterfaceScheduler() : MultipleInterfaceScheduler
flows

MultiplelnterfaceScheduler

+scheduleFlowOnlface(eing. matchRule : FlowMatchingRule, eing. iface : Interface)

W

”' T T
I I
» } -
Interfaces @ v v 1
FlowMatchingRule Interface
-src -name
-dst
-dport
-sport
-protocol
-|7proto

Figure 9. Conceptual model for flow scheduling for multiple interfaces (left) and the related part of the
UPI_N (right).

5.1.6 Connection tracking

The objective of connection tracking is to get transport layer information about flows originated at a
particular node (layer 3 and 4). Example transport layer protocols are UDP or TCP. In case of
connection oriented protocols like TCP, additional information like the TCP state is available.
Moreover, meta-data allows us to identify the name of the application which started a flow (e.g. the
executed command line). This allows us to control the data-plane of each application independently.

The UPI_N related functionality is show in Figure 10. The ConnectionTracking class allows monitoring
objects of the Flow class. Via these objects, the MetaData of each flow (ip, port, state, timeout,
service level, process_id, etc.) can be accessed.
The following pseudo-code example prints out layer 3 and 4 information of each flow:
conn_track = UPI N::getConnectionTracking ()
for each flow in conn track.getFlows():

13 = flow.getLayer3Meta ()

14

flow.getLayer4Meta ()
print “layer3 : ” + 13.src_ip + “/” + 13.dst_ip

print “layer4 : ” + ld.sport + “/” + 1l4.dport
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UPI_N

+getConnectionTracking() : ConnectionTracking

Meta
-state
-timeout
ConnectionTracking Flow -pid
® -timestamp ® -uid
+getlLayer3Meta() -gid
+getFlows() : Flow * g
g 0 1 0. +getlLayerdMeta() ! 1 -cmdline
-service
1
2
LayerMeta
-direction
—[>-protonum <]—
-protoname
Layer3 Layer4
-src_ip -sport
-dst_ip -dport

Figure 10. Connection tracking (layer 3/4).

5.1.7 Wireless mode control

The objective of the wireless mode control is the configuration of the upper MAC layer of a wireless
interface. Note, the upper MAC handles management functions like the association and the
encryption key exchange process (e.g. 802.11).

Take 802.11 as an example. Here the wireless node can be configured to operate in e.g. Access Point
(AP), Station (STA) or ad-hoc mode. In AP mode there must be a way to configure the Service Set
Identifier (SSID) which is used to identify a network. In general, the configuration is technology
dependent. In case of Linux the 802.11 and 802.15.4 related functions are implemented by the
mac80211 and mac802154 subsystems respectively.

In Figure 11 we see the meta-model of the upper MAC. Note, that in contrast to the other
functionality in UPI_N this part is technology-dependent. We address this issue by providing proper
subclasses of the abstract WirelessMode class for each supported wireless technology. Currently,
two WirelessMode subclasses are defined and will be implemented in year 1: the JEEE80211 subclass
for WiFi interfaces and the /EEE802154 subclass for IEEE-802.15.4 sensor type of devices. Other
subclasses could be made for Bluetooth or even SDR interfaces. This will be considered in year 2.
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UPI_N

+getWirelessModeControl() : WirelessModeControl

WirelessModeControl Interface WirelessMode

@ ———-name <} |

+getinterface() : Interface 1 1.* |+addWirelessMode() 1 0..* |EEE802154

4 -pan_address

| Moni -mode
onitor -with_encryption

IEEE80211 —>-promiscous

_disabled -short_adresses
_wmm -disabled
-encryption Vot -enableGTS
-key onitor +setNetworkRole()
Dpens < JANZAN
-key2
AP -key3
- -key4 N

_dyn_vlan_tagging o achilter PanCoordinator

-ssid _maclist MeshPoint -beacon_int

-hidde -beacon_int q : -superframe_dur

; —|>—rsn reauth -mesh_id -

-bssid -basic_rate —maze’z)ddr - -GTS_dur

risolate -dtim_period

-lapp_interface -short_preamble

-maxassoc -mcast_rate Coordinator

-max_listen_int WDS —hwmoae STA

-beacon_int

- —| >-htmode K l—

-basic_rate _ht_capab

-require_mode —cormtry
_distance EndDevice

-noscan

Figure 11. The configuration of the wireless mode (upper MAC).

5.1.8 Generic configuration and monitoring

The objective is to provide generic functions that allow configuration/control and monitoring via
parameters and events respectively. Such functions are necessary for three reasons:

* On sensor devices having specific functions for each configuration setting that needs to be
changed would have a very big memory overhead. Instead, offering them via a limited
number of generic functions in combination with a parameter repository will probably result
in a smaller memory footprint. This is necessary for allowing local control programs on the
sensor node.

* In some cases we cannot find a proper abstraction for the properties we want to control.
Therefore, generic functions are required to allow configuration and monitoring.

The building blocks provided in the UPI_N are shown in Figure 12. The parameters and events we
envisage can be singular like route-lifetime, max hop count, etc. or they can have a hierarchical
structure in an object oriented fashion providing access to for instance the route table of a routing
protocol.

The GenericConfiguration class allows to set/get (a list of) parameter via the ConfigurationParameter
class which stores the UID, type, length and value.
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GenericMonitoring

GenericConfiguration

+getSupportedMonitoringEvents()

+getSupportedParameters() +subscribeMonitoringEvent()
+getParameter() +subscribeMonitoringEventList()
+getParameterList() +getMonitoringValue()
+setParameter() +getMonitoringValuelList()
+setParameterList() +monitoringEventUpdated()

+monitoringEventListUpdated()

1 1 1
1..* 1”* 1"*

ConfigurationParameter MonitoringValue MonitoringEvent
-UID -UID -UID

Type -Type -Type

-Length -Length -Length

-Value -Value -Value
+Checkinput()

Figure 12 Generic configuration and monitoring.

A generic interface for monitoring purposes is also provided by the GenericMonitoring class. This
class allows actively pulling monitoring information (i.e. MonitoringValue class) via the
getMonitoringValue functions or subscribe to events that push monitoring information (i.e.
MonitoringEvent).

6 Global control interface

For coordinated (time synchronized) remote execution of configuration and monitoring related
functions there is a need for an additional UPI, the UPI_G, allowing network-wide operations on a
group of nodes (Figure 13). The network developer should be able to execute on a set of nodes any
UPI_N/R function. Aspects like time synchronization of the network nodes are transparent to the
experimenter. Hence, the WiSHFUL framework provides basic services for node discovery and time
synchronization.

Global Controller

Radio Network
Control Control

T I
!
|
[

| . \

itori \ \ control \ .
monitoring \ - (config, mgmt) A
NI N

Local
controller

Node 1

Local
controller

Node N

Figure 13. The global control interface allows a coordinated execution of UPI_N/R functions on a set of nodes
from a centralized controller (e.g. running on a server).
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The configuration functions allow changing the run-time behaviour of protocol software. An optional
requirement is the remote execution of UPI_R/N functions in a transactional context to avoid
inconsistencies which may arise at the network level. Consider the example where the configuration
is successful on N-1 nodes but the last one fails (due to unsupported capabilities, or for other
reasons). Any node has a consistent configuration but the whole network is not consistent.

The UPI_G interface definition is shown in the UML diagram in Figure 14. The core functionality
provided by the UPI_G interface is the possibility to execute a function from either UPI_R or UPI_N
interface on a set of nodes in a coordinated way.

UPL_G

+getNodes()
+run()
+runAt()

Figure 14. The UPI_G interface definition for coordinated control of set of nodes.

We distinguish between two modes of execution of a UPI_R/N function on a set of nodes:

* immediate execution using run(),
* time scheduled execution using runAt().

Because the network communication between the global controller, using UPI_G, and the nodes
under control results in different latencies an immediate execution can only provide best effort
semantic, i.e. in general the actual execution time on the nodes is different.

def run (self, node 1lst, UPIfunc, UPIargs):
"MExec te functi UPI_R/N
:param
:param

param U

mn

In contrast when using the time scheduled execution of UPI_N/R functions the WISHFUL framework
guarantees that a given function is executed on all nodes at the same time. Therefore, all nodes
under control are time synchronized. If due to network latency, a given point in time for execution
cannot be met, an exception is thrown. Moreover, it is possible to assign a priority value which is
used when two or more execution events scheduled for the same time, i.e. the events will be
executed in the order of their priority.

def runAt(self, node 1lst,

""rExec e 1
:param
:param
:param C
:param exec
:param prio

mn

UPIfunc, UPIargs, exec time=-1, priority=1):
on °T R/N

Finally, the UPI_G has to provide functionality for node discovery. The user can retrieve all nodes

which can be controlled using:
def getNodes (self, filter="*"):
nmnnp n wh

KRetrieve adl

:param filter: optic

o b controlled
n ooe controlied

5

mn

The optional filter can be used to return only those nodes belonging to the same test group (e.g.
MyWishfulTest).

The following example illustrates the usage of UPI_G. Here we would like to schedule in 3 seconds a
channel switching on a set of 802.11 nodes belonging to group MyWishfulTest:
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now = time.time () # global clock since all nodes under test are time synchronized

log.info('Testing time scheduled execution of UPI_R function')

# specify the name of remote function from UPI R/N to be executed

UPIfunc UPI R.setParameter
# specify remote function arguments; here list of key value pairs
UPIargs (UPI_R.IEEE80211 AP CHANNEL, 11,)
# specify the execution time; here now + 3 seconds
exec_time = now + 3
try:
# this is a non-blocking call
rvalue = UPI G.runAt (nodes, UPIfunc, UPIargs, exec_time)

except Exception as e:
log.fatal ("Error occurred (network error or scheduling in the past): %s" % e)

7 Unified management interface

All management related functions are grouped in the UPI_M interface because they are required for
managing protocol software modules at any layer, thus spanning both UPI_R and UPI_N. Moreover,
software management requires functionality on both the local and global level. Instead of duplicating
this functionality in all UPIs, it makes more sense to group them in one single interface that enables
deploying, installing and activating software packages.

The software management functions can be divided further in two groups:
* those executed from a global control program and;
* those executed from a local control program.

The first group of functions are used for software management on a group of devices. Similar to
UPIL_G this can be done immediate or time-scheduled. Especially the time-scheduled usage is very
important because changing networking functionality such as routing and MAC protocols need to
happen simultaneously on all nodes since the network connectivity depends on them.

The second group of functions are used for software management on a single device. This is useful in
cases where networking functionality has only local impact (for instance link estimation algorithms)
or when specialized network detection mechanism are used that allow a device to tune into any
network (for instance using software defined radios).

Figure 15 maps UPI_M interface on the high-level WiSHFUL architecture. The global management
engine provides functions for deploying software modules that are maintained in a global software
repository. The dissemination of software modules relies on remote software management
protocols. The installation of software modules is done in the local management engine via the
dynamic linker and loader implemented by Linux or GITAR. The time-scheduled activation of
software modules uses coordination and synchronization services which also use the management
protocol.
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Figure 15 Mapping of UPI_M on the high-level WiSHFUL architecture.

The UML diagram in Figure 16 lists the functions provided by the UPI_M class. The objective is to
have functions that allow installing, removing, (de-)activating, switching and updating the software
modules both locally and globally. The LocalSoftwareManagement class also provides a function for
listing the installed software packages. The GlobalSoftwareManagement class provides an extra
function for deploying the software packages. Both the local and global software management use a
the SoftwareRepository class to maintain the software packages locally and globally respectively.
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UPILM

+InstallSoftwarePackage()
+RemoveSoftwarePackage()
+ActivateSoftwarePackage()
+DeActivateSoftwarePackage()
+SwitchSoftwarePackage()
+UpdateSoftwarePackage()

ﬁl%

%

GlobalSoftwareManagement

LocalSoftwareManagement

+DeploySoftwarePackage()

+GetlInstalledSoftwarePackage()

T
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T
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SoftwareRepository

+GetSoftwarePackages()
+AddSoftwarePackages()
+RemoveSoftwarePackages()
+UpdateSoftwarePackages()

GlobalSoftwareRepository

LocalSoftwareRepository

Figure 16 UPI_M software management functions.

D4.1

Note that some of the functions provided by UPI_M will not be used by testbed experimenters
because they are already provided by the testbed management framework and are part of the
experiment set-up phase. For instance the deployment and installation of software packages is
functionality that is commonly done upfront. They will however become important when the UPI
interfaces are used outside testbeds.
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8 Examples of UPI_N utilization

The following example scenarios demonstrate the utilization of the UPI_N, UPI_G interfaces and UPI-
M. Some examples also require functionality from the UPI_R interface, which is described in
Deliverable 3.1.

8.1 Traffic-aware 802.11 airtime management

8.1.1 Example Description

A widely known problem experienced in IEEE 802.11 (WiFi) networks is performance degradation due
to co-channel interference due to hidden nodes. The impact can be mitigated by preventing
overlapping transmissions (in time) between co-located APs.

Consider the example network given in Figure 17. Let us assume that the two APs, AP1 and AP2, are
operating on the same channel. In such a case a cell-edge user like STA2 may suffer from interference
due to hidden node, i.e. the downlink traffic from AP1 to STA2 will collide with traffic originated at
AP2.

Let us assume for the following that in our network we have four active flows with the following QoS
classes — the first three are best effort (BE) while the last one is voice: AP1>STA1 (BE), AP1>STA2 (BE),
AP2>STA3 (BE) and AP1>STA2 (VolP).

—  Control pl
Global Controller ontrolpiane

Hidden Flow Set airtime
nodes info access

< Statistics ¥ ConfigManager |
+

— Data plane

N
\
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Figure 17. Traffic-aware 802.11 airtime management scenario.

8.1.2 Requirements for UPI_R

For the control of the airtime access three levels of abstraction are possible:
* Al:Setting airtime access pattern per node/interface (AP);
* A2:Setting airtime access pattern per link (AP>STA);
* A3:Setting airtime access pattern per flow (flow matching rule).

Although Al would solve the hidden node problem, it is inefficient because flows AP1>STA1 and
AP2>STA3 are time separated although they do not interfere with each other. In A2 we are able to set
the airtime access pattern per link (AP>STA). However, this solution does not take the different per
flow QoS into account. Normally, only flows with high delay sensitivity (e.g. VolP) need to be
protected against packet losses due to hidden node. Finally, A3 allows us to set the airtime access
pattern per flow.

Moreover, information about hidden nodes is required which can be obtained by analyzing corrupted
data packets.
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8.1.3 Requirements for UPI_N

The UPI_N needs to provide QoS information about active flows on each wireless link (AP>STA), i.e.
flow type (VolP, bulk transfer).

8.1.4 Requirements for UPI_G

The described example requires a global controller to coordinate the airtime access of APs. It
requires the following information (statistics) from each AP under control: i) information about
hidden nodes (UPI_R), ii) QoS information about active flows on each link (UPI_N). The output of the
global controller is the assignment of time slots to nodes/STAs/flows (UPI_R).

8.2 WIFI and Sensor Network Co-existence

8.2.1 Example Description

The diversity of wireless technologies operating in the same radio spectrum requires co-existence
schemes. Take IEEE 802.11 (WIFI) and IEEE 802.15.4e (TSCH) which is widely used in sensor networks
and loT as an example. The simultaneous operation of both networks in close proximity will
inevitably lead to performance degradation due to interference. This is because of explicit scheduling
of radio resources in TSCH (time-slotted channel hopping) and the unreliability of carrier-sensing
mechanism to sense any wireless transmission of the other technology.

802.11
network

L 802.15.4 TSCH

. network

— —

Figure 18. Example illustrating two co-located wireless networks of different technology.

One can imagine multiple co-existence schemes for WiFi and TSCH. Some of them can be
implemented in the sensor network alone but more advanced and also promising ones require
cooperation between the networks. In the following we consider a traffic-aware interference
avoidance scheme where depending on the network load in both networks (Figure 19):

* In case the sensor network is highly loaded it is more meaningful to perform interference
avoidance in the WiFi network, i.e. the sensor network will provide scheduling information so
that the WiFi transmissions can be delayed to points in time where no collision with
transmission in the sensor network is guaranteed,

* In case the network load in the WiFi is high it is more promising to exclude the spectrum
used by the WiFi network from being used in the sensor network.
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Figure 19. Proposed co-existence scheme for WiFi/TSCH.

8.2.2 Requirements for UPI_R

In the envisioned co-existence scheme the following functionality needs to be provided by the UPI_R:
* Information about the MAC schedule in the IEEE-802.15.4e TSCH network,
* Possibility to configure the airtime access in the WiFi network,
* Configuration of the spectrum to be excluded from allocation in the IEEE-802.15.4 TSCH,
* Time synchronization between WLAN and IEEE-802.15.4e TSCH.

8.2.3 Requirements for UPI_N

In the envisioned co-existence scheme the following functionality needs to be provided by the
UPI_N:
* Discovery of co-located wireless networks, i.e. other wireless networks in communication
range of a node,
* Information about the network load at each wireless node (size of network queue at each
node).

8.2.4 Requirements for UPI_G

With the help of the functionality from UPI_R and UPI_N the global controller can either configure
the airtime access in the WiFi network or the spectrum to be excluded from allocation in the IEEE-
802.15.4 TSCH using UPI_R. For the former both networks need to be time synchronized, i.e. to make
sure that the airtime access in WLAN is time-aligned with the MAC schedule of IEEE-802.15.4 TSCH.

8.3 Intelligent Download with WIFI Tethering

8.3.1 Example Description

Recently, with rapid growth of number of smart-phones and mobile devices equipped with various
wireless technology interfaces, tethering popularity gains more and more popularity. It is a very
convenient, ad-hoc and low-cost wireless Internet access technology. In most cases WiFi tethering is
used, which allows sharing the Internet connection provided by 3G/4G technology with other devices
(eg. laptops) using WiFi network.

However, in most cases, there is a limit on amount of data that cellular subscriber can download
every month. After exhaustion of available data transfer, user connection can slow down significantly
or in worse case, one can be charged for any extra data he/she downloaded. As long as user is aware
of all his/her network transmissions, there is no problem. Unfortunately, it can happen that
operating system and applications will perform upgrades and download a huge amount of data that
user may not even notice until he/she gets a bill from telecom company. Our idea is to recognize and
prevent any "unnecessary" traffic flows. By "unnecessary”, we understand flows that require
downloading a huge amount of data and there is no problem to defer it to a later point in time.
Operating system updates (e.g. Windows/Linux) are perfect example here.
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Our basic idea is to filter out "unnecessary" traffic flows when being connected to a tethering AP
(Figure 20). Therefore, we can make use of IEEE 802.11u that defines Generic Advertisement Service.
GAS is mechanism that delivers information to the STA from advertisement services. It allows
stations to obtain information about network services. Standard defines few advertisement protocols
that can be used with GAS: Access Network Query Protocol (ANQP), Media Independent Handover
(MIH), Emergency Alert System (EAS) as well as proprietary vendor specific protocols (which will be
most useful for us). What is important GAS mechanism allows the STA to know in advance the AP
capabilities, even before associating with it.

With the help of GAS we are able to block the "unnecessary" flows already on WiFi end-user terminal
(e.g. laptop). After reception of the specific IE from the tethering AP, the terminal should translate it
into local firewall filtering rules and apply them. One possible way to achieve that is use of netlink
interface and netfilter framework provided by Linux (used by iptables). Note, here both the tethering
AP as well as the WiFi end-user terminal need to be WISHFUL-compliant. In a second option which
does not require the end-user terminal to be Wishful-compliant the blocking of "unnecessary" flows
is performed in the tethering AP which is fully transparent to the end-user terminal.
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Figure 20. Controlling WiFi tethering operation.

8.3.2 Requirements for UPI_N

For the first option we need a way to program the Information Elements (IE) send in the beacon
frames of the tethering AP (upper MAC). Moreover, on the end-user terminal we need functionality
to read the received IEs (upper MAC) as well as to program the firewall, i.e. reject all outgoing traffic
to a specific remote host (e.g. the update server).

The second option requires just the possibility to block "unnecessary" flows in the tethering AP.

8.3.3 Requirements for UPI_G

In this example there is no need for a global controller.
84 WIFI Offloading

8.4.1 Example Description

Although the capacity of cellular networks constantly increases thanks to technological
enhancements, the throughput they provide can turn out to be insufficient, because traffic demand
increases even faster. On the other hand, most of mobile devices are not only equipped with LTE
interface, but also WiFi chip. It is therefore promising to offload traffic from mobile networks to WiFi
and use them as an extension to the cellular network and telecom operators are becoming more and
more interested in it. The main reasons for this approach are the high data rates provided by WIFI
networks.

Currently, mobile devices have simple and limited way to decide when to offload traffic to the WIFI
(Figure 21). It works very simple, i.e. when mobile terminal discover and connect to WIFI network, it
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steer all its traffic to the WIFI. The main drawback of this solution is lack of QoS considerations that
can lead to situation when mobile will switch from high data rate cellular connection to low data rate
WIFI connection.

In current networks, operators do not have influence for offloading decisions of mobile stations, but
the idea is so appealing, that some activity by several standardization forums was taken. They
propose operator-controlled WIFI, which are deployed and managed by an operator and/or its
partner. In 3GPP Release 12, some WLAN/3GPP inter-working aspects were standardized. They aim is
to provide network operator control mechanisms to steer traffic offloading in downlink and uplink
direction. With these solutions network can provide mobile station with parameters such as receive
power level threshold. When received power is higher than this threshold mobile can offload its
traffic to WLAN.
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Figure 21. Controlling WIFI offloading.

8.4.2 Requirements for UPI_N

We propose to implement WIFI offloading functionality as our test case. To support it, several
functions in UPI_N are needed. First, the network operator has to have a way to define parameters
(e.g. receive power thresholds) that will be send to mobile stations which are used to make the
decision to connect to a WIFI network. Second, the provider needs to decide which flows should be
offloaded from cellular to WIFI network. For example, one can decide that all VolP traffic stays in
cellular network, because it provides more robust and reliable connection, and all flexible flows using
TCP protocol (e.g. file transferring, web browsing) are offloaded to WLAN.

8.5 Dynamically adjusting the link estimation algorithm based on the density of the
network

8.5.1 Example description

In dynamic sensor networks, especially those containing mobile devices, the wireless environment
continuously changes. Many routing protocols for sensor networks depend on link estimation for
selecting the optimal route (or next hop) to another node in the network. Since the wireless
environment changes continuously, the requirements on the link estimation algorithm also vary over
time. Recent studies have shown that there is no link estimation algorithm that delivers a good
estimate of the link quality in all wireless environments and for all network topologies. Especially the
density of the network has a major impact on the choice of the most optimal link estimation
algorithm. Hence, it would be beneficial for the overall network performance if the link estimation
algorithm can be dynamically selected based on the observed network conditions and topology.

This example illustrates how the UPI_N interface can be used to
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a) Gather node local information (e.g. density of the neighbourhood) required to decide when to
switch the link estimation algorithm.

b) Switch the link estimation algorithm dynamically without requiring a device reboot or affecting
the already active routing protocol.

8.5.2 Requirements for UPI_N

The UPI_N interface must allow a local control program to monitor the density of the
neighbourhood. The density can be retrieved from the number of nodes in the neighbour table.

8.5.3 Requirements for UPI_G

The UPIL_G must permit the global controller to periodically execute the UPI_N function for
monitoring local density on a set of nodes. There is no need for a hard time synchronized execution.
Based on the results it needs to perform a network-wide switch to another link estimation algorithm.

8.5.4 Requirements for UPI_M

The UPI_M interface is used by either the local control program or the global control program to
switch to another link estimation algorithm at run-time. The time scheduled execution function of
UPI_M is required when global control program decides to switch the link estimation algorithm.

8.6 Increasing reliability by changing the lifetimes of routes in the network

8.6.1 Example description

Routing protocols in dynamic sensor networks do not use static routing table entries for maintaining
routes to the other nodes in the network. Instead, they use route discovery mechanisms to
dynamically form a network topology and to change routes continuously. For this purpose, the
entries in the routing table are only valid for a limited time, i.e. the route lifetime. If a route is not
used during the route lifetime, the corresponding entry is removed from the routing table. The
choice for the route lifetime is currently done at compile-time and is a trade-off between reliability
(shorter route lifetimes better reflect the current optimal topology), latency (longer route lifetimes
require less latency for route discovery) and energy usage (longer route lifetimes require less energy
for route discovery).

In this example we want to demonstrate that by adjusting the route lifetime dynamically, the overall
network performance (reliability, latency and energy usage) can be increased. Since decreasing
reliability also has a negative effect on latency and energy usage, it is the primary objective for
optimizing the network performance. If the reliability drops below a certain threshold, the route
lifetime is decreased, conversely if the reliability stabilizes above a certain threshold, it is increased
again.

This example illustrates how the UPI_N interface can be used to
a) gather node local information (e.g. packet loss) to monitor the reliability;

b) change node local parameters (e.g. route lifetime) to increase reliability or decrease latency and
energy usage.

8.6.2 Requirements for UPI_N

The UPI_N interface must allow a local control program to monitor the packet loss and to change the
route lifetime.
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8.6.3 Requirements for UPI_G

Although this example is more suited for local control programs it should also be possible to use the
UPIL_G interface for the same purpose.

8.7 Switching the routing strategy based on the type of active traffic flows

8.7.1 Example description

The low link budget and battery powered operation of sensor networks requires specialized routing
strategies which are tightly coupled to the specific application requirements and network conditions.
Therefore, many routing protocols have been proposed. For this reason, sensor networks are limited
in the applications they can support. In dynamic sensor networks, more applications need to be
supported and the networking conditions vary frequently.

This example shows how sensor networks can adapt to new applications and networking conditions
by changing the routing strategy on the fly. For this the global control program should be able to
detect the currently active traffic flows in the network and activate the most appropriate routing
protocol at run-time without requiring a device reboot, or worse, a firmware upgrade. The global
control thus needs to monitor the active traffic flows in the network and detect the type of traffic
each flow introduces. Based on this information, the global control program can decide to switch to
another routing protocol that is more suited to support the currently active flows in the network.

8.7.2 Requirements for UPI_N

This example is mainly controlled from the global control program hence it needs no functions from
UPI_N.

8.7.3 Requirements for UPI_G

This example requires that the global configuration and monitoring engine is notified when new
application flows are activated.

8.7.4 Requirements for UPI_M

Switching to another routing protocol is a typical example of something that needs to be coordinated
on a global level because all nodes in the network need to execute the same protocol. Therefore, it is
very important that if the global control program decides to switch to another routing protocol, the
switching can be done on all nodes at the same time. Another important requirement is that if for
some reason, the switching fails or another problem is detected a roll-back to the previous stable
configuration can be made.
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9 Relation to other architectures

Unification of APIs for controlling networking aspects has gained a lot of attention in many
networking areas in the Internet such as core IP networks, access networks and cloud systems. The
main motivation is always to simplify the control of networked resources thereby lessening the
burden for network administrators from an operational viewpoint and for facilitating integration of
innovative solutions proposed by the research community. This has resulted in the proposal of
several frameworks applying software defined networking concepts where each targets a specific
network area in the Internet. This section will give an overview of these frameworks and discuss the
positioning of the WiSHFUL project with respect to the discussed frameworks.

WISHFUL aims to expand the software defined networking concepts to the edge of the Internet,
mainly targeting all wireless devices between, and including, the broadband access gateways and the
end devices. This is very challenging because the targeted devices are very heterogeneous in terms of
capabilities, networking scenarios and supported applications. The capabilities vary from resource
constrained sensor devices to general purpose devices with much more processing power and
memory.

The following frameworks will be discussed in the remainder of this section:

¢ CWMP or CPE WAN Management Protocol (TR-069)[17] designed for remote management of
end-user devices (customer premises equipment or CPE) owned by broadband internet
providers. CWMP targets internet access devices such as modems, routers and gateways as
well as set-top boxes and VolP phones;

¢ Software-defined Networking and Openflow [18];

* Openstack [19];

* OpenRoads [20];

* Active Networking [21].

9.1 CWmMP

TR-069 [17] describes the CPE WAN Management Protocol, intended for communication between a
CPE and Auto-Configuration Server (ACS). The CPE WAN Management Protocol defines a mechanism
that encompasses secure auto-configuration of a CPE, and also incorporates other CPE management
functions into a common framework. CWMP is a bidirectional SOAP/HTTP-based protocol. It is
adopted by other forums such as Home Gateway Initiative (HGI), Digital Video Broadcasting (DVB)
and WiMAX forum as the protocol for remote management of the devices installed on the customer
premises.

The CWMP protocol aims to provide the following functionalities:

* Auto-configuration and dynamic service provisioning
* Software/firmware image management

¢ Software module management

¢ Status and performance monitoring

* Diagnostics

Most of the configuration and diagnostics is performed through setting and retrieving the value of
the device parameters. These are organized in a well defined hierarchical structure that is more or
less common to all device models and manufacturers. Such an approach could also be interesting for
WIiSHFUL although we should be careful that it is possible to apply it on constrained sensor devices.

In contrast to WiSHFUL all control and management is done centrally. There is no possibility to add
auto configuration capabilities to the end-devices; hence there is only global control. Moreover, it is
not intended as a protocol for real-time control meaning that (re-) configuration is only done
sporadically without hard timing requirements. Also the scope of the devices is different. In WiSHFUL
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wireless devices are targeted, ranging from very constrained sensor devices to much more capable
general purpose devices such as smart-phones. CWMP only targets general purpose devices and
requires a broadband wired connection with the device that needs to be controlled.

9.2 Software-defined Networking (Openflow)

WISHFUL is related to the concept of Software-defined networking (SDN) both in goals and in
challenges [22]. SDN is an approach to computer networking that allows network administrators to
manage network services through abstraction of lower-level functionality. This is done by decoupling
the system that makes decisions about where traffic is sent (the control plane) from the underlying
systems that forward traffic to the selected destination (the data plane).

SDN requires some method for the control plane to communicate with the data plane. One such
mechanism is OpenFlow [18]. OpenFlow enables controllers to determine the path of network
packets through the network of switches. The separation of the control from the forwarding allows
for more sophisticated traffic management and routing protocols.

The key design consideration is to pick the right abstractions to balance flexibility against
performance. While interoperation with existing devices on the Internet is a major consideration for
layer-3 SDN interfaces in Wishful, inter-operation is much less of an issue as it operates also on lower
layers (layer 1 and 2).

Openflow focuses only on a specific functionality, i.e. networking and routing. In contrast WISHFUL
allows the configuration, control and monitoring of the whole network protocol stack including the
configuration of the wireless mode (upper MAC) of a particular wireless node. In particular,
WISHFUL’s data-plane enables the network protocol developer to program the network stack for
specific traffic subsets. However, the developer does not need to specify how the packet processing
behaviour is integrated into an operational network and realized in practice. This low-level
complexity is abstracted out by the UPI_N interface.

9.3 Openstack

OpenStack Networking [19] is a API-driven system for managing networks and IP addresses designed
for data-center networks. Users can create their own networks, control traffic and connect servers
and devices to one or more networks. Moreover, it builds on top of SDN technology like OpenFlow.
The Openstack Networking core API contains functionality to configure networks, subnet resources
and ports. The OpenStack Networking has an extension framework allowing additional network
services, such as intrusion detection systems (IDS), load balancing, firewalls and virtual private
networks (VPN) to be deployed and managed.

In contrast to WiSHFUL it is focused on the configuration and management of wired datacenter
networks whereas WISHFUL focuses on configuration and management of wireless devices and its
real-time control. In contrast the Openstack Networking APl is not optimized for real-time control
and does not meet the required scalability goals.

9.4 OpenRoads

The goal of OpenRoads [20] is to create an open platform for researchers to experiment and explore
different mobility solutions, network controllers and/or routing protocols. OpenRoads provides
researchers control of the network through two means, namely, control of the data-path using
OpenFlow and control of the device configuration using SNMP. The OpenRoads interface abstraction
for network control provides an APl for communication, flow management and (wireless) device
control. It aims for an uniform interface for heterogeneous technologies and vendors, | while
allowing technology specific control if so desired.
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For device control OpenRoads uses SNMP, but provides just a very-low level API, i.e. simple get/set
functions and provision of notifications of events. In contrast Wishful aims to provide a high-level API
for programming the network stack.

9.5 Active Networking

The Active Networking [21] initiative, proposed in the mid 1990s, tried to break with the traditional
networking approach, where bits are passively transmitted from one system to another (i.e. the
network is insensitive to the bits it carries). In active networking, the network can perform
customized computations on the user data. For example, a user of an active network could send a
customized compression program to a node within the network (e.g., a router) and request that the
node execute that program when processing their packets. These networks are “active” in two ways:

* switches perform computations on the user data flowing through them;
* individuals can inject programs into the network, thereby tailoring the node processing to be
user-and application-specific.

Active Networking was never widely adopted mainly due to practical security and performance
concerns but tried to tackle some of the network management issues WiSHFUL also tries to solve.
One of the main differences is however that opposed to Active Networking, WiSHFUL does not
propose a clean-slate approach where all existing protocols need to be changed. WiSHFUL proposes
a more pragmatic approach that enables more flexibility by providing unified interfaces on top of
existing networking software.

10 Conclusion

In this deliverable, starting from the presentation of the different network architectures used in the
testbeds of the project partners (namely Linux-based devices and embedded devices based on
Contiki.), we have described the first UPI_N specification. The UPI_N interface offers a unified
interface to experimenters willing to work on heterogeneous network platforms and enables the
definition of platform-independent adaptation logics of the upper MAC, routing and higher layers.
Although different networking architectures (Linux vs. embedded OS like Contiki) generally support
different features, a common set of functionalities for network configuration and monitoring have
been abstracted for the definition of the UPI_N, which can be applied to any underlying technology.
For coordinated execution of configuration and monitoring related functions an additional UPI is
defined, the UPI_G, allowing network-wide operations on a group of nodes. Finally, a third unified
interface, UPI_M has been defined that covers all management related functions required for
managing protocol software modules at any layer of the network protocol stack.

For illustrating the use of the different UPIs, several example scenarios have been worked out, such
as traffic-aware 802.11 airtime management, WIFI and sensor network co-existence, intelligent
download with WIFI tethering, WiFi offloading, dynamic adjusting of a link estimation algorithm,
adapting lifetimes of routes, and switching routing strategy.

This deliverables serves as a guideline for the implementation of the configuration, monitoring and
management adaptation modules and the UPIs that will be offered in the first open call at the end of
the first year. We anticipate that some minor refinements could be necessary during the
implementation phase (that will last for the next six months of the project).
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