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Executive Summary 
This	 deliverable	 reports	 the	 second	 operational	 radio	 control	 software	 platform	 and	 provides	
details	 about	 the	 implementation	of	 the	unified	programming	 interface	 for	 radio	 control,	 named	
UPI_R,	that	is	offered	to	experimenters	at	the	end	of	Y2.		

Radio	control	 is	meant	 for	 configuring	 the	 lower	MAC	and	PHY	 layers	of	 the	wireless	nodes,	also	
called	radio	platform,	i.e.	the	physical	parameters	characterizing	the	transceiver	operations,	such	as	
the	 central	 frequency	 and	 the	 transmission	 format,	 as	 well	 as	 the	 logic	 for	 reacting	 to	 physical	
events	 and	accessing	 the	wireless	 channel.	Usually,	 the	 configuration	of	 these	aspects	 requires	 a	
deep	 understanding	 of	 the	 hardware	 and	 software	 architecture	 of	 wireless	 nodes.	 Thanks	 to	
WiSHFUL,	it	is	possible	to	abstract	the	internals	of	the	nodes	with	a	unified	configuration	interface	
able	to	work	on	completely	different	hardware	and	software	architectures.		

Indeed,	the	experimenters	can	use	the	same	UPI_R	functions	for	working	on	the	IRIS	architecture	
for	 SDR	 platforms,	 the	 Time	Annotated	 Instruction	 Set	 Computer	 (TAISC)	 architecture	 for	 sensor	
nodes	 [1],	 the	Wireless	 MAC	 Processor	 (WMP)	 architecture	 for	 WiFi	 interfaces	 [2],	 the	 Atheros	
driver	 and	 chipset	 architecture	 for	 off-the-shelf	 WiFi	 interfaces	 [3].	 The	 technology-specific	 and	
platform-specific	details	can	be	completely	hidden	by	the	UPI_R	abstractions,	in	case	experimenters	
want	to	follow	a	black-box	approach	for	testing	a	wireless	solution.	

During	Y2	activities,	the	definition	of	the	UPI_R	interface	has	been	extended	in	two	main	directions:	
i)	at	 the	platform	 level,	by	 integrating	new	hardware	and	software	architectures	 in	 the	WiSHFUL	
framework,	by	means	of	adaptation	modules	supporting	UPI_R	abstractions,	and	by	improving	the	
capabilities	 of	 the	 platforms	 already	 available	 at	 the	 end	 of	 Y1;	 b)	 at	 the	 functional	 level,	 by	
introducing	 novel	 functionalities	 dealing	 with	 specific	 technology-dependent	 configurations	 of	
MAC/PHY	layers	or	platform-dependent	definitions	of	new	radio	programs.	As	far	as	concerns	the	
platform	 extensions,	 we	 integrated	 a	 new	 implementation	 of	 the	 TAISC	 architecture	 and	 WMP	
architecture	on	SDR	platforms,	extended	 the	UPI_R	 functions	 supported	by	 the	 IRIS	 architecture,	
and	 added	 the	 GNU	 radio	 architecture	 and	 an	 architecture	 for	 programmable	 antennas	 as	 new	
platforms.	 Regarding	 the	 functional	 extensions,	 we	 added	 configuration	 functions	 which	 do	 not	
follow	 generic	MAC/PHY	models,	 but	work	 on	 technology-specific	 protocols,	 such	 as	WiFi	 or	 LTE	
standardized	 protocols.	Moreover,	we	 can	 now	 support	more	 advanced	 experiments	 based	 on	 a	
white-box	approach,	according	to	which	we	give	access	to	platform	specific	functionalities,	such	as	
compiling	new	custom	radio	programs.	To	this	purpose,	we	developed	two	programming	tools	for	
facilitating	the	editing	of	radio	programs	on	the	WMP	and	TAISC	architecture.		

This	approach	obviously	requires	a	more	advanced	understanding	from	experimenters	and,	in	turn,	
offers	 full	 flexibility	 to	 the	 design	 and	 test	 of	 wireless	 solutions.	 Further,	 the	 refinements	 and	
extensions	of	 the	UPI_R	 interface	 implemented	during	Y2	have	been	driven	by	 the	 requirements	
emerged	during	the	realization	of	the	showcases	and	by	extensions	supported	by	Open	Call	1.		
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List of Acronyms and Abbreviations 
AP	 Access	Point	
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CSMA	 Carrier	Sense	Multiple	Access	
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DL	 Download	Link	

E-UTRAN	 Evolved	Universal	Terrestrial	Access	Network	

EARFCN	 Radio	Frequency	Channel	Number	

eNB	 	Evolved	Node	B	

EPC	 Evolved	Packet	Core	

EPS	 Evolved	Packet	System	

GCP	 Global	Control	Program	
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LAN	 Local	Area	Network	

LCS	 Local	Control	Service	

LTE	 Long	Term	Evolution	

MCE	 Monitor	and	Configuration	Engine	

MCS	 Modulation	and	Coding	Scheme	

MS	 Mobile	Station	

P-GW	 Packet	Data	Network	Gateway	

PBCH	 Physical	Broadcast	Channel	

PDN	 Packet	Data	Network	

PDSCH	 Physical	Downlink	Shared	Channel	

PLMNID	 Public	Land	Mobile	Network	ID	

PSCH	 Physical	Shared	Channel	

PUCCH	 Physical	Uplink	Control	Channel	
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RACH	 Random	Access	Channel	

RTS	 Request	to	Send	

SDR	 Software	Defined	Radio	
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SINR	 Signal	to	Interference	plus	Noise	Ratio	

SSCH	 Signal	Synchronization	Channel	

STA	 Wireless	Station	

TAC	 Track	Area	Code	

TAISC	 Time	Annotated	Instruction	Set	Computer	

TDMA	 Time	Division	Multiple	Access	

UCS	 Unified	Clock	System	

UE	 User	Equipment	

UL	 Upload	Link	

UPI	 Unified	Programming	Interface	

UPI_G	 Unified	Programming	Interface	Global	

UPI_HC	 Unified	Programming	Interface	Hierarchical	Control	

UPI_M	 Unified	Programming	Interface	Management	

UPI_N	 Unified	Programming	Interface	Network	

UPI_R	 Unified	Programming	Interface	Radio	

USCI	 Universal	Serial	Communications	Interface	

VM	 Virtual	Machine	

WLAN	 Wireless	LAN	

WMP	 Wireless	MAC	Processor	

XFSM	 Extended	Finite	State	Machines	

  



	 H2020	-	GA	No.	645274	 D3.4	
 

   5	

Table of contents 

1	 Introduction ........................................................................................................ 7	

2	 General description of Y2 release of the WiSHFUL radio control 
architecture .............................................................................................................. 8	

2.1	 Supported	Platforms	........................................................................................................	9	

2.2	Adaptation	Modules	.......................................................................................................	12	

3	 General UPI_R functions ................................................................................. 15	
3.1	WiSHFUL	Radio	capability	...............................................................................................	15	

3.2	WiSHFUL	UPI	Radio	Functions	List	..................................................................................	17	

3.3	 Enhancements	in	existing	platforms	and	new	implementation	.......................................	19	

3.3.1	 TAISC	SDR	framework	and	Zolertia	RE-Mote	(AVR	CPU)	based	platforms	...............................	19	

3.3.2	 IRIS	SDR	Framework	.................................................................................................................	27	

3.3.3	 WMP	WARP	SDR	framework	....................................................................................................	31	

3.3.4	 GNU	Radio	................................................................................................................................	34	

3.3.5	 RAS	antenna	.............................................................................................................................	40	

4	 Technology-specific UPI_R functions ............................................................ 42	
4.1	WiFi	................................................................................................................................	42	

4.2	 LTE	.................................................................................................................................	46	

4.2.1	 Implementation	details	............................................................................................................	47	

5	 Additional software tools enabling the white-box approach ....................... 50	
5.1	 Editor	for	Radio	Programs	of	the	WMP	platform	............................................................	50	

5.1.1	 Editor	elements	and	description	..............................................................................................	50	

5.1.2	 New	Radio	Programs	................................................................................................................	53	

5.2	 TAISC	tools	and	implemented	MAC	protocols	for	wireless	sensor	networks	...................	55	

5.2.1	 TAISC	upper	MAC	redesign	.......................................................................................................	55	

5.2.2	 New	implemented	MACs	based	on	TAISC	................................................................................	57	

5.2.3	 TAISC	Compiler	enhancements	................................................................................................	60	

5.3	Cooja	simulator	support	for	WiSHFUL	and	TAISC	on	RM090	devices	...............................	61	

5.3.1	 Integration	with	TAISC	..............................................................................................................	61	

5.3.2	 Integration	with	WiSHFUL	........................................................................................................	62	

5.3.3	 How	to	use	the	extensions	.......................................................................................................	62	

5.3.4	 Availability	of	Code	...................................................................................................................	64	

5.4	 TAISC	logic	analyzer	plugin	.............................................................................................	65	



	 H2020	-	GA	No.	645274	 D3.4	
 

   6	

6	 Examples of control programs using UPI_R ................................................. 67	
6.1	Controlling	smart	antennas	using	UPI_Rs	........................................................................	67	

6.1.1	 WiSHFUL	control	program	........................................................................................................	68	

6.1.2	 Example	results	........................................................................................................................	71	

6.2	 Example	of	control	program	using	TDMA	on	Atheros	platform	.......................................	73	

6.2.1	 WiSHFUL	control	program	........................................................................................................	74	
6.2.2	 Example	results	........................................................................................................................	76	

7	 Conclusions ...................................................................................................... 78	

8	 References ........................................................................................................ 79	
	 	



	 H2020	-	GA	No.	645274	 D3.4	
 

   7	

1 Introduction	
The	WiSHFUL	 architecture	 is	 devised	 to	 provide	 i)	unified	 interfaces	 to	 experimenters	 for	 easily	
prototyping	 novel	 and	 adaptable	 wireless	 solutions	 on	 different	 radio	 platforms,	 ii)	 a	 control	
framework	 for	supporting	dynamic	on-the-fly	 reconfigurations	of	 the	wireless	nodes	according	to	
time-varying	estimates	of	the	network	operating	conditions.	For	wireless	node	we	mean	a	complete	
hardware	 and	 software	 architecture	 implementing:	 i)	 the	MAC/PHY	 layers	 of	 the	 protocol	 stack,	
also	 called	 radio	platform,	 based	 in	 turns	on	a	hardware	and	 software	architecture	 supporting	a	
wireless	 technology	 (such	 as	 standardized	 IEEE	 802.11	 and	 IEEE	 802.15.4	 technologies	 or	 non-
standard	technologies),	ii)	the	upper	layer	of	the	protocol	stack	based	on	an	operating	system	(such	
as	 a	 Linux	 operating	 system	 for	 wireless	 local	 area	 networks,	 or	 a	 Contiki	 operating	 system	 for	
sensor	nodes);	 iii)	additional	hardware	platforms,	such	as	a	system	with	programmable	antennas,	
with	the	relevant	drivers.	Note	that	a	given	wireless	technology	can	be	supported	by	different	radio	
platforms.	 i.e.	 by	 different	 hardware	 and	 drivers.	 For	 example,	 WiSHFUL	 	 includes	 IEEE	 802.11	
nodes	 based	 on	 commercial	 interfaces	 (namely,	 the	 Atheros	 cards),	 commercial	 interfaces	 with	
customized	 non-standard	 firmware	 (namely,	 the	Wireless	MAC	 Processor),	 and	 software	 defined	
radios.	Programmable	radio	platforms	are	able	to	execute	different	MAC/PHY	protocol	stacks	which	
are	coded	in	radio	programs	that	can	be	dynamically	loaded	into	the	platforms.	

This	 document	 is	 focused	 on	 the	 presentation	 of	 the	 UPI_R	 interface,	 which	 is	 one	 important	
component	of	the	WiSHFUL	unified	interfaces	devised	to	configure	the	node	behaviour	at	the	lower	
MAC	and	PHY	layers.	The	definition	of	the	UPI_R	interface	has	been	carried	out	by	considering	two	
different	utilization	paths	of	wireless	nodes,	as	originally	discussed	in	the	proposal:	

• Path	1	(black-box	approach):	offers	limited	flexibility	but	maximal	ease	of	use	by	completely	
hiding	 the	 platform-specific	 details	 of	 the	 wireless	 nodes	 used	 by	 experimenters.	 This	
implies	that	WiSHFUL	nodes	are	offered	with	a	pre-defined	set	of	high-level	configuration	
capabilities	 and	 radio	 programs	 (implementing	 different	 protocols	 and	 transceivers)	 that	
can	 be	 selected	 by	 experimenters.	 Moreover,	 technology-specific	 functions	 are	 offered	
with	 a	 unified	 interface	 working	 on	 heterogeneous	 platforms.	 Examples	 of	 technology-
specific	 functionalities	 include	 the	configuration	of	operation	modes	and	parameters	 that	
depend	 on	 a	 given	 standard,	 such	 as	 the	 configuration	 of	 the	 RTS	 threshold	 for	 a	 node	
based	on	the	IEEE	802.11	technology.					

• Path	 2	 (white-box	 approach):	 offers	 full	 flexibility,	 and	 hence	 requires	 more	 expert	
knowledge	 because	 it	 allows	 to	 access	 platform-specific	 functionalities.	 Examples	 of	
platform-specific	functionalities	are	compiling	a	new	radio	program	for	nodes	based	on	the	
Wireless	MAC	Processor	or	Time	Annotated	Instruction	Set	Computer	(TAISC)	architecture,	
or	configuring	a	new	waveform	for	nodes	based	on	software	defined	radio.		

UPI_R	interface	has	been	designed	by	following	an	iterative	approach:	the	black-box	functionalities	
have	been	implemented	during	Y1	and	refined	during	Y2	on	the	basis	of	the	requirements	emerged	
during	the	realization	of	the	showcases;	the	white-box	functionalities	have	been	fully	implemented	
during	Y2.	Rather	than	presenting	a	differential	description	of	the	new	UPI_R	functions	developed	
during	Y2,	we	decided	 to	prepare	 this	deliverable	as	an	 inclusive	document,	 in	which	 the	current	
state	of	the	UPI_R	interface	is	described	as	a	whole	with	the	complete	list	of	supported	functions.	
Details	 about	 the	 implementation	 of	 UPI_R	 interface	 are	 provided	 in	 this	 document	 for	 new	
functions	and	radio	platforms,	and	in	D3.2	for	functions	implemented	in	Y1.		

The	 rest	of	 the	document	 is	organized	as	 follows.	 First,	we	present	 the	 radio	platforms	currently	
included	in	the	WiSHFUL	framework,	by	detailing	the	device	class	and	the	hardware	and	software	
architecture	of	each	one.	We	then	present	the	abstraction	of	 these	programmable	platforms	 in	a	
common	 programming	 model.	 Second,	 we	 describe	 the	 UPI_R	 interface,	 by	 differentiating	 the	
general,	 technology-specific	 and	 white-box	 functionalities.	 Third,	 we	 provide	 some	 examples	 of	
UPI_R	utilization.	Finally,	we	draw	our	conclusions	about	the	Y2	design	phase.		
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2 General	 description	 of	 Y2	 release	 of	 the	 WiSHFUL	 radio	 control	
architecture		

In	 this	 section,	 we	 provide	 a	 high-level	 description	 of	 the	 WiSHFUL	 framework	 for	 controlling		
programmable	wireless	nodes	by	means	of	unified	interfaces.	The	framework	allows	orchestrating	
the	utilization	of	both	the	UPI_R	and	UPI_N	 interfaces	at	a	global	and	 local	 level,	 thus	supporting	
dynamic	 adaptations	 of	 the	 wireless	 nodes	 according	 to	 the	 aggregation	 of	 radio	 parameters	
monitored	by	different	nodes	and	estimates	of	the	network	state.		

Figure	1	shows	how	the	WiSHFUL	architecture	supports	a	two-tier	control	hierarchy	and	interacts	
with	wireless	nodes	based	on	heterogeneous	radio	platforms	(namely,	IRIS,	TAISC	and	WMP):	one	
global	Monitoring	and	Configuration	Engine	 (MCE)	orchestrates	 several	 remote	MCEs	 residing	on	
each	wireless	 node	 of	 the	 testbed.	 The	global	MCE	 provides	monitor	 and	 configuration	 services	
that	 can	 be	 used	 by	 the	 experimenter	 to	 write	 a	Global	 Control	 Program	 (GCP),	 controlling	 the	
behaviour	 of	 the	 solution	 under	 test	 by	means	 of	 the	UPI_G	 interface.	On	 the	 other	 hand,	 local	
control	programs	running	on	 local	MCEs	control	single	devices	by	means	of	the	UPI_R	and	UPI_N	
interfaces,	 respectively	 for	 radio	 and	 network	 control.	 The	 same	UPI_R	 and	UPI_N	 functions	 are	
exposed	on	the	heterogeneous	platforms	by	means	of	adaptation	modules.	This	unified	approach	
unloads	the	experiment	from	the	burden	to	deal	with	a	multiplicity	of	configuration	and	utility	tools	
(e.g.	iw,	iwconfig,	iptables,	iwlist,	iperf,	b43fwdump,	etc).	

	

	
		Figure	1		-	WiSHFUL	architecture,	UPIs	and	supported	platforms	

	

While	the	detailed	description	of	the	WiSHFULframework	is	provided	in	the	companion	deliverable	
D4.4,	 in	 this	 document	we	describe	 the	 general	 concepts	 and	 implications	 for	 the	 control	 of	 the	
lower	layers	of	the	wireless	nodes,	which	include	the	hardware	systems	integrated	into	the	nodes	
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(transceivers,	antennas,	sensors,	etc.)	and	the	relevant	software	architectures	devised	to	drive	the	
hardware	systems.				

We	 refer	 to	 a	 hardware	 system	 and	 relevant	 software	 modules	 exposing	 a	 configuration	 UPI	
interface	and	abstract	programming	model	as	platform.	This	definition	generalizes	the	concept	of	
radio	 platform	 to	 any	 hardware	 system,	 which	 does	 not	 necessarily	 include	 a	 radio	 transceiver	
(such	 as	 intelligent	 antennas	 or	 measurement	 sensors)	 and	 can	 be	 added	 to	 wireless	 nodes	 for	
providing	new	capabilities.	According	to	this	vision,	a	wireless	node	can	be	equipped	with	multiple	
platforms,	 including	 at	 least	 one	 radio	 platform	 providing	 communication	 capabilities;	 all	 the	
platforms	are	orchestrated	as	a	whole	by	 the	WiSHFUL	control	programs	running	on	the	wireless	
node.		

For	 clarifying	 this	 concept,	 in	 Figure	 2	 we	 consider	 an	 exemplary	 wireless	 node	 (e.g.	 a	 multi-
technology	gateway),	which	integrates	heterogeneous	hardware	technologies,	such	as	ZigBee,	WiFi	
and	 a	 configurable	 antenna	 system,	 and	 the	 relevant	 software	 architectures.	 Thanks	 to	 the	
adaptation	 modules	 available	 for	 each	 platform,	 the	 node	 exposes	 to	 WiSHFUL	 the	 aggregated	
capabilities	in	a	list	of	available	UPI	functions.	The	functions	abstract	the	specific	node	architecture	
and	 just	provide	experimenter	the	possibility	to	communicate	with	ZigBee	and	WiFi	nodes	and	to	
steer	 the	 antenna	 beam	 in	 a	 desired	 direction.	 The	 experimenter	 exploits	 the	 complete	 list	 of	
supported	functions	for	writing	the	desired	control	program.		

	

			
Figure	2	-	Example	of	wireless	node	supporting	three	different	platforms.	

	

2.1 Supported	Platforms		
The	WiSHFUL	framework	allows	the	control	of	heterogeneous	classes	of	devices	(micro-controller	
devices,	general-purposes	devices	and	software	defined	radio)	and	radio	technologies	by	means	of	
unified	 interfaces	 and	 control	 models	 available	 for	 some	 reference	 platforms.	 In	 particular,	 the	
initial	set	of	reference	platforms	(supported	at	the	end	of	Y1)	are:	 i)	 the	Wireless	MAC	Processor	
(WMP)	 architecture,	 that	 has	 been	 conceived	 for	 programmable	 wireless	 nodes	 in	 local	 area	
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networks	and	has	been	implemented	on	top	of	a	legacy	IEEE	802.11	card	by	Broadcom;	ii)	the	Time	
Annotated	 Instruction	 Set	 Computer	 (TAISC)	 architecture,	 that	 has	 been	 conceived	 for	 sensor	
nodes	and	developed	on	 top	of	RM090	 [4]	 sensor	nodes;	 iii)	 the	 IRIS	architecture,	 that	has	been	
conceived	for	wireless	nodes	exploiting	SDR	capabilities	and	has	been	developed	on	top	of	host	PCs	
connected	to	Universal	Software	Radio	Peripherals	(USRPs);	iv)	the	Atheros	platform,	that	extends	
the	WiSHFUL	UPI	to	commercial	off-the-shelf	IEEE	802.11	Atheros	cards.		

During	Y2,	apart	from	the	refinements	of	previous	interfaces	and	adaptation	modules,	we	worked	
for	supporting	the	WiSHFUL	UPI	and	control	models	on	two	additional	platforms:	i)	the	GNU	radio	
architecture,	for	providing	an	alternative	platform	supporting	software-defined	radio	capabilities;	ii)	
the	Reconfigurable	Antenna	Systems	(RAS),	which	is	a	platform	of	programmable	antennas,	able	to	
configure	the	radiation	pattern	in	the	azimuth	plan.	This	last	platform	has	been	classified	as	a	non-
radio	platform,	because	it	does	not	provide	radio	communication	capabilities.	Moreover,	the	TAISC	
architecture	 and	 the	WMP	 architecture	 have	 been	 extended	 for	 working	 on	 SDR,	 while	 the	 IRIS	
adaptation	module	has	been	extended	for	supporting	a	widest	set	of	UPI_R	functions.	

Note	 that	 a	 given	 wireless	 technology	 can	 be	 supported	 by	 different	 radio	 platforms.	 i.e.	 by	
different	hardware	and	drivers.	For	example,	the	WiSHFUL	UPI	are	available	for	IEEE	802.11	nodes	
based	 on	 commercial	 interfaces	 (namely,	 the	 Atheros	 cards),	 commercial	 interfaces	 with	
customized	 non-standard	 firmware	 (namely,	 the	Wireless	MAC	 Processor),	 and	 software	 defined	
radios.	 While	 some	 UPI_R	 functionalities	 are	 technology-agnostic,	 some	 others	 refer	 to	 specific	
technologies	 and	 therefore	 it	 is	 important	 to	 know	which	 technologies	 are	 supported	by	 a	 given	
platform	 for	accessing	 these	 functionalities.	Consequently,	we	categorized	 the	 radio	platforms	as	
WiFi,	LTE,	and	Lowpan	(IEEE	802.15.4)	platforms,	according	to	the	wireless	technologies	that	can	be	
supported.	Figure	3	shows	a	graphical	representation	of	UPI_R	functions	grouped	according	to	the	
technology	 they	 refer	 to:	 the	 common	 intersection	 represents	 the	 technology-agnostic	
functionalities.	

	
Figure	3	–	Graphical	representation	of	UPI_R	functionalities	supported	by	different	platforms.			

	

WiSHFUL	 also	 abstracts	 the	 radio	 platform	 programming	 model,	 in	 terms	 of	 generic	 execution	
engine	and	 radio	programs.	According	 to	 this	model,	each	 radio	platform	offers	 the	possibility	 to	
load	several	MAC/PHY	programs,	already	available	for	experimenters	in	the	WiSHFUL	repository,	or	
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to	 define	 novel	 wireless	 protocols	 and	 radio	 behaviors	 by	 means	 of	 high-level	 programming	
languages.	

Table	1provides	a	summary	of	the	platforms	that	are	currently	supported	in	WiSHFUL	at	the	end	of	
Y2	 activities.	 We	 will	 also	 present	 the	 complete	 list	 of	 available	 UPIs	 in	 Section	 3,	 whose	
implementation	details	were	provided	in	D3.2	for	the	platforms	already	available	in	Y1,	and	in	this	
deliverable	for	the	new	platforms.		

Module	name	 Description	

WMP	 WMP	follows	a	programming	model	that	decouples	the	Medium	Access	
Control	protocol	logic	(described	in	an	abstract	form	via	eXtended	Finite	
State	Machines	–	XFSM)	from	the	wireless	device	design,	 implementing	
the	radio	primitives	as	well	as	an	XFSM	execution	engine	called	“Wireless	
MAC	processor”	[2].	The	core	of	the	architecture	is	an	execution	Engine	
capable	of	running	programs	defined	as	eXtended	Finite	State	Machines	
(XFSMs).	The	WMP	is	implemented	on	a	Broadcom	AirForce54G	wireless	
card	and	 (partially)	 on	 a	 SDR	 platform	 (namely,	 the	WARP	board).	 The	
original	 platform	 based	 on	 AirForce54G	 chipset	 (supporting	 IEEE	
802.11b/g	standard)	is	fully	described	in	Deliverable	2.1,	Section	2.3	and	
the	UPI_R	implementation	for	WMP	is	fully	described	in	deliverable	D2.2	
section	3.2.	

TAISC	 TAISC	 (Time-Annotated	 Instuction	 Set	 Computer)	 consist	 of	 a	 cross-
platform	 MAC	 protocol	 compiler	 and	 execution	 engine	 [1].	 The	 cross-
compilation	approach	allows	developers	to	design	MAC	protocols	once,	
and	 then	 compile	 them	 for	 reuse	 on	 different	 radio	 platforms.	 This	
approach	 has	 been	 successfully	 implemented	 for	 IEEE	 802.15.4	 MAC	
protocols	 on	embedded	wireless	nodes	 (RM090	and	Zolertia	RE-Mote)	
and	on	a	Xilinx	Zynq-based	SDR	platform.	This	platform	is	fully	described	
in	deliverable	D2.1	Section	2.2	and	the	UPI_R	implementation	for	TAISC	
is	fully	described	in	deliverable	D2.2	Section	3.3.	

IRIS	 IRIS	 is	 a	 software	 defined	 radio	 framework	 that	 allows	 users	 to	 design	
and	 construct	 radios	 from	 the	 composition	 of	 user	 defined	 signal	
processing	blocks.	 The	processing	blocks	of	 IRIS	 are	written	 in	C++	and	
run	on	the	general	purpose	processor	of	a	computer	with	a	Linux	based	
operating	 system.	 This	 computer	 is	 then	 interfaced	 to	 a	 universal	
software	 radio	 peripheral	 (USRP)	 frontend	 device,	 which	 handles	 the	
radio	 frequency	 aspects	 of	 the	 radio,	 which	 are	 limited	 to	 basic	 up	 or	
down	 conversion	 and	 minor	 filtering	 in	 the	 typical	 case.	 The	 Y1	
implementation	 of	 this	 platform	 is	 fully	 described	 in	 deliverable	 D2.1	
section	 2.1	 and	 the	UPI_R	 implementation	 for	 IRIS	 is	 fully	 described	 in	
deliverable	D2.2	section	3.4.		

Atheros	platform	 Atheros-based	 IEEE	 802.11	 platform	 is	 a	 Commercial	 off-the-shelf	 IEE	
802.11	 compliant	 chip	 on	 a	 Linux	 platform.	 Following	 the	 Software-
defined	networking	(SDN)	paradigm	we	separate	the	control	plane	from	
the	 data	 plane	 and	 provide	 an	 API	 to	 allow	 local	 or	 global	 control	
programs	to	configure	the	channel	access	function.	In	particular	we	allow	
configuring	 the	 airtime	 sharing	 protocol	 access	 like	 define	 the	 number	
and	size	of	time	slots	in	which	the	transmission	is	enabled.	Moreover,	for	
each	 time	 slot	 a	 medium	 access	 policy	 can	 be	 assigned	 which	 allows	
restricting	the	medium	access	 for	particular	stations	 (identified	by	their	
MAC	address)	and	traffic	identification	(e.g.	VoIP	or	video).	The	latter	can	
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be	 used	 to	 program	 flow-level	 medium	 access.	 The	 UPI_R	
implementation	 for	 Atheros	 platform	 is	 fully	 described	 in	 deliverable	
D2.2	section	3.5.	More	details	can	be	found	in	[3].	

GNU	radio	 GNU	Radio	 is	 a	 free	 software	 development	 toolkit	 that	 provides	 signal	
processing	 blocks	 to	 implement	 software-defined	 radios	 and	 signal-
processing	systems.	It	can	be	used	with	external	compatible	RF	hardware	
in	 order	 to	 deploy	 SDR	 transceiver,	 moreover	 GNU	 Radio	 allows	 to	
deploy	 innovative	 solutions	 in	 simulation-like	 environment.	 The	 UPI	
functions	 implementation	 for	 this	 platform	 is	 described	 in	 the	 section	
3.3.1	of	this	deliverable.	

RAS	antenna	 The	 Reconfigurable	 Antenna	 Systems	 (RAS)	 has	 been	 developed	 in	 the	
Open	Call	1	extension	of	the	WiSHFUL	project.	The	antenna	is	capable	of	
steering	 the	 radiation	 pattern	 dynamically	 on	 demand	 from	 typical	
omnidirectional	 to	directional	shape	 in	the	azimuth	plane.	RAS	antenna	
is	 fully	 supported	 from	WiSHFUL	 that	 provides	 UPI	 function	 to	 set	 the	
antenna	direction.	

Table	1	-	WiSHFUL	supported	platforms	

	

2.2 Adaptation	Modules	
In	the	initial	WiSHFUL	architecture,	we	started	from	the	assumption	that	each	wireless	node	would	
have	been	built	on	top	of	a	single	radio	platform.	For	this	reason,	adaptation	modules	(also	called	
connector	modules)	were	designed	for	mapping	the	generalized	UPI	interface	into	platform-specific	
function	calls,	thus	hiding	the	implementation	details	of	each	platform	to	experimenters.		

This	view	has	been	generalized	during	Y2	activities,	by	considering	that	wireless	nodes	can	integrate	
heterogeneous	platforms:	i)	exposing	different	hardware	capabilities	and	software	functions,	and	
ii)	 supporting	 standard	 and/or	 non-standard	 radio	 technologies.	 To	 cope	 with	 this	 generalized	
view,	 we	 revised	 the	 WiSHFUL	 architecture	 by	 allowing	 the	 definition	 of	 multiple	 adaptation	
modules	 in	the	same	wireless	node,	thus	decoupling	the	wireless	node	capabilities	from	a	specific	
radio	platform.	The	UPI	interface	exposed	by	a	wireless	node	is	given	by	the	collection	of	functions	
supported	 by	 the	 adaptation	 modules,	 which	 have	 been	 installed	 for	 driving	 the	 available	
platforms.	 Moreover,	 the	 concept	 of	 adaptation	 modules	 have	 been	 further	 generalized	 for	
addressing	the	purely	software	architectures	implementing	the	higher	layers	of	the	protocol	stack,	
such	as	the	operating	systems	or	the	traffic	source	generators.	In	other	words,	adaptation	modules	
provide	a	set	of	UPI	functions	available	in	a	given	wireless	node	because	of	the	installed	platforms,	
operating	 system	 and	 software	 tools.	 The	 complete	 list	 of	 loaded	 adaptation	 modules	 and	
capabilities	for	each	node	are	reported	to	the	control	program	by	the	monitoring	and	configuration	
engine	(MCE).	Indeed,	only	the	UPI	functions	presented	in	the	loaded	modules	can	be	called	by	the	
control	program.	All	the	local	MCEs	and	adaptation	modules	are	implemented	in	Python	except	for	
Contiki	 sensor	 nodes	 where,	 in	 addition	 to	 the	 Python	implementation	 residing	 on	 a	 host	 linux	
PC,	also	 a	 native	 C	 software	 module	 exists	that	 is	 used	 as	 an	 interface	 to	 the	 GITAR	 (Generic	
extension	 for	 Internet-of-Things	 Architectures)	 reconfiguration	 services	 on	 the	 node	 [5].	 GITAR	
middleware	offers	a	generic	solution	to	integrate	a	vertical	control	plane	within	the	protocol	stack	
of	constrained	sensor	devices	and	it	is	detailed	in	deliverable	D4.4.	
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Figure	4	–	Connector	modules	versus	new	WiSHFUL	adaptation	modules	

	

Figure	 4	 shows	 an	 example	 of	 wireless	 node,	 with	 multiple	 loaded	 adaptation	 modules	 (on	 the	
right)	and	compare	it	with	the	Y1	architecture	where	a	single	connector	module	was	responsible	of	
hiding	 platform-specific	 details.	 In	 the	 new	 architecture,	 modules	 refer	 both	 to	 hardware	 radio	
platforms	(devicemodules,	such	as	the	WMP	Module)	and	to	protocols	(protocol	modules,	such	as	
WiFi).	

The	 configuration	 of	 the	 wireless	 node	 is	 given	 by	 the	 specification	 of	 the	 device	 and	 protocol	
modules	to	be	loaded,	which	are	addressed	in	yaml	format.	As	an	example,	we	provide	in	Table	2	a	
node	 configuration	 file	 with	 two	 device	 modules,	 wishful_module_wifi_wmp	 and	
wishful_module_ras_antenna,	 and	 one	 protocol	 module	 wishful_module_iperf.	 The	 MCE	
framework	implementation	is	named	node	agent	and	the	relative	configuration	file	is	named	node	
agent	config.	Consequently,	the	MCE	running	on	the	node	exposes	only	the	UPI	functions	provided	
by	these	three	modules.	

	

 
## WiSHFUL node agent config file 
 
agent_info: 
  name: 'ras_antenna_test' 
  info: 'node for testing RAS antenna system' 
  iface: 'eth0' 
 
modules: 
  wlan: 
      module : wishful_module_wifi_wmp 
      class_name : WmpModule 
 
  ras: 
      module : wishful_module_ras_antenna 
      class_name : RasAntennaModule 
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  iperf: 
      module : wishful_module_iperf 
      class_name : IperfModule 
 

Table	2	–	Module	configurations	in	a	WiSHFUL	wireless	node	

	

The	 following	 Table	 3	 reports	 the	 complete	 list	 of	 platform	 and	 protocol	 modules	 provided	 by	
WiSHFUL,	with	a	brief	description	of	the	supported	functionalities.	The	whole	documentation	of	the	
adaptation	modules	is	included	in	the	WiSHFUL	code	repository.	

Module	name	 Description	

module_wmp	 This	 is	 the	 implementation	 of	 the	 WMP	 adaptation	 module,	
providing	the	Unified	Programming	 Interfaces	(UPIs)	 	 for	WMP	
radio	platform	control.	

https://github.com/wishful-project/module_wifi_wmp	

module_taisc	 This	 is	 the	 implementation	 of	 the	 TAISC	 adaptation	 module,	
providing	 the	 Unified	 Programming	 Interfaces	 (UPIs)	 for	 the	
TAISC	radio	platform	control.	

https://github.com/wishful-project/module_contiki	

module_iris	 This	 is	 the	 implementation	 of	 the	 IRIS	 adaptation	 module,	
providing	the	Unified	Programming	Interfaces	(UPIs)	for	the	IRIS	
radio	platform	control.	

https://github.com/wishful-project/module_iris	

module_ath	 This	 is	 the	 implementation	of	 the	Atheros	 adaptation	module,	
providing	 the	 Unified	 Programming	 Interfaces	 (UPIs)	 for	 the	
Atheros	radio	platform	control.	

https://github.com/wishful-project/module_wifi_ath	

module_gnuradio	 This	 is	 the	 implementation	 of	 the	 GNU	 radio	 adaptation	
module,	 providing	 the	 Unified	 Programming	 Interfaces	 (UPIs)	
for	the	GNU	radio	platform	control.	

https://github.com/wishful-project/module_gnuradio	

module_ras_antenna	 This	 is	 the	 implementation	 of	 the	 RAS	 antenna	 adaptation	
module,	 providing	 the	 Unified	 Programming	 Interfaces	 (UPIs)	
for	the	RAS	antenna	platform	control.	

https://github.com/wishful-project/module_ras_antenna	

module_wifi	 This	 is	 the	 implementation	 of	 the	 WiFi	 adaptation	 module	
providing	 the	 Unified	 Programming	 Interfaces	 (UPIs)	 for	
controlling	WiFi	technology.	.	

https://github.com/wishful-project/module_wifi	

module_lte	 This	 is	 the	 implementation	 of	 the	 LTE	 adaptation	 module	
providing	 the	 Unified	 Programming	 Interfaces	 (UPIs)	 for	 the	
controlling	LTE	technology..	

https://github.com/wishful-project/module_lte	

Table	3	–	List	of	adaptation	modules	
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3 General	UPI_R	functions		
The	 UPI_R	 interface	 is	 responsible	 of	 configuring	 and	 monitoring	 the	 platforms	 available	 in	 the	
wireless	nodes	according	to	an	abstraction	model	of	the	platform	capabilities	and	behaviors.	Radio	
platforms	are	abstracted	 into	a	 list	of	parameters	 that	 can	be	 tuned,	measurements	 that	 can	be	
collected	from	the	hardware,	and	radio	programs	that	can	define	the	logic	for	driving	time	critical	
operations.	 Examples	 of	 UPI_R	 functions	 for	 radio	 platforms	 include	 spectrum	 allocations,	
transceiver	configurations,	 link	set-up,	 statistic	collections,	definition	of	medium	access	 logic,	and	
virtualization.	The	main	functions	provided	by	this	interface	are	organized	into	three	groups	dealing	
with	 three	main	goals:	configuring	 the	platform,	at	both	 the	hardware	and	 radio	program	 levels,	
monitoring	 the	node	and	network	conditions	by	accessing	all	the	signals	and	internal	state	of	the	
platforms,	adapting	 on-the-fly	 the	node	behavior	by	 loading	and	activating	 context-specific	 radio	
programs.	 By	means	 of	 the	 UPI_R	 interface,	 the	WiSHFUL	 framework	 implements	 network-wide	
aggregation	 of	 radio	 parameters	 for	 estimating	 the	 overall	 network	 context	 and	 can	 enforce	
intelligent	adaptation	decisions	in	the	network.		

UPI_R	functions	are	unified	across	heterogeneous	radio	platforms	because	the	network	controllers	
can	 access	 these	 functions	 in	 the	 same	 way	 and	 with	 the	 same	 parameters	 regardless	 of	 the	
specific	 device	 class	 of	 the	 wireless	 nodes.	 The	 unified	 functions	 can	 be	 further	 divided	 into	
general	 functions,	 which	 do	 not	 depend	 on	 the	 specific	 wireless	 technology	 supported	 by	 the	
nodes,	 and	 technology-specific	 functions,	 which	 deal	 with	 specific	 MAC/PHY	 protocols	 but	 are	
agnostic	 of	 their	 implementation.	 In	 this	 section,	 we	 describe	 the	 abstractions	 used	 for	 the	
definition	of	UPI_R	and	the	complete	list	of	general	(technology-independent)	functions	developed	
during	Y1	and	Y2.		

	

3.1 WiSHFUL	Radio	capability	
The	UPI_R	interface	is	able	to	monitor	and	configure	the	radio	behavior	thanks	to	the	abstraction	of	
the	hardware	platform	and	radio	programs	in	terms	of	Radio	Capabilities.	In	D3.1,	we	defined	two	
different	 types	 of	 radio	 capabilities:	 Parameters	 (in	 reading/writing	 mode),	 and	 low-level	
Measurements	 (in	 reading	 mode	 only).	 The	 parameters	 specify	 the	 parametric	 configuration	
interface	exposed	by	the	hardware	and	the	global	variables	of	 the	radio	program	loaded	 into	the	
platform.	Examples	of	global	variables	of	radio	programs	are	the	contention	windows	for	a	CSMA	
radio	 program	 or	 the	 frame	 size	 and	 slot	 allocation	 for	 a	 TDMA	 radio	 program.	 The	 low-level	
measurements	report	the	internal	state	of	the	hardware	or	the	variable	state	of	the	radio	program	
loaded	 into	 the	platform.	Examples	of	measurements	are	 the	 signal	 strength	of	 the	 last	 received	
packet	 or	 the	 number	 of	 experienced	 retransmissions.	 Summarizing,	 the	 parameters	 are	
configurable	 variables	 that	 influence	 how	 the	 platform	 or	 the	 radio	 program	 work,	 while	 the	
measurements	are	variables	that	trace	how	the	platforms	or	the	radio	program	evolve.	
	
The	 list	 of	 radio	 capabilities	 is	 intrinsically	 extensible	 because	 they	 depend	 on	 software	 and	
hardware	 releases,	 which	 are	 continuously	 updated.	 However,	 we	 define	 a	 core	 set	 of	 basic	
capabilities,	which	are	represented	by	a	pre-defined	list	of	identifiers.		

Table	 4	 provides	 the	 list	 of	 basic	 parameters	 corresponding	 to	 the	 configuration	 registers	 of	 the	
hardware	 platforms	 provided	 in	 WiSHFUL	 and	 to	 the	 variables	 used	 in	 some	 reference	 radio	
programs	(namely,	TDMA	and	CSMA).	
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NAME	 DESCRIPTION	

TX_POWER		 Transmission	power	in	dBm	
TX_Antenna		 Antenna	number	selected	for	transmission	
RX_Antenna	 Antenna	number	selected	for	reception	
NETWORK_INTERFACE_HW_ADDRESS	 MAC	address	of	wireless	network	interface	card	
TDMA_SuperFrameSize	 Duration	of	periodic	frames	used	for	slot	allocations		
TDMA_NumberOfSyncSlots	 Number	of	slots	included	in	a	frame	
TDMA_AllocatedSlot	 Assigned	slot	
TDMA_MAC_PRIORITY_CLASS	 QUEUE	class	service	associated	with	TDMA	radio	

program	
CSMA_BackoffValue	 CSMA	backoff	value	
CSMA_CW	 CSMA	current	value	of	the	Contention	Window		
CSMA_CWmin	 CSMA	minimum	value	of	the	Contention	Window	
CSMA_CWmax	 CSMA	maximum	value	of	the	Contention	Window	
CSMA_timeslot	 CSMA	duration	of	the	backoff	slot		
CSMA_eifs	 CSMA	duration	of	the	EIFS	time	
CSMA_difs	 CSMA	duration	of	the	DIFS	time	
CSMA_sifs	 CSMA	duration	of	the	SIFS	time	
CSMA_MAC_PRIORITY_CLASS	 QUEUE	class	service	associated	with	CSMA	radio	

program	

Table	4	-	List	of	UPI_R	core	parameters	

	

Table	5	provides	the	list	of	basic	measurements	with	the	relevant	identifier	and	description.	These	
measurements	 provide	 information	 and	 statistics	 about	 the	 state	 of	 the	 physical	 links	 or	 the	
internal	state	of	the	node.	Also	the	list	of	measurements	is	extensible.		

NAME	 DESCRIPTION	

RSSI	 Received	Signal	Strength	Indication	(RSSI);	it	refers	to	the	last	
received	frame	in	dBm.	

SNR	 Signal-to-noise	ratio	(SNR)	of	the	last	received	frame	in	dB.	

LQI	 Link	Quality	Indicator	(LQI)	
FER	 Frame	Erasure	Rate	(FER)	
BER	 Bit	Error	Rate	(BER)	

NUM_GOOD_PREAMBLE	 Number	of	preambles	correctly	synchronized	by	the	receiver.	

NUM_BAD_PREAMBLE	 Number	of	receiver	errors	in	synchronizing	a	valid	preamble.	

NUM_GOOD_PLCP	 Number	of	valid	PLCP	synchronized	by	the	receiver.	

NUM_BAD_PLCP	 Number	of	wrong	PLCP	errors	triggered	by	the	receiver.	

NUM_GOOD_CRC	 Number	of	success	of	CRC	checks.	
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NUM_BAD_CRC	 Number	of	failures	of	CRC	checks.		

NUM_TX	
	

Total	number	of	transmitted	frames	measured	since	the	
interface	has	been	started	
	

NUM_TX_DATA_FRAME	
	

Total	number	of	transmitted	frames	measured	since	the	
interface	has	been	started	
	

NUM_TX_SUCCESS	
	

Total	number	of	successfully	transmitted	frame	measured	
since	the	interface	has	been	started	
	

NUM_RX	
	

Total	number	of	received	frames	since	the	interface	has	been	
started	
	

NUM_RX_ACK_RAMATCH	
	

Total	number	of	received	frames	addressed	to	the	node	since	
the	interface	has	been	started.	
This	measurement	traces	the	number	of	received	frame	in	
which	the	receiver	address	field	matches	with	the	
network	interface	card	MAC	address	
	

NUM_RX_ACK	
	

Total	receive	ack	frame	measured	since	the	interface	has	been	
started	
	

NUM_RX_SUCCESS	
	

Total	number	of	successfully	transmitted	frame	measured	
since	the	interface	has	been	started	
	

CSMA_NUM_FREEZING_COUNT	
	

Total	number	of	freezing	during	the	backoff	phase	

BUSY_TYME	
	

Time	interval	in	which	the	transceiver	has	been	active	
(including	reception,	transmission	and	carrier	sense).	

TX_ACTIVITY	
	

Time	interval	in	which	the	transceiver	has	been	involved	in	
transmission.	

LOW	LEVEL	TIME	 Time	provided	by	platform	chipset	

Table	5	-	List	of	UPI_R	core	measurements	

	

3.2 WiSHFUL	UPI	Radio	Functions	List	
This	section	reports	the	complete	list	of	UPI_R	functions	developed	during	the	first	and	second	year	
of	project	activities.	In	particular,	on	the	basis	of	user	feedback	and	requirements	emerged	during	
the	 showcase	 implementation,	we	performed	a	 few	minor	updates	on	 the	 list	described	 in	D3.2.	
Some	 changes	 were	 required	 in	 order	 to	 harmonize	 the	 UPI_R	 implementation	 between	 the	
different	 platforms	 and	 better	 clarify	 their	 usage.	 About	 this	 second	 aspect,	 as	 detailed	 in	 the	
following	Table	6,	we	decided	to	add	some	functions,	which	explicitly	refer	to	the	parameters	they	
are	working	on,	rather	than	using	the	generic	set/get	functions.			

Table	6	shows	the	UPI	Radio	complete	list:	for	each	function,	we	detail	the	current	function	name	
and	parameters,	the	list	of	platforms	that	support	them,	and	the	old	version	of	the	function	(if	any).	
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Function	 Supported	platforms	 Old	version	

set_parameters	 All	radio	platforms	 No	change	

get_parameters	 All	radio	platforms	 Not	change	

get_measurements	 All	radio	platforms	 get_monitor	

get_measurements_periodic	 All	radio	platforms	 get_monitor_bounce	

subscribe_events	 All	radio	platforms	 define_event	

activate_radio_program	 All	radio	platforms	 set_active	

deactivate_radio_program	 All	radio	platforms	 set_inactive	

get_running_radio_program	 All	radio	platforms	 get_active	

get_radio_platforms	 All	radio	platforms	 No	change	

get_radio_info	 All	radio	platforms	 No	change	

set_tx_power	 All	radio	platforms	 NEW		

get_tx_power	 All	radio	platforms	 NEW		

get_noise	 All	radio	platforms	 NEW		

configure_radio_sensitivity	 All	radio	platforms	 NEW		

configure_cca_threshold	 All	radio	platforms	 NEW		

set_rx_channel	 All	radio	platforms	 NEW		

get_rx_channel	 All	radio	platforms	 NEW		

set_tx_channel	 All	radio	platforms	 NEW		

get_tx_channel	 All	radio	platforms	 NEW		

set_rx_bandwidth	 All	radio	platforms	 NEW		

set_tx_bandwidth	 All	radio	platforms	 NEW		

set_rx_antenna	 All	radio	platforms	 NEW		

set_tx_antenna	 All	radio	platforms	 NEW		

get_hwaddr	 All	radio	platforms	 NEW	

get_airtime_utilization	 All	radio	platforms	 NEW	

perform_spectral_scanning	 Atheros	platform	 NEW	

get_csi	 Atheros	platform	 NEW	

set_sas_conf	 RAS	antenna	 NEW	

Table	6	-	Complete	list	of	UPI_R	general	functions	

	

From	 the	 previous	 table	 we	 can	 observe	 that	 UPI_R	 functions	 support	 two	 different	 styles	 for	
reading	and	configuring	relevant	parameters	of	the	MAC/PHY	stack.	On	one	side,	as	considered	in	
Y1,	 UPI_R	 provides	 two	 common	 get_parameter/set_parameter	 functions	 and	 the	 common	
get_measurements,	 in	which	 the	 capabilities	 parameters	 and	measurements	 are	 given	 as	 a	 (key,	
value)	for	monitoring	and	enforcing	configuration	value.	On	the	other	side,	in	Y2,	we	added	a	list	of	
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monitor	and	configuration	 functions,	whose	name	has	been	differentiated	 for	directly	addressing	
the	 radio	parameter	 controlled	by	each	 function.	This	 choice	has	been	motivated	by	 the	need	of	
keeping	backward	compatibility	with	Y1	implementation,	and	improving	code	readability	with	self-
explaining	function	names.					

As	an	example,	assume	that	experimenter	wants	to	read	the	Channel	State	 Information	(CSI)	 in	a	
OFDM-based	 radio	 platform.	 The	 same	 result	 can	 be	 obtained	 by	 calling	 the	
get_measurements(csi_key)	function	or	the	get_csi()	 function.	Figure	5	shows	the	results	of	these	
calls,	 by	 plotting	 per	 OFDM	 subcarrier	 and	 RX	 antenna	 SNR	 estimated	 from	 the	 Channel	 State	
Information	 (CSI)	 in	 a	 real	 link.	We	 see	 that	 link	 is	 frequency-selective	 (up-to	 10	 dB	 for	most	 rx	
antennas).	Moreover,	there	is	a	large	difference	between	the	best	antenna	and	the	worst	antenna.	

	
Figure	5.	SNR	per	OFDM	subcarrier	and	RX	antenna	(color)	estimated	from	CSI	of	10	consecutive	packets.	

	

3.3 Enhancements	in	existing	platforms	and	new	implementation	
As	 anticipated	 in	 section	 2,	 we	 refer	 to	 a	 hardware	 system	 and	 relevant	 software	 modules	
exposing	 a	 configuration	 UPI	 interface	 and	 abstract	 programming	 model	 as	 platform.	 This	
definition	 generalizes	 the	 concept	 of	 radio	 platform	 to	 any	 hardware	 system,	 which	 does	 not	
necessarily	 include	a	radio	transceiver	(such	as	 intelligent	antennas	or	measurement	sensors)	and	
can	be	added	to	wireless	nodes	for	providing	new	capabilities.	

During	 Y2,	we	 extended	 the	 original	 platforms	 supported	 by	WiSHFUL	 and	 integrated	 two	more	
platforms	 into	 the	 project:	 an	 additional	 software-defined	 radio	 platform,	 which	 is	 a	 de-facto	
reference	 platform	 for	 the	 research	 community	 working	 on	 SDR,	 and	 an	 configurable-antenna	
platform,	which	has	been	integrated	as	an	Open	Call	extension.	

	

3.3.1 TAISC	SDR	framework	and	Zolertia	RE-Mote	(AVR	CPU)	based	platforms	
TAISC	 (Time-Annotated	 Instruction	 Set	 Computer)	 is	 an	 architecture	 for	 designing,	 implementing	
and	runtime	configuration	of	flexible	MAC	schemes.	A	MAC	scheme	can	be	designed	by	composing	
a	 TAISC	 chain.	 A	 TAISC	 chain	 is	 defined	 as	 a	 sequence	 of	 instructions	 with	 one	 optional	 time	
reference	instruction.	The	TAISC	architecture	annotates	each	instruction	of	a	TAISC	chain	(stored	in	
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the	program	memory)	with	timing	information	(both	execution	time	and	offset	with	respect	to	the	
time	reference).	To	optimize	time	synchronisation,	all	instructions	are	packed	before	and	after	the	
reference	instruction.	TAISC	packs	every	instruction	in	the	time	domain	with	respect	to	the	time	it	
needs	to	finalize.	By	using	the	timing	 information	 in	the	TAISC	 instruction	set,	 the	TAISC	compiler	
can	compile	a	non	time-aware	chain,	written	in	a	C	dialect,	into	a	time-aware	TAISC	binary.	For	this	
purpose,	the	TAISC	compiler	will	translate	one	or	more	chains	into	a	byte	code	(binary)	and	add	the	
time	annotation	to	every	instruction.	Since	the	timing	information	depends	on	the	radio	hardware	
platform,	this	information	is	also	stored	in	the	TAISC	library	and	used	by	the	TAISC	compiler	when	
compiling	 for	a	specific	 target.	 It	 is	hence	possible	 to	compile	 the	same	chain	 into	different	 radio	
hardware	platform	specific	binaries.	After	compilation,	the	TAISC	binary	 is	ready	to	be	added	and	
executed	by	 the	TAISC	execution	engine	where	 the	 lower	MAC	protocol	 is	executed.	To	 this	end,	
the	 TAISC	 binary	 needs	 to	 be	 uploaded	 into	 the	 TAISC	 execution	 engine	 via	 the	 management	
interface.	

Major	 refactoring	was	 needed	 in	 order	 to	 port	 TAISC	 into	 an	 AVR	 based	 platform	 and	 keep	 the	
ability	 to	 integrate	 it	within	CONTIKI	 as	 a	MAC	 layer	 protocol	 implementation.	 TAISC	was	 closely	
coupled	with	the	hardware	modules	of	the	MSP430	processor	that	is	used	in	the	RM090	mote,	the	
first	sensor	node	platform	TAISC	was	supporting,	so	a	redesign	of	TAISC	including	the	definition	of	a	
generic	southbound	interface	to	the	HAL	(Hardware	Abstraction	Layer)	of	any	specific	platform	was	
required.		

	

a. North-bound	interfaces	
General	interfaces	of	TAISC	are	the	DATA,	Management	and	Control	interfaces.	Data	and	Control	is	
always	 exposed	 through	 the	 Upper	 Mac	 implementation	 of	 a	 specific	 MAC	 protocol,	 while	
Management	 is	 a	 TAISC	 core	 interface.	 All	 interfaces	 and	 how	 they	 are	 actually	 exposed	 to	 the	
upper	layer	are	described	in	the	next	paragraphs.		

The	Management	 plane	 interface	 provides	 functionality	 to	 upload	 and/or	 activate	 new	 compiled	
MAC	protocols.	This	interface	is	minimalistic	for	now	and	has	only	two	main	functions	ClearAll	and	
Append	in	order	to	avoid	fragmentation	of	the	TAISC	ROM.	With	the	ability	to	have	multiple	MACS	
enabled,	 there	 is	 also	 a	 SetActive	 function	 that	 enables	 the	 selected	 MAC	 to	 run.	 One	 of	 the	
consequences	of	this	minimalistic	approach	is	that	all	upperMACs	will	always	need	to	store	a	local	
copy	 of	 the	 lowerMAC	 and	 provide	 it	 in	 case	 the	 TAISC	 ROM	 needs	 to	 be	 repopulated	 after	 a	
ClearAll.	

The	 data	 plane	 interface	 interacts	 with	 incoming/outgoing	 frames	 from/to	 the	 upperMAC.	 The	
upperMAC	must	always	expose	the	functionality	of	this	interface	to	the	upper	layer	in	order	to	be	
able	to	send	and	receive	data	to/from	it.		

The	control	interface	provides	the	upperMAC	access	to	the	lowerMAC	specific	variables	which	are	
stored	 in	 GPRAM	 section	 in	 the	 TAISC	 RAM.	 This	 interface	 is	 also	 exposed	 to	 the	 user	 by	 the	
upperMAC	with	GET/SET_parameter	 type	 of	 functions	 in	 order	 for	 the	 user	 of	 the	MAC	 to	 have	
access	 to	 alter	 parameters	 of	 the	 lowerMAC	 implementation.	 It	 is	 up	 to	 the	 implementer	 of	 the	
upperMAC	to	decide	which	parameters	of	the	lowerMAC	will	be	exposed	to	the	MAC	layer	user.		

We	 distinguish	 two	main	 discrete	 cases	where	 the	 interface	 of	 a	 developer	working	 on	 TAISC	 is	
different	and	it	of	course	varies	because	due	to	a	white	box	approach	the	developer	may	choose	to	
work	 in	 different	 levels	 of	 TAISC.	 So	 the	 developer	may	 choose	 to	write	 a	 new	MAC	 or	 he	may	
choose	to	go	deeper	and	try	to	enhance	the	TAISCparser	for	instance.		Those	2	cases	are	presented	
below	and	of	course	the	list	is	not	exhaustive.	We	present	those	examples	to	make	clear	that	in	a	
white	box	approach,	TAISC	interfaces	change	based	on	the	software	level	the	developer	wishes	to	
work	on.		Following	the	white	box	approach	we	also	present	an	example	of	a	developer	going	into	
TAISC,	to	present	what	is	considered	for	him	a	northbound	interface	of	TAISC.		
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Case	1.	Writing	a	MAC 

In	 order	 to	 write	 a	MAC	 protocol	 in	 TAISC,	 a	 number	 of	 instructions	 are	 made	 available	 to	 the	
protocol	 developer	 by	 the	 different	 modules	 in	 TAISC.	 The	 developer	 should	 chain	 those	
instructions	 together	 in	 order	 to	 create	 a	 functioning	 MAC	 protocol.	 Example	 instructions	 per	
module	are:	

• Core	module: 
o stop(TAISC_relBigTimestampT	duration):	stops	the	execution	of	the	current	chain,	

and	reschedules	the	chain	in	“duration”	µs. 
o loadChain(TAISC_ChainIDT	id,	TAISC_relBigTimestampT	timeOffset):	loads	the	chain	

with	given	id	in	“timeOffset”	µs. 
o report(TAISC_sizeT	size,	TAISC_ReportIDT	id,	TAISC_dataT	data,	TAISC_boolT	

byVal):	reports	a	given	variable	to	the	upper	layers. 
• Arithmetic	module: 

o add(TAISC_sizeT	size,	TAISC_dataT	a,	TAISC_dataT	b,	TAISC_dataT	c):	adds	b	and	c	
and	places	the	result	in	a. 

o copy(TAISC_sizeT	size,	TAISC_dataT	dst,	TAISC_dataT	src,	TAISC_dataT	mask):	
copies	src	to	dst,	given	a	certain	mask 

o random(TAISC_absBigTimestampRWT	rand_value,	TAISC_absBigTimestampT	
min_value,	TAISC_absBigTimestampT	max_value):	generates	a	random	value	
between	a	min	and	max 

• Data	plane	module: 
o rxTrigger():	triggers	the	upper	layer	that	a	packet	has	been	received 
o txTrigger():	triggers	the	upper	layer	that	a	packet	has	been	transmitted. 

• Radio	module: 
o on():	puts	the	radio	in	“on”	modus 
o setChannel(TAISC_channelT	channel):	sets	the	current	channel	of	the	radio 
o tx():	transmits	the	current	packet 

The	protocol	developer	can	create	one	(or	more)	chains	for	a	specific	MAC	protocol.	A	good	rule	of	
thumb	 is	 to	 put	 all	 time	 critical	 operations	 in	 a	 chain	 (lower	 MAC),	 and	 the	 less	 time	 critical	
operations	in	the	upperMAC.	

	

Case	2.	Using	a	MAC	

To	use	a	MAC	protocol	in	an	operating	system,	the	correct	interfaces	should	be	initialised.	In	order	
to	achieve	 this,	 TAISC	needs	 to	be	presented	as	a	 virtual	MAC	protocol	 to	Contiki	with	 the	 same	
interfaces	 as	 other	 Contiki	 MAC	 protocols	 (send	 packet,	 receive	 packet,	 input	 packet,	 etc).	 This	
interfacing	happens	 in	the	so	called	TAISC	upperMAC	which	 is	responsible	for	all	non-time	critical	
operations,	 as	well	 as	 getting/setting	 of	 parameters	 in	 the	 TAISC	 chain.	 Northwards	 it	 interfaces	
with	 the	 Contiki	 operating	 system,	 southwards	 it	 interfaces	 with	 TAISC	 via	 one	 if	 its	 control	
interfaces	(dataplane,	control	plane	and	management).		

Example	functionality	from	upperMAC	to	TAISC	contains: 
• taiscAPI__Init__init:	initialise	TAISC	and	start	the	execution	of	the	first	chain. 
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• taiscAPI__taiscControlplane__assign:	will	update	a	variable	in	TAISC	with	a	given	value 
• taiscAPI__taiscControlplane__startChain:	starts	the	execution	of	a	given	chain.	In	most	

cases	this	will	be	an	configuration	chain	which	is	responsible	to	start	the	specific	TAISC	MAC	
protocol. 

Example	functionality	from	TAISC	to	upperMAC	contains: 
• taiscAPI__taiscDataplane__handledTxBufferDone:	transmission	has	been	completed	

(initiated	from	the	the	txTrigger	instruction	in	a	TAISC	chain) 
• taiscAPI__taiscDataplane__completedDataBuffer:	packet	has	been	received	(initiated	from	

the	the	rxTrigger	instruction	in	a	TAISC	chain) 
• taiscAPI__taiscControlplane__report:	report	a	specific	value	to	the	upper	layer	(initiated	

from	the	the	report	instruction	in	a	TAISC	chain) 

•  
The	general	architecture	of	TAISC	is	presented	so	that	any	developer	wishing	to	enhance	a	specific	
aspect	of	TAISC	can	do	so	based	on	this	architecture	presentation.	TAISC	is	a	hardware	concept	but	
it	 has	 been	 implemented	 as	 a	 VM	 (virtual	 machine)	 so	 far.	 Like	 any	 other	 ISC	 (Instruction	 Set	
Computer)	TAISC	has	a	 logic	unit,	which	fetches	the	 instruction	out	of	the	ROM	and	executes	the	
instruction,	which	could	manipulate	the	RAM.	The	compiled	instructions	which	are	fed	to	the	TAISC	
core	are	TA	(Time	Annotated)	and	will	be	executed	accordingly	(which	is	on	time).		

	

	
Figure	6	-	TAISC	architecture	

	

The	explicit	North-bound	 interfaces	of	 the	VM	are	 shown	 in	Figure	6	which	 include	data,	 control	
and	management	control	interfaces.		

If	a	developer	decides	to	work	on	the	TAISCParser	level	and	wants	to	either	enhance	the	parser	or	
create	a	new	one,	then	for	him	the	northbound	interface	of	TAISC	will	be	specific	implementation	
details	like:	
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• the	binary	format	used	to	store	the	compiled	instructions	in	the	ROM	

o TAISCParser	compiles	any	platform-independent	MAC	chains	 (which	are	MAC	protocols	
coded	using	platform-independent	instructions)	into	platform-specific	binaries	according	
to	the	defined	binary	format.			

o the	 compiler	 uses	 a	 library	 with	 platform-specific	 execution	 times	 of	 the	 instructions	
regarding	the	underlying	platform	the	structure	of	the	TAISC	RAM	(see	Figure	6)	and	the	
data	types	used	in	the	TAISC	MACs		and	defined	by	TAISC	chains	

o the	endianness	and	the	data	size	of	the	data	types	used	in	the	MACs	must	be	compatible	
on	 all	 TAISC	 VM	 instances	 and	 independent	 of	 the	 underlying	 platform.	 For	 instance,	
different	 sensor	platforms	 in	WiSHFUL	have	 the	 same	endianness,	 but	 a	different	data	
size:	

• MSP430	(on	RM090):		little	endian	16	bit	CPU	
• ARM	Cortex-M3	(on	Zolertia	RE-Mote):	little	endian	32	bit	CPU	

• LED	and	Logic	Analyzer	interfaces	(used	for	debugging	purposes)	which	are	compatible	on	all	
TAISC	VM	instances	

o 16	GPIOs	are	selected	on	the	target	platform	to	observe	the	TAISC	activities	via	a	Logic	
Analyzer	 like:	 instruction	 and	 chain	 envelope,	 radio	 off,	 sleep,	 on,	 reception,	
transmission,	etc.	

	

b. South-bound	interfaces	
The	 next	 section	 describes	 how	 to	 maximize	 code	 reusability	 while	 porting	 the	 VM	 to	 another	
underlying	 platform.	 The	 architecture	 redesign	 of	 TAISC	 can	 be	 seen	 in	 Figure	 7	 (rm090	 specific	
object	monolithic	architecture)	and	Figure	8	(redesigned	generic	object	modular	architecture)	and	
is	explained	in	detail	hereafter.		

In	 Figure	 7	 the	 contents	 of	 the	 TAISC	 software	 library	 for	 the	 RM090	 platform	 in	 Contiki	 OS	 is	
presented.	 It	 contains	hardware	 specific	 implementations	 targeting	 timer,	 SPI,	DMA,	and	CC2520	
wireless	transceiver	drivers.	Further,	the	utilities	used	for	TAISC	debugging	through	Logic	Analyser	
and	LED	drivers	are	integrated	in	this	software	library.	

We	 achieved	 the	migration	 of	 the	 TAISC	 VM	 (virtual	machine)	 from	 a	 RM090	 platform	 (MSP430	
based)	written	in	Tinyos,	to	a	modular	architecture	by	applying	a	generic	redesigning		approach	in	
order	to	be	able	to	port	it	in	the	future	to	any	target	platform.	Of	course	there	are	always	still	some	
platform	specific	issues	especially	regarding	the	radio	driver	which	most	of	the	times	won’t	provide	
immediately	all	the	advanced	functionality	that	TAISC	requires	from	it.	 In	Figure	8	we	present	the	
case	for	the	ARM	based	platform	that	we	targeted,	the	CC2538	wireless	microcontroller	system-on-
chip	module,	but	the	approach	is	similar	for	any	other	platform	(and	OS):	

o A	 number	 of	 South	 bound	 interfaces	 are	 defined	 to	 address	 all	 hardware	 specific	
implementations	as	external:	

• the	TAISC	core	scheduler	South	bound	interface	should	contain	the	following	functions,	the	
last	one	is	a	call-back	which	has	an	implementation	in	the	TAISC	core.	

error_t taiscAPI__taiscAlarmInit__init(void); 

void taiscAPI__taiscAlarm__start(uint32_t scheduleAt); 

uint32_t taiscAPI__taiscAlarm__getNow(); 

uint32_t taiscAPI__taiscAlarm__getAlarm(); 

void taiscAPI__taiscAlarm__fired(); 
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Figure	7	-	Contents	of	TAISC	library	object	when	targeting	MSP430	CPU	

	

	
Figure	8	-	Contents	of	the	new	generic	TAISC	library	object	
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• in	order	to	address	the	radio	as	an	external	module,	all	radio	module	specific	interfaces	are	
defined	as	external:	

o realTimeBufferManagement	

command void getRxBuffer(uint8_t ** msg, TAISC_DPFrmSizeT * size); 

command void getTxBuffer(uint8_t ** msg, TAISC_DPFrmSizeT * size); 

command void rxBufferReady(uint8_t * msg, TAISC_DPFrmSizeT  size, 
TAISC_conditionT autoTrigger); 

command void txBufferLoaded(uint8_t * msg, TAISC_conditionT 
autoTrigger); 

o Instruction	and	Event	Bus	

command TAISC_bitMAPTlocal filter(TAISC_bitMAPT f); 

command void clearFilter(); 

event void trigger(TAISC_bitMAPT t, TAISC_relBigReferenceT 
timeInfo); 

o Data	bus	(no	specific	interface	needed	as	RAM	is	shared	resource).	

• All	hardware	specific	implementations	reside	on	the	target	platform	(in	Contiki	OS)	like	

o the	 radio	 module(s),	 which	 will	 need	 DMA	 and	 hardware	 specific	 implementations	
targeting	the	RF	part	of	the	CC2538.	

o the	TAISC	core	 scheduler	driver	 implementation	on	 the	CC2538	 is	written	on	 top	of	 its	
MAC	timer.	The	CC2538	system	clock	is	32MHz	and	the	TAISC	resolution	is	1	μs.	The	MAC	
Timer	has	a	16	bit	lower	part	which	is	configured	to	divide	the	system	clock	to	1MHz	and	
the	 24	 bit	 overflow	 part	 of	 the	 MAC	 timer	 will	 be	 used	 to	 store	 the	 3	 LSBs	 (lowest	
significant	 bytes)	 of	 the	 32bit	 TAISC	 timer.	 This	 implies	 that	 the	MSB	 (most	 significant	
byte)	 is	 tracked	 in	software.	We	would	have	expected	a	performance	gain	on	 the	ARM	
Cortex	M3	compared	to	the	msp430	with	respect	to	the	databus	(32bit	versus	16bit)	and	
system	 clock	 (32MHz	 versus	 16MHz).	 But	 the	 hardware	 coupling	 from	 the	 ARM	 CPU	
towards	 the	RF	part	 is	done	by	an	8-bit	data	bus.	The	expected	performance	gain	 is	 in	
reality	lost	due	to	the	poor	hardware	coupling.		

o LEDs	and	the	logic	analyser	drivers	which	are	used	for	debugging	purposes.	

As	the	TAISC	core	becomes	Tinyos-independent	there	 is	no	need	to	create	a	new	Tinyos	platform	
per	 target	 platform.	 The	 TAISC	 core,	 arithmetic	 and	 data	 plane	 modules	 are	 compiled,	 due	 to	
cascading	nesC	and	the	target	platform	compiler,	to	a	C	software	 library	compatible	to	the	target	
platform.	The	target	platform	linker	bonds	this	TAISC	core	software	library	(taisc.o)	with	the	rest	of	
the	Contiki	code.	This	approach	can	be	applied	to	any	IoT	platform	and	implies	code	reusability	of	
the	TAISC	core	modules.		

	

c. Design	refactor	actions	on	the	TAISC	core	during	Y2	
Besides	many	 little	things	to	make	the	TAISC	more	performant	and	stable,	the	first	three	refactor	
actions	had	a	very	big	impact	on	the	stability	and	the	code	size	of	the	TAISC	core:	

c.1 Moving	from	auto	grab	towards	instruction	based	frame	grab	implementation	
The	term	grab	is	used	in	the	context	of	getting	a	received	frame	out	of	the	radio	part	and	transfer	it	
to	 the	 CPU	 where	 the	 TAISC	 core	 is	 running.	 The	 implementation	 used	 during	 Y1	 of	 WiSHFUL	
scheduled	 the	 transaction	automatically	based	on	a	specific	 interrupt	 triggered	by	 the	radio	part.	
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But	at	the	same	time	the	TAISC	core	could	be	executing	an	instruction	and	also	imply	a	transaction	
towards	the	radio	part,	for	example	changing	the	transmission	power.	An	arbiter	was	implemented	
to	handle	multiple	transactions	coming	from	multiple	concurrent	processes	and	sequence	them	in	
the	order	as	they	were	invoked.	The	arbiter	has	been	optimized	a	few	times,	and	seems	to	have	a	
big	 impact	on	 the	execution	 time,	and	even	worse	 its	execution	was	not	deterministic.	 Further	 it	
could	conflict	with	a	running	MAC.	For	example:	a	 frame	comes	 in	and	the	MAC	decides	that	the	
radio	 should	 go	 into	 a	 sleep	 mode.	 Until	 now	 it	 was	 the	 responsibility	 of	 the	MAC	 designer	 to	
always	keep	a	window	open	to	handle	the	auto	grab	functionality.	By	moving	this	trigger	from	an	
interrupt-based	 trigger	 to	 an	 instruction-based	 execution	 it	 had	 a	 big	 positive	 impact	 on	 the	
stability	and	code	size	of	the	TAISC	core:	

• radio	 interrupts	 are	 no	 longer	 state-full.	 MAC	 designers	 don't	 need	 to	 keep	 track	 on	 the	
number	of	 transactions	 that	are	needed	to	get	all	 received	 frames	out	of	 the	radio.	Before	
this	 refactoring,	 missing	 an	 interrupt	 could	 result	 in	 a	 TAISC	 core	 that	 was	 no	 longer	
synchronized	with	the	radio	state.	

• There	is	no	longer	need	for	the	arbiter	that	keeps	tracks	on	the	radio	transactions	as	there	is	
only	one	process,	 the	TAISC	 core,	which	 initiates	 the	 transactions	with	 the	 radio.	 It	 is	 now	
possible	 to	 have	 a	 flat	 implementation	 towards	 the	 radio	 without	 storage	 (queuing)	 and	
related	functions.		

• The	MAC	designer	has	now	complete	control	over	when	and	how	the	radio	transactions	are	
taken	 place	with	 the	 “grabframe”	 instruction.	 The	 drawback	 is	 of	 course	 is	 that	 the	MACs	
need	 to	 be	 alerted	 for	 incoming	 frames.	One	 advantage	 is,	 if	 the	MAC	 is	 not	 interested	 in	
receiving	a	frame	it	can	flush	the	frame	in	the	radio	itself	instead	of	first	transferring	it	to	the	
data	plane	and	then	drop	it.	

c.2 Only	enable	interrupts	when	needed	
This	refactoring	is	related	to	the	previous	refactoring,	where	we	designed	interrupts	to	be	no	longer	
state-full,	meaning	 that	 interrupts	 can	 be	 turned	 off	 if	 no	 longer	 needed.	 By	 doing	 so,	 the	 radio	
instructions	are	further	optimized	and	have	lower	execution	time.	We	activate	the	interrupts	when	
requested	by	the	“waitForTrigger”	instruction.	For	example	if	the	MAC	designer	wants	to	wait	until	
the	medium	becomes	idle	an	according	interrupt	is	enabled.	This	refactoring	has	an	impact	not	only	
on	the	real	nodes	but	also	in	the	Cooja	environment	(see	section	5.3),	and	more	specifically	relaxes	
the	CPU	overhead	while	debugging.	

c.3 Handle	radio	exceptions	during	the	stop	instructions	
Radio	 exceptions	 inform	 us	 about	 unexpected	 radio	 activity,	 for	 example	 if	 the	 radio	 is	
demodulating	 an	 incoming	 frame	 and	 the	 MAC	 decides	 to	 disable	 the	 RF	 part	 of	 the	 radio	 by	
invoking	an	“idle”	instruction.	In	this	specific	case	the	radio	will	throw	an	aborted	frame	exception	
which	needs	to	be	handled	and	cleaned	up.	Before	this	refactoring,	we	scheduled	this	exception	as	
soon	as	possible,	which	resulted	in	non-deterministic	execution	of	the	following	instructions.	Now	
we	 handle	 the	 radio	 exception	 during	 the	 “stop”	 instruction	 and	 this	 has	 only	 an	 impact	 on	 the	
latter.		

c.4 Introduce	a	fake	event:	onEventStoreTimeStamp	
The	TAISC	core	always	stored	 the	 timestamp	for	every	event.	As	 these	 timestamps	are	only	used	
occasionally	we	added	a	fake	event	“onEventStoreTimeStamp”	in	order	to	inform	the	TAISC	core	to	
also	store	the	timestamp	when	the	mentioned	event	triggers.	This	results	in	minor	optimization	of	
the	 execution,	 but	 it	 implies	 that	 we	 only	 need	 one	 register	 to	 store	 the	 timestamp	
(“storedTimestamp”).	Before	this	refactoring	we	had	TAISC	registers	for	“startOfFrameTimestamp”,	
“endOfFrameTimestamp”	and	“mediumChangedTimestamp”	as	well.	
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c.5 Resize	TAISC	event	bitmap	
As	 the	 number	 of	 events	 is	 only	 14,	 we	 scaled	 the	 data	 type	 used	 to	 store	 an	 event	 bitmap	
(“TAISC_bitMAPT”)	 from	 32	 to	 16	 bits.	 Which	 implies	 that	 all	 instructions,	 which	 include	 a	
parameter	 of	 this	 data	 type	 shrink	 by	 two	 bytes	 in	 the	 TAISC	 ROM	 and	 the	 fetching	 of	 these	
instructions	is	also	faster	now.		

	

3.3.2 IRIS	SDR	Framework	
In	 this	 section,	 we	 present	 the	 implementation	 details	 and	 capabilities	 provided	 through	 the	
integration	 between	 the	 WiSHFUL	 UPI_R	 and	 the	 IRIS	 SDR	 framework.	 This	 work	 has	 been	
developed	as	part	of	the	DVB-TX-IRIS	Open	Call	1	extension,	led	by	the	Department	of	Engineering	
of	the	University	of	Perugia	(UPG).	The	DVB-TX-IRIS	Open	Call	1	aims	at	designing	an	extension	of	
the	WiSHFUL	 framework	 that	 leverages	 the	 reconfiguration	 capabilities	 offered	 by	 modern	 SDR	
technology.	This	integration	work	can	be	summarized	into	the	following	phases:	

1. Extension	 of	 the	 IRIS	 SDR	 platform	 to	 support	 the	 reception	 of	 multiple	 asynchronous	
concurrent	control	events.	

2. Development	 of	 the	 appropriate	 UPI_R	 for	 the	 configuration	 of	 SDR	 parameters.	 This	
capability	was	tested	with	Ettus	USRP	N210	boards.	

3. Design	 of	 new	 modules	 and	 testing	 examples	 that	 enable	 the	 interconnection	 and	
configuration	on-the-fly	of	the	IRIS	SDR	framework	through	the	respective	UPI_Rs.	

	
We	 highlight	 that	 in	 this	 deliverable	 we	 are	 considering	 the	 definition	 of	 the	 UPI_R.	 Another	
important	 point	 is	 that	 the	 WiSHFUL	 projects	 focus	 is	 on	 the	 integration	 with	 the	 IRIS	 SDR	
implementation	 supported	 by	 the	 commercial	 radio	 front-end	 hardware	USRP	N210	 provided	 by	
Ettus	Company.	
	

a. Extension	of	the	IRIS	SDR	Framework	to	receive	multi-event	
The	 IRIS	 SDR	platform	enables	 the	development	of	PHY	and	MAC	 radio	 components	 in	 software,	
which	 support	 reconfiguration	 of	 radio	 components	 and	 parameters	 on-the-fly.	 The	 IRIS	 SDR	
platform	it	is	very	flexible.	As	components	are	developed	in	software,	any	part	of	the	radio	can	be	
reconfigured.	 However,	 it	 was	 necessary	 to	 redevelop	 the	 IRIS	 SDR	 to	 support	 receiving	 several	
reconfiguration	events	at	the	same	time.		

This	 extension	 was	 designed	 to	 give	 the	 DVB-TX-IRIS	 Open	 Call	 1	 team	 more	 options	 when	
performing	experiments.	The	previous	version	of	the	IRIS	SDR	framework	did	not	support	receiving	
multiple	events.	Figure	9	 illustrates	 the	original	scenario.	 In	 this	example	the	operator	sends	 four	
events.	However,	only	one	event	is	processed.	The	other	three	events	were	dropped.	

	
Figure	9	-	IRIS	SDR	Framework	receive	just	one	event	
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In	the	extension,	the	IRIS	SDR	Framework	allows	multiple	reconfiguration	events	to	be	received	at	
the	 same	 time.	 In	 Figure	 10	we	 illustrate	 this	 scenario.	 In	 this	 example,	 the	 operator	 sends	 four	
events.	 These	events	are	 received	and	put	 into	a	 FIFO	queue	before	being	processed	by	 the	 IRIS	
SDR	Framework.	

	
Figure	10	-	IRIS	SDR	Framework	receiving	multi-events	

	

b. Implementation	details	
In	order	 to	 run	 the	 IRIS	SDR	Framework,	an	XML	configuration	 file	 is	necessary.	This	 file	 tells	 the	
core	IRIS	program	what	engines	will	be	used	to	create	the	radio	SDR,	and	what	components	will	run	
within	the	engine.	 It	also	 includes	the	 initial	parameter	settings	 for	each	component.	An	example	
XML	configuration	file	for	a	simple	OFDM	transmitter	is	shown	in	Table	7.	
	
	

	
	

Table	7	-	XML	file	configuration	example	

The	 configuration	 example	 shows	 the	 specification	 of	 the	 controller	 class.	 This	 class	 supports	
reception	of	commands	to	dynamically	change	radio	components	and	parameters.	
	

c. Adaptation	Module	

According	 with	 the	 WiSHFUL	 IRIS	 SDR	 adaptation	 module	 implementation	 (Table	 8),	 the	
parameters	that	can	be	changed	by	the	WiSHFUL	framework	correspond	to	what	has	been	exposed	
by	 the	 radio	designer.	 This	 function	 sets	 the	 values	 of	 the	 specified	parameters	 in	 the	 argument	
passed.	
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@wishful_module.bind_function(upis.radio.set_frequency) 
    def set_frequency(self, frequency): 
        self.log.debug("IrisModule set_frequency: %s on interface: %s" 
                       % (frequency, self.interface)) 
        return self.generic_interact('set', 'frequency', frequency) 
 
@wishful_module.bind_function(upis.radio.set_rate) 
    def set_rate(self, rate): 
        self.log.debug("IrisModule set_frequency: %s on interface: %s" 
                       % (rate, self.interface)) 
        return self.generic_interact('set', 'rate', rate) 
 
@wishful_module.bind_function(upis.radio.set_gain) 
    def set_gain(self, gain): 
        self.log.debug("IrisModule set_frequency: %s on interface: %s" 
                       % (gain, self.interface)) 
        return self.generic_interact('set', 'gain', gain) 
         
@wishful_module.bind_function(upis.radio.set_bandwidth) 
    def set_bandwidth(self, bandwidth): 
        self.log.debug("IrisModule set_frequency: %s on interface: %s" 
                       % (bandwidth, self.interface)) 
        return self.generic_interact('set', 'bandwidth', bandwidth)         
 

Table	8	–	WiSHFUL	IRIS	SDR	adaptation	module	implementation	

	

The	 main	 IRIS	 configuration	 parameters	 are	 presented	 in	 the	 Table	 8.	 In	 this	 module,	 a	 server	
socket	is	created,	which	receives	commands	from	the	WiSHFUL	UPIs	that	are	passed	to	the	IRIS	SDR	
framework.	The	same	socket	 is	used	 to	send	a	 response	 from	 IRIS	 to	 the	WiSHFUL	UPIs.	Table	9	
shows	the	WiSHFUL	UPI	parameters	and	their	descriptions.	

Parameter	 Description	

set_frequency	 Configures	the	value	of	the	frequency	in	SDR.	
set_gain	 Configures	the	value	of	the	gain	in	SDR.	
set_	bandwidth	 Configures	the	value	of	the	bandwidth	in	SDR	
set_rate	 Configures	the	value	of	the	rate	in	SDR.	

Table	9	-	IRIS	SDR	Framework	UPI_R	specific	technology	functions	

	

d. Examples	
In	this	section	we	present	the	WiSHFUL	files	using	the	IRIS	SDR	Framework.	In	this	example,	we	use	
the	WiSHFUL	framework	to	configure	the	USRP	N210	frequency	parameter	on	the	fly.	

Table	10	 illustrates	the	 IRIS	agent	configuration.	 In	 this	agent	 (Agent_1)	 it	 is	necessary	to	run	the	
following	python	module	to	start	the	IRIS	WiSHFUL	agent:	wishful_module_iris.	

## WiSHFUL Agent config file 

agent_info: 

  name: 'agent_1' 

  info: 'agent_info' 

  iface: 'lo' 
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modules: 

  discovery: 

      module : wishful_module_discovery_pyre 

      class_name : PyreDiscoveryAgentModule 

      kwargs: {"iface":"lo", "groupName":"Iris_1234"} 

  iris: 

      module : wishful_module_iris 

      class_name : IrisModule 

      interfaces : ['iris']	

Table	10	-	Agent_config.yaml	file	with	the	configuration	example	

	

Table	11	illustrates	the	WiSHFUL	Controller	configuration	file.	The	controller	will	use	this	set	up	for	
on-the-fly	configuration	changes	in	the	IRIS	SDR	modules.	

 

## WiSHFUL Controller's config file 

controller: 

    name: "Controller" 

    info: "WiSHFUL Controller" 

    dl: "tcp://127.0.0.1:8990" 

    ul: "tcp://127.0.0.1:8989" 

modules: 

    discovery: 

        module : wishful_module_discovery_pyre 

        class_name : PyreDiscoveryControllerModule 

        kwargs: {"iface":"lo", "groupName":"Iris_1234", 
"downlink":"tcp://127.0.0.1:8990", "uplink":"tcp://127.0.0.1:8989"}	

Table	11	-	Controller_config.yaml	file	with	the	configuration	example	

	

Table	12	illustrates	the	WiSHFUL	Controller	code.	The	controller	waits	to	receive	commands	from	
the	 experimenter.	 When	 an	 IRIS	 node	 connects	 to	 the	 WiSHFUL	 Controller,	 it	 can	 receive	
configuration	commands	to	change	parameters	via	the	IRIS	radio.iface('iris')	interface.	
	
	

	
	

Table	12	-	The	WiSHFUL	Controller	file	with	the	configuration	example	(change	the	frequency	value).	
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The	complete	WiSHFUL	example	controller	and	agent	that	integrate	with	the	IRIS	SDR	is	available	at	
the	WiSHFUL	GitHub	repository	project:		

https://github.com/wishful-project/examples/tree/master/iris	
	

3.3.3 WMP	WARP	SDR	framework	
In	 this	 section,	 we	 present	 the	 implementation	 details	 and	 capabilities	 provided	 through	 the	
integration	 between	 the	 WiSHFUL	 UPI_R	 and	 the	 WMP	 implementation	 on	 the	 WARP	 SDR	
platform.	

The	WARP	v3	 research	platform	 is	a	FPGA-based	software-defined-radio	platform	that	provides	a	
Xilinx	Virtex-6	FPGA,	two	MAX2829	transceivers,	and	a	complete	IEEE	802.11	Reference	Design	that	
we	 used	 as	 a	 starting	 point	 for	 our	 implementation.	 As	 shown	 in	 the	 Figure	 11,	 the	 global	
architecture	of	this	research	board	can	be	divided	in	two	parts:	an	RF	hardware	interface,	given	by	
the	 transceiver	 (MAX2829),	ADC/DAC	chip	 (AD9963)	and	hardware	 for	 clocking	 (AD9512),	and	an	
FPGA	programmable	part	(Virtex-6	Xilinx).	

	

		
Figure	11	–	Architecture	of	the	WARP	research	board	

	

For	 this	 board,	 some	 implementations	 of	MAC/PHY	 stacks	 are	 already	 available.	 In	 particular,	 an	
IEEE	802.11g	MAC/PHY	stack	has	been	developed	under	the	name	of	IEEE	802.11	reference	design.	
The	 architecture	 is	 based	on	 two	MicroBlaze	processors	 and	 some	dedicated	 IP	 cores	 developed	
within	the	FPGA	board.		

As	 detailed	 in	 the	WARP	Project	 [6],	 the	 architecture	 includes:	 two	MicroBlaze	 CPUs,	 called	 CPU	
High	and	CPU	Low,	for	executing	respectively	upper-MAC	and	 lower-MAC	operations;	a	MAC	DCF	
core;	 two	 PHY	 cores,	 one	 for	 the	 transmission	 Tx	 and	 the	 other	 for	 the	 receiving	 Rx;	 Hardware	
Support	cores.	The	two	MicroBlaze	CPUs	run	the	MAC	protocol	(written	in	C)	according	to	the	usual	
upper-MAC	 and	 lower-MAC	 decomposition.	 Specifically,	 CPU	 High	 is	 responsible	 of	 network	
management	 operations	 (probe	 request/response,	 association	 request/response,	 etc.),	which	 are	
non-time-critical	 functionalities.	 It	 is	 also	 responsible	 of	 bridging	 operations	 to	 a	wired	 network,	
implementing	 encapsulation	 and	 de-encapsulation	 of	 Ethernet	 frames	 according	 to	 the	 wired-
wireless	 integration	 described	 in	 the	 IEEE	 802.11-2012	 standard.	On	 the	 other	 hand,	 CPU	 Low	 is	
responsible	 of	 PHY	 tuning	 and	 low-level	 MAC	 operations.	 These	 include	 transmission	 of	 ACKs,	
scheduling	of	backoffs,	maintaining	the	contention	window	and	initiating	re-transmissions.	There	is	
also	a	MAC	core	block,	which	acts	as	the	interface	between	the	MAC	software	and	the	Tx/Rx	PHY	
cores.	This	core	implements	the	timers	required	for	the	DCF	(timeout,	backoff,	DIFS,	SIFS,	etc.)	and	
the	employed	carrier-sensing	mechanisms.	The	MAC	core	monitors	the	Tx	and	Rx	PHY	cores	and	the	
relevant	 events	 trigged	 by	 these	 cores.	 PHY	 Tx/Rx	 cores	 implement	 the	 OFDM	 physical	 layer	
transceiver	 specified	 in	 the	 IEEE	 802.11-2012	 standard.	 The	 legacy	 IEEE	 802.11	 reference	 design	
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architecture	 includes	 some	 custom	 FPGA	 cores	 (dedicated	 to	 the	 implementation	 of	 the	 IEEE	
802.11g	 OFDM	 transceiver,	 the	 required	 timers,	 the	 carrier	 sense	 mechanism	 and	 the	 interface	
between	 the	 transmission	and	 reception	blocks)	 and	 two	MicroBlaze	CPUs	 running	 the	DCF	MAC	
protocol	(written	in	C)	according	to	the	usual	upper-MAC	and	lower-MAC	decomposition.		

a. Extension	WMP	SDR	Framework	
For	 integrating	 a	 WMP	 architecture	 based	 on	 WARP	 in	 WiSHFUL,	 we	 started	 from	 an	
implementation	developed	by	 the	CNIT	 research	group	within	other	projects	 (namely,	an	Open	
Call	 extension	of	 the	FP7	project	CREW).	However,	 this	 architecture	was	not	 integrated	 into	 the	
WiSHFUL	framework	and	was	not	able	to	exploit	more	advanced	flexibility	at	the	PHY	layer,	offered	
by	the	possibility	to	work	on	the	receiver	implementation.		

In	 our	 implementation,	we	 replaced	 the	 programs	 executed	 by	 the	 two	CPUs	with	 two	different	
programs:	the	high-level	one,	adding	the	WMP	control	interface	to	the	upper	MAC	functionalities,	
and	the	low-level	one	implementing	the	MAC	Engine	and	part	of	the	WMP	[2].	In	the	WMP	control	
interface,	 a	 server	 socket	 is	 created,	which	 receives	 commands	 from	 the	WiSHFUL	UPIs	 that	 are	
passed	to	the	WMP	SDR	platform.	The	same	socket	 is	used	to	send	a	response	from	WMP	to	the	
WiSHFUL	framework.		

Table	 13	 shows	 the	WiSHFUL	UPI	 functions	 implemented	and	 their	 descriptions.	 	We	also	 added	
some	other	blocks	for	supporting	a	dedicated	BRAM	to	store	radio	program,	the	relevant	controller,	
a	mutex	 for	 regulating	 the	 BRAM	 accesses	 performed	 by	 the	 high-level	 and	 low-level	 CPUs,	 and	
some	software	registers.		

	

Function	 Description	

set_parameters	 Setting	radio	parameter	

get_parameters	 Getting	radio	parameter	

activate_radio_program	 Active	radio	program	

deactivate_radio_program	 Deactive	radio	program	

get_running_radio_program	 Get	the	running	radio	program	

get_radio_platforms	 Get	the	radio	platform	available	

get_radio_info	 Get	the	radio	platform	capabilities	

set_tx_power	 Configures	the	value	of	the	TX	power	in	WMP	SDR	

configure_cca_threshold	 Configure	the	Clear	Channel	Assessment	

set_rxchannel	 Configures	the	value	of	the	RX	channel	in	WMP	SDR	

set_txchannel	 Configures	the	value	of	the	TX	channel	in	WMP	SDR	

set_rx_bandwidth	 Configures	the	value	of	the	RX	bandwidth	in	WMP	SDR	

set_tx_bandwidth	 Configures	the	value	of	the	TX	bandwidth	in	WMP	SDR	

set_gain	 Configures	the	value	of	the	gain	in	WMP	SDR.	

set_rate	 Configures	the	value	of	the	rate	in	WMP	SDR.	

Table	13	-	SDR	WARP	UPI	functions	
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b. Implementation	details	
In	order	to	support	more	advanced	flexibility	at	the	physical	layer,	which	include	also	non-standard	
configurations,	 we	 envisioned	 the	 possibility	 to	 tune	 dynamically	 the	 central	 frequency	 and	 the	
transmission	 bandwidth	 of	 the	 nodes,	 and	 to	 compose	 different	 transmitter	 and	 receiver	 chains	
from	pre-defined	 available	 blocks.	 These	 requirements	 imply	 the	 design	 of	 a	 novel	 engine	 and	 a	
novel	 OFDM-based	 transceiver	 architecture.	While	 the	 novel	 engine	 is	 simply	 programmed	 by	 a	
firmware	code	to	be	executed	by	the	low	CPU,	the	desired	transceiver	re-configurability	has	some	
implications	on	 the	hardware	architecture.	On	one	side,	 it	 is	possible	 to	exploit	 the	configuration	
capabilities	of	some	blocks	by	acting	on	the	hardware	registers,	which	correspond	to	the	tuning	of	
the	operation	parameters	enabled	from	WiSHFUL.		

More	 into	 details,	 for	 changing	 the	 carrier	 frequency	 it	 is	 possible	 to	 act	 on	 two	 registers	 in	 the	
MAX2829.	These	values	are	the	integer	part	and	the	fractional	part	of	a	parameter,	called		DIVIDER	
RATIO,	given	by	the	following	expression:	

𝐷𝐼𝑉𝐼𝐷𝐸𝑅 𝑅𝐴𝑇𝐼𝑂 =
𝐹!"#× 4
3×20

	

where	Freq	is	the	desired	central	frequency.	Both	the	integer	and	fractional	part	can	be	assigned	by	
setting	the	registers:	

𝑅𝐸𝐺3 = 𝐷𝐼𝑉𝐼𝐷𝐸𝑅_𝑅𝐴𝑇𝐼𝑂_𝐿𝑆𝐵| 𝐼𝑁𝑇(𝐷𝐼𝑉𝐼𝐷𝐸𝑅_𝑅𝐴𝑇𝐼𝑂) 
𝑅𝐸𝐺4 = 𝐹𝑅𝐴𝐶𝑇_𝐷𝐼𝑉𝐼𝐷𝐸𝑅_𝑅𝐴𝑇𝐼𝑂_𝑀𝑆𝐵 	

For	example,	 for	 the	 legacy	 IEEE	802.11b/g	channels,	 the	central	 frequencies	 can	be	obtained	by	
tuning	 the	 REG3	 and	 REG4	 registers	 to	 the	 values	 specified	 in	 the	 third/fifth	 column	 and	 fourth	
column	of	the	following	Table	14.		

	

	
Table	14	–	Tuning	of	the	transmission	carrier.	

	

For	 changing	 the	 transmission	 bandwidth,	 we	 exploited	 a	 multi-clock	 architecture	 for	 both	 the	
digital-to-analog	converters	and	the	modulator,	thus	enabling	the	scaling	of	the	OFDM	sub-carrier	
channels.	 The	digital	 to	 analog	 (DAC)	 converter	 is	 fed	by	 the	AD9512	 chip	 (see	Figure	11),	which	
gives	the	clock	reference	(clk_ref).	Therefore,	for	changing	the	converting	rate,	it	is	possible	to	work	
on	the	reference	clock.	The	clock	is	nominally	set	to	80MHz,	but	it	can	be	reduced	to	a	lower	rate	
thanks	 to	 a	divider	 integrated	 in	 this	 chip	with	 a	 configurable	 scaling	 factor	 (whose	 values	 range	
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from	 1	 to	 32).	 The	 outgoing	 clock	 can	 be	 again	managed	 inside	 the	 AD9963	 chip,	 following	 the	
formula:	

𝐶ℎ𝑎𝑛𝑛𝑒𝑙 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ =
(𝑐𝑙𝑘_𝑟𝑒𝑓×𝐷𝐿𝐿_𝑀)

(𝐷𝐿𝐿_𝑁×𝐷)
	

where	DLL_M	is	a	multiplier	factor,	DLL_N	is	a	divider	factor	and	D	is	the	interpolation	factor.	It	is	
important	that	clk_ref	x	DLL_M	must	be	greater	than	100MHz.	

In	order	to	support	the	selection	of	receive	bandwidths	and	channels,	we	implemented	a	receiver,	
able	to	filter	the	desired	signals	according	to	the	bandwidth	configured	by	the	UPI_R	function.	An	
extension	of	 this	 solution	 for	 automatically	 filtering	 the	 received	 signals	 by	using	 in-band	or	out-
band	signalling	mechanisms	is	currently	considered	within	another	research	project.		

	

c. Future	work	
As	soon	as	more	advanced	capabilities	will	be	supported	by	the	WMP	implementation	on	the	WARP	
SDR	board,	we	plan	 to	 integrate	 these	capabilities	 in	 the	UPI_R	adaptation	module.	For	example,	
we	 plan	 to	 integrate	 the	 possibility	 of	 configuring	 an	 agile	 receiver,	 able	 to	 autonomously	
identifying	 the	 bandwidth	 and	 the	 central	 frequency	 of	 the	 signals,	 and/or	 the	 possibility	 to	
configure	more	advanced	antennas.		

	

3.3.4 GNU	Radio	
This	section	describes	the	UPI_R	implementation	in	GNU	Radio.	After	a	short	introduction	on	GNU	
Radio,	this	section	is	organized	in	four	subsections	related	to	the	UPI_R	functions	that	perform	the	
radio	program	management.	

GNU	 Radio	 is	 an	 open-source	 software	 architecture	 that	 provides	 signal	 processing	 blocks	 for	
implementing	a	radio	transceiver	in	software,	by	means	of	the	so-called	flow	graphs.	It	can	be	used	
with	external	RF	hardware	(e.g.	USRP)	to	create	software-defined	radios,	or	without	hardware	in	a	
simulation-like	environment.	It	is	widely	used	for	wireless	communications	research	and	real-world	
radio	systems.	

	

a. Generic	Support	
We	 integrated	 GNU	 radio	 in	 WiSHFUL,	 by	 allowing	 an	 experimenter	 to	 write	 his	 own	 radio	
programs	using	GNU	Radio	and	to	control	it	by	using	the	WiSHFUL	framework.	To	this	purpose,	we	
developed	 a	 generic	 GNU	 Radio	 adaptation	 module	 shown	 in	 Figure	 12,	 which	 provides	 an	
implementation	 of	 four	 generic	 UPI_R	 functions:	 i)	 activate_radio_program(),	 ii)	
deactivate_radio_program(),	 iii)	 set_parameters()	 and	 iv)	 get_parameters().	 Hence,	 the	
experimenter	 is	able	to	activate	and	deactivate	a	GNU	Radio	program,	represented	as	a	GRC	XML	
file,	 on-the-fly.	Moreover,	with	 the	 help	 of	 the	 latter	 two	 generic	 functions,	 the	 experiment	 can	
introspect	the	state	of	the	program	represented	by	variables,	such	as	the	central	frequency	of	the	
transceiver.		
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Figure	12	-	WiSHFUL	device	modules:	A)	concept,	B)	module	to	support	GNU	Radio	

	

b. Acquiring	nodes	information	
Two	 functions	 are	 defined	 in	 this	 UPI_R	 group:	 get_radio_platforms()	 and	 get_radio_info().	 They	
allow	 acquiring	 the	 following	 information:	 i)	 present	 platforms	 on	 wireless	 node;	 ii)	 list	 the	
capabilities	of	the	node.	This	last	function,	in	turns	includes:	

• Supported	configuration	parameters	
• Measurements	node	capabilities	
• Available	radio	programs	(e.g.	CSMA,	TDMA)	
• 	

c. Configuring	nodes	
There	are	two	UPI_R	functions	in	this	group:	set_parameters	()	and	get_parameters	().	They	allow	
getting/setting	 the	 configuration	 parameters	 of	 the	 radio	 platform.	 The	 complete	 list	 of	
configuration	parameters	is	given	in	Section	3.1.	The	parameters	supported	by	GNU	Radio	platform	
can	be	retrieved	at	 runtime	using	 the	 function	get_radio_platforms().	The	 functions	of	 this	group	
use	the	custom	ctrl_socket	python	module	for	retrieving	GNU	Radio	specific	(NIC)	info.	

	

set_parameter(param_key_values):	

The	parameters	that	can	be	configured	correspond	to	those	exposed	by	the	radio	designer	to	the	
WiSHFUL	 framework.	 This	 function	 (re)set	 the	 value(s)	 of	 the	 specified	 parameters	 in	 the	
param_key_values	dictionary	argument.	The	keys	of	this	dictionary	are	the	parameter	names,	the	
values	are	the	configuration	values.	The	code	snippet	presented	in	Table	15	illustrates	how	this	 is	
done	in	this	platform.	
	
 
def set_parameter(self, **kwargs): 
    if self.gr_state == RadioProgramState.RUNNING or self.gr_state ==  
                                                       RadioProgramState.PAUSED: 
        self.init_proxy() 
        for k, v in kwargs.items(): 
            try: 
                getattr(self.ctrl_socket, "set_%s" % k)(v) 
            except Exception as e: 
                self.log.error("Unknown variable '%s -> %s'" % (k, e)) 
    else: 
        self.log.warn("no running or paused radio program; ignore command") 
 

Table	15	-	GNU	radio	set_parameter	UPI	implementation	
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get_parameters(param_keys):	

The	 parameters	 correspond	 to	 those	 exposed	 by	 the	 radio	 designer	 to	 the	WiSHFUL	 framework.	
This	 function	gets	 the	value(s)	of	 the	specified	parameter	keys	added	to	the	param_keys	 list.	The	
code	snippet	presented	in	Table	16	illustrates	how	this	is	done	in	GNU	Radio.	
	
 
def get_parameter(self, **kwargs): 
    if self.gr_state == RadioProgramState.RUNNING or self.gr_state ==    
                                                       RadioProgramState.PAUSED: 
        rv = {} 
        self.init_proxy() 
        for k, v in kwargs.items(): 
            try: 
                res = getattr(self.ctrl_socket, "get_%s" % k)() 
                rv[k] = res 
            except Exception as e: 
                self.log.error("Unknown variable '%s -> %s'" % (k, e)) 
        return rv 
    else: 
        self.log.warn("no running or paused radio program; ignore command") 
        return None 
 

Table	16	-	GNU	radio	get_parameter	UPI	implementation	

	

d. Monitoring	nodes	
There	are	two	UPI	functions	in	this	group:	get_measurements()	and	get_measurements_periodic().	
They	 allow	 obtaining	 (get_measurements)	 and	 collecting	 (get_measurements_periodic)	 the	
measurements	 values	 from	 the	 radio	 platform.	 The	 complete	 list	 of	 configuration	 parameters	 is	
listed	 in	 Section	 3.1.	 The	 parameters	 supported	 by	GNU	 Radio	 platform	 be	 retrieved	 at	 runtime	
using	 the	 function	 get_radio_info().	 The	 functions	 of	 this	 group	 use	 the	 custom	 ctrl_socket	
python	module	for	retrieving	GNU	Radio	specific	(NIC)	info.	

	

get_measurements	(	measurement_keys)	

This	 UPI_R	 function	 gets	 the	 current	 value(s)	 of	 the	 measurement	 values	 specified	 in	 the	
measurement	key	 list.	The	snippet	of	 code	presented	 in	Table	17	shows	 the	core	of	 the	 function	
implementation	in	GNU	Radio.	
	
 
def get_measurements (self, **kwargs): 
    if self.gr_state == RadioProgramState.RUNNING or self.gr_state ==    
                                                       RadioProgramState.PAUSED: 
        rv = {} 
        self.init_proxy() 
        for k, v in kwargs.items(): 
            try: 
                res = getattr(self.ctrl_socket, "get_measurement_%s" % k)() 
                rv[k] = res 
            except Exception as e: 
                self.log.error("Unknown measurement '%s -> %s'" % (k, e)) 
        return rv 
    else: 
        self.log.warn("no running or paused radio program; ignore command") 
        return None 
 

Table	17	-	GNU	radio	get_measurements	UPI	implementation	
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get_measurements_periodic(	 measurement_key_list,	 collect_period,	 report_period,	
num_iterations,	report_callback):	

This	UPI_R	function	enables	to	schedule	the	collection	of	the	measurement	values	specified	in	the	
measurement	 key	 list.	 The	measurements	 are	 collected	 every	 collect_period	 and	 reported	 every	
report_period.	 This	 is	 repeated	 a	 num_iterations	 number	 of	 times.	 For	 every	 report,	 the	
result_callback	is	called.		The	snippet	of	code	presented	in	Table	18	shows	the	core	of	the	function	
implementation	in	GNU	Radio.	
 
 
def get_measurements_periodic(self, measurement_key_list, collect_period, 
report_period, num_iterations, report_callback): 
   if self.gr_state == RadioProgramState.RUNNING or self.gr_state ==    
                                                       RadioProgramState.PAUSED: 
        self.init_proxy() 
        try: 
              thread.start_new_thread(self.ctrl_socket,  
    self.get_measurements_periodic_worker, (node, measurement_key_list,   
    collect_period, report_period, num_iterations, report_callback,)) 
     
        except Exception as e: 
                self.log.error("get_measurements_periodic %s" % e) 
        return  
    else: 
        self.log.warn("no running or paused radio program; ignore command") 
        return None 
 

Table	18	-	GNU	radio	get_measurements_periodic	UPI	implementation	

	

To	implement	this	functionality	by	using	the	ctrl_socket	python	module,	a	monitor	periodic	thread	
is	instantiated	containing	two	timer	threads.	The	first	of	these	timer	threads	collects	the	requested	
measurements	 every	 collect_period,	 by	 calling	 the	 get_measurements	 function	 discussed	 above	
and	adds	measurements	to	an	internal	queue.	The	second	timer	thread	reads	the	contents	of	this	
queue	every	report_period	for	delivering	measurements	to	the	defined	callback.		

	

e. Changing	the	radio	program	
This	section	describes	how	the	radio	program,	executed	in	GNU	Radio	platform,	can	be	changed	on-
the-fly	via	the	UPI_R	interface.		
	
activate_radio_program	(radio_program_name)	

This	 function	 activates	 the	 radio	 program	 with	 name	 grc_radio_program_name	 loaded	 into	 the	
GNU	 Radio	 engine.	 Each	 radio	 program	 is	 described	 by	 an	 GRC	 XML	 file.	 Furthermore	 the	
processing	 blocks	 employed	 by	 the	 radio	 program	 to	 be	 injected	must	 be	 available	 to	 the	 GNU	
Radio	engine	in	a	pre-compiled	form.	The	ctrl_socket	custom	python	module	 is	then	used	to	 load	
and	 activate	 the	 radio	 program.	 The	 code	 snippet	 presented	 in	 Table	 19	 illustrates	 the	
implementation	in	GNU	Radio.	
 
def active_radio_program(self, **kwargs): 
 
    # params 
    grc_radio_program_name = kwargs['grc_radio_program_name'] # name of the radio 
program 
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    if self.gr_state == RadioProgramState.INACTIVE: 
        self.log.info("Start new radio program") 
        self.ctrl_socket = None 
 
        """Launches Gnuradio in background""" 
        if self.gr_radio_programs is None or grc_radio_program_name not in 
self.gr_radio_programs: 
            # serialize radio program to local repository 
           self.add_program(**kwargs) 
        if self.gr_process_io is None: 
            self.gr_process_io = {'stdout': open('/tmp/gnuradio.log', 'w+'), 
'stderr': open('/tmp/gnuradio-err.log', 'w+')} 
        if grc_radio_program_name not in self.gr_radio_programs: 
            self.log.error("Available layers: %s" % ", 
".join(self.gr_radio_programs.keys())) 
            raise AttributeError("Unknown radio program %s" % 
grc_radio_program_name) 
        if self.gr_process is not None: 
            # An instance is already running 
            self.gr_process.kill() 
            self.gr_process = None 
        try: 
            # start GNURadio process 
            self.gr_radio_program_name = grc_radio_program_name 
            self.gr_process = subprocess.Popen(["env", "python2", 
self.gr_radio_programs[grc_radio_program_name]], 
                                               
stdout=self.gr_process_io['stdout'], stderr=self.gr_process_io['stderr']) 
            self.gr_state = RadioProgramState.RUNNING 
        except OSError: 
            return False 
        return True 
 
    elif self.gr_state == RadioProgramState.PAUSED and self.gr_radio_program_name 
== grc_radio_program_name: 
        # wakeup 
        self.log.info('Wakeup radio program') 
        self.init_proxy() 
        try: 
            self.ctrl_socket.start() 
            self.gr_state = RadioProgramState.RUNNING 
        except xmlrpc.Fault as e: 
            self.log.error("ERROR: %s" % e.faultString) 
    else: 
        self.log.warn('Please deactive old radio program before activating a new 
one.') 
         return None 
 

Table	19	-	GNU	radio	active_radio_program	UPI	implementation	

	

deactivate_radio_program	()	

This	function	de-activates	the	radio	program.	The	code	snippet	presented	in	Table	20	illustrates	the	
implementation	in	GNU	Radio.	
 
def deactive_radio_program(self, **kwargs): 
 
    pause_rp =  bool(kwargs['do_pause']) 
 
    if self.gr_state == RadioProgramState.RUNNING or self.gr_state == 
RadioProgramState.PAUSED: 
 
        if pause_rp: 
            self.log.info("pausing radio program") 
 



	 H2020	-	GA	No.	645274	 D3.4	
 

   39	

            self.init_proxy() 
            self.ctrl_socket.stop() 
            self.ctrl_socket.wait() 
            self.gr_state = RadioProgramState.PAUSED 
 
        else: 
            self.log.info("stopping radio program") 
 
            if self.gr_process is not None and hasattr(self.gr_process, "kill"): 
                self.gr_process.kill() 
            if self.gr_process_io is not None and self.gr_process_io is dict: 
                for k in self.gr_process_io.keys(): 
                    #if self.gr_process_io[k] is file and not 
self.gr_process_io[k].closed: 
                    if not self.gr_process_io[k].closed: 
                        self.gr_process_io[k].close() 
                        self.gr_process_io[k] = None 
            self.gr_state = RadioProgramState.INACTIVE 
    else: 
        self.log.warn("no running or paused radio program; ignore command") 
 
                 return none 
 

Table	20	-	GNU	radio	deactive_radio_program	UPI	implementation	

	

get_running_radio_program	():	

This	function	returns	the	name	of	the	active	radio	program.	The	code	snippet	presented	in	Table	21	
illustrates	the	implementation	in	GNU	Radio.	

 
def get_running_radio_program(self): 
   if self.gr_state == RadioProgramState.RUNNING: 
        self.init_proxy() 
        return self.gr_radio_programs[self.gr_radio_active] 
    else: 
        self.log.warn("no running;”) 
        return None 
 

Table	21	-	GNU	radio	get_running_radio_program	UPI	implementation	

	

f. IEEE	802.11	WiFi	Support	
In	 addition	 to	 the	 generic	 GNU	 Radio	 adaptation	 module,	 we	 provide	 technology-specific	 GNU	
Radio	 adaptation	 modules.	 The	WiFi	 (IEEE	 802.11)	 GNU	 Radio	 adaptation	 module	 (Figure	 13)	 is	
based	on	 the	 IEEE	802.11	 implementation	 in	GNURadio	by	Bloessl	 et	 al.	 [7].	We	extend	 the	WiFi	
transceiver	to	provide	the	possibility	to	monitor	and	change	variables	(TX	power,	center	frequency,	
etc.)	via	an	XML-RPC	interface.	Figure	13	shows	a	list	of	UPI_R	functions	implemented	by	WiFi	GNU	
Radio	adaptation	module,	i.e.	the	UPI	functions	are	mapped	to	the	corresponding	XML-RPC	calls.	
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Figure	13.	Functionality	provided	by	generic	GNU	Radio	adaptation	module	(left)	and	WiFi	(IEEE	802.11)	

adaptation	GNU	Radio	module.	

	

The	WiSHFUL	 framework	 supports	 both	 the	 black-box	 and	white-box	 approach	 with	 respect	 to	
GNU	Radio.	In	the	black-box	approach,	the	WiFi	experimenter	will	use	our	IEEE	802.11	GNU	Radio	
implementation	and	control	its	behaviour	using	the	well-defined	set	of	UPI_R	functions	(Figure	13,	
right).	In	contrast,	the	white-box	approach	allows	the	experimenter	to	modify	the	IEEE	802.11	GNU	
Radio	program	(flow	graph)	to	its	needs	and	use	the	generic	UPI_R	functions	to	activate/deactivate	
the	Radio	program	at	runtime.	

	

3.3.5 RAS	antenna	
This	platform	represents	an	example	of	hardware	and	software	system,	which	does	not	provide	a	
radio	transceiver,	but	only	focuses	on	the	radiation	antenna	system.	It	has	been	developed	during	
the	Open	Call	1	as	an	extension.		

The	Reconfigurable	Antenna	 Systems	 (RAS)	 uses	 radiating	 elements	 that	 can	be	programmed	 for	
dynamically	changing	 the	 radiation	characteristics	of	 the	antenna.	Each	of	 the	 radiating	elements	
has	embedded	switches	that	can	be	toggled	to	change	the	current	distribution	over	the	antenna,	
and	 therefore	 radiate	 the	 energy	 in	 different	 directions.	 The	 RAS	 system	 provides	 one	 omni-
directional	mode	 and	 8	 different	 directional	modes.	 At	 2.4	 GHz	 and	 5	 GHz,	 as	 illustrated	 in	 the	
intermediate	and	right-most	radiation	diagram	in	Figure	14.		

	
Figure	14	–	Radiation	patterns	that	can	be	excited	with	RAS	antenna	
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The	 system	 has	 been	 integrated	 in	 WiSHFUL	 by	 providing	 UPI_R	 functions	 for	 configuring	 the	
antenna	mode.	Moreover,	 in	order	to	connect	the	antenna	to	the	wireless	node,	 the	Open	Call	1	
extension	 provides	 a	 controller	 able	 to	 control	 up	 to	 4	 different	 RAS	 antennas,	 working	 both	 at	
2.4GHz	and	5GHz	bandwidth.	 In	particular,	a	new	function	named		set_sas_conf	allows	to	set	the	
configurations	of	the	smart	antennas	using	the	WiSHFUL	control	framework,	specifying	the	desired	
band	and	the	configuration	of	each	available	smart	antenna.		

set_sas_conf(band,	conf_ant1,	conf_ant2,	conf_ant3,	conf_ant4)	

• band:		 	 set	antenna	band	to	2.4	or	5	GHz;	
• conf_ant1:		 set	configuration	for	smart	antenna	1;	
• conf_ant2:	 set	configuration	for	smart	antenna	2	(if	present);	
• conf_ant3:	 set	configuration	for	smart	antenna	3	(if	present);	
• conf_ant4:	 set	configuration	for	smart	antenna	4	(if	present).	
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4 Technology-specific	UPI_R	functions	
As	described	in	the	introduction,	UPI_R	functions	include	general	functions,	which	are	agnostic	of	
the	radio	platform	technology	and	architecture,	and	technology-specific	 functions,	which	depend	
on	 a	 given	 MAC/PHY	 stack	 but	 are	 agnostic	 of	 the	 specific	 implementation.	 In	 this	 section,	 we	
describe	the	technology-specific	UPI_R	functions	that	have	been	developed		during	the	second	year	
of	 activities.	 In	 particular,	 we	 worked	 on	 abstractions	 for	 the	 configuration	 of	 WiFi	 and	 LTE	
protocols,	which	constitute	two	representative	wireless	technologies	widely	used	by	the	research	
community.	 In	 particular,	 we	 developed	 a	 WiFi	 adaptation	 module,	 that	 can	 be	 loaded	 on	
heterogeneous	 radio	platforms	 (the	Atheros	platform,	 the	WMP	platform)	by	exposing	 the	 same	
set	 of	WiFi-related	 functions	 and	 configuration	 capabilities,	 and	 a	 LTE	 adaptation	module,	within	
one	 of	 the	 Open	 Call	 1	 extensions,	 that	 can	 be	 loaded	 in	 a	 specific	 radio	 platform.	We	 plan	 to	
integrate	other	technology-specific	adaptation	modules,	such	as	a	module	for	low	power	personal	
area	networks,	during	Y3.		

	

4.1 WiFi	
WiFi	 is	 the	 commercial	 name	 of	 a	 wide-spread	 technology	 for	 wireless	 local	 area	 networks,	
standardized	 as	 IEEE	 802.11.	WiFi	 devices	 can	 access	 a	 public	 network,	 such	 as	 the	 Internet,	 by	
means	of	a	wireless	Access	Point	(infrastructure	mode)	or	can	be	organized	into	ad-hoc	networks,	
which	 represent	 independent	 islands	of	nodes.	WiFi	works	on	2.4GHz	and	5GHz	 ISM	radio	bands	
and	 is	 based	 on	 physical	 layer	 with	 several	 available	 modulation	 formats	 (based	 on	 OFDM	
modulations,	 in	 the	most	 recent	 versions)	 and	 on	 a	 contention-based	MAC	 protocol	 called	 DCF.	
Moreover,	 at	 the	MAC	 layer	 several	management	 functionalities	 have	 been	 defined	 for	 creating	
networks,	 managing	 associations,	 	 security,	 or	 for	 managing	 more	 advanced	 networking	 modes	
including	mesh	networks.		

In	 order	 to	 support	 the	 WiFi	 technology	 in	 the	 WiSHFUL	 project,	 we	 implemented	 a	 software	
module	 called	module_wifi.	 This	 section	describes	 the	module	 implementation	 in	 terms	of	UPI_R	
functions.	 Examples	 of	 WiFi-specific	 functions	 are	 the	 configuration	 of	 IEEE	 802.11e	 EDCA	
parameters	 and	 the	 configuration	 of	 physical	 layer	 parameters	 for	 different	 service	 queues	 and	
traffic	flows.		Figure	15	shows	the	WifiModule	class	implemented	in	module_wifi,	its	methods	and	
its	 relationship	 using	 a	 UML	 class	 diagram.	 The	 module	 supports	 all	 the	 linux-compatible	 WiFi	
chipsets.	 Specific	 class	 extensions	 have	 been	 designed	 for	 other	 WiSHFUL	 platforms	 supporting	
WiFi	 technology.	 The	 Atheros	 platform	 is	 integrated	 by	means	 of	 the	AthModule	 class,	 which	 is	
further	 differentiated	 as	 a	 function	 of	 chipset	 version	 (IEEE	 802.11n	 and	 IEEE	 802.11b/g/1).	 The	
former	version	 is	 supporting	 the	configuration	of	a	hybrid	CSMA/TDMA	MAC	protocol.	The	WMP	
platform	is	integrated	by	means	of	the	WmpModule	class.		
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Figure	15.	UML	class	diagram	of	the	WiSHFUL	WiFi	adaptation	module.		

	

The	 overall	 list	 of	 UPI_R	 functions	 in	 the	 WiFi	 module	 includes:	 i)	 parametric	 functions;	 ii)	
measurement	functions;	 iii)	generic	 functions;	and	 iv)	specific	 functions.	The	parametric	 functions	
specialize	the	generic	black-box	set/get	functions	to	configurations	which	are	specific	of	the	WiFi	
protocols,	such	as	the	configuration	of	the	short	and	long	retry	limits.	The	measurements	functions	
specialize	the	generic	black-box	measurement	functions	to	WiFi	performance	metrics,	such	as	the	
number	of	data	frames	transmitted	or	received	packets	from	a	given	device.	The	generic	functions	
include	the	technology-independent	UPI_R	functions	supported	by	WiFi,	such	as	the	setting	of	the	
transmission	power.	Finally,	the	WiFi	specific	functions	allow	the	modification	of	operation	modes	
defined	 in	 the	 WiFi	 technology.	 The	 complete	 list	 of	 UPI	 functions	 provided	 by	 the	 WiSHFUL	
module_wifi	 represents	 for	 the	 experimenter	 a	 flexible	 and	 powerful	 software	 tool	 for	 testing	
wireless	solutions	exploiting	the	WiFi	technology;	the	software	module	module_wifi	can	be	found	in	
the	WiSHFUL	project	repository	at	link:		

https://github.com/wishful-project/module_wifi	

The	remaining	part	of	this	section	lists	all	the	UPI_R	functions	supported	by	the	WiFi	module.		

Table	22	shows	the	UPI_R	functions	to	get/set	the	WiFi	parameters	with	the	relative	descriptions.	
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Function	 Description	

set_mac_access_parameters	 Set	 the	 MAC	 access	 parameters	 in	 IEEE	 802.11e	
(configuration	of	the	access	categories).	

get_mac_access_parameters	 Get	 the	 MAC	 access	 parameters	 in	 IEEE	 802.11e	
(configuration	of	the	access	categories).	

set_power_management	 Set	the	IEEE	802.11	power	management	configuration	

get_power_management	 Get	the	IEEE	802.11	power	management	configuration	

set_retry_short	 Set	 the	 retry	 short	 (number	 of	 transmission	 attempts	
before	change	the	modulation	rate)	

get_retry_short	 Get	 the	 retry	 short	 (number	 of	 transmission	 attempts	
before	change	the	modulation	rate)	

set_retry_long	 Set	the	retry	long	(number	of	transmission	attempts	before	
notify	a	frame	lost	to	the	upper	level)	

get_retry_long	 Get	the	retry	long	(number	of	transmission	attempts	before	
notify	a	frame	lost	to	the	upper	level)	

set_rts_threshold	 Set	 RTS	 threshold	 (threshold	 frame	 length	 to	 activate	 the	
RTS	algorithm)	

get_rts_threshold	 Get	 RTS	 threshold	 (threshold	 frame	 length	 to	 activate	 the	
RTS	algorithm)	

set_fragmentation_threshold	 Sets	 fragmentation	 threshold	 (threshold	 frame	 length	 to	
activate	the	fragmentation)	

get_fragmentation_threshold	 Get	 fragmentation	 threshold	 (threshold	 frame	 length	 to	
activate	the	fragmentation)	

Table	22	-	UPI	to	get/set	WiFi		parameters	

	

Table	23	reports	the	UPI_R	functions	to	get	the	WiFi	measurements	with	the	relative	descriptions.	

Function	 Description	

get_supported_modes	 Get	supported	WiFi	modes	

get_supported_swmodes	 Get	supported	WiFi	software	modes	

get_rf_band_info	 Get	info	about	supported	RF	bands	

get_ciphers	 Get	info	about	supported	ciphers	

get_supported_wifi_standards	 Get	info	about	supported	WiFi	standards,	i.e.	
IEEE	802.11a/n/g/ac/b	

get_wifi_mode	 Get	 the	 mode	 of	 the	 interface:	 managed,	
monitor,	master,	ad-hoc.	

get_wifi_card_info	 Get	 info	about	the	WiFi	card:	vendor,	driver,	
etc.	

get_info_of_connected_devices	 Returns	 information	 about	 associated	
devices.	
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get_inactivity_time_of_connected_devices	 Returns	 the	 inactivity	 time	of	 the	 associated	
devices.	

get_avg_sigpower_of_connected_devices	 Returns	 the	 link	average	 signal	power	of	 the	
associated	devices.	

get_sigpower_of_connected_devices	 Returns	 the	 link	 signal	 power	 information	of	
the	associated	devices.	

get_tx_retries_of_connected_devices	 Returns	 the	 transmission	 retries	 of	 the	
associated	device.	

get_tx_packets_of_connected_devices	 Returns	 the	 transmission	 number	 of	 the	
associated	device.	

get_tx_failed_of_connected_devices	 Returns	 the	 transmission	 failed	 of	 the	
associated	device.	

get_tx_bytes_of_connected_devices	 Returns	the	transmission	byte	number	of	the	
associated	device.	

get_tx_bitrate_of_connected_devices	 Returns	 the	 transmission	 bitrate	 of	 the	
associated	device.	

get_rx_bytes_of_connected_devices	 Returns	 the	 receive	 byte	 number	 of	 the	
associated	device.	

get_rx_packets_of_connected_devices	 Returns	 the	 receive	 frames	 number	 of	 the	
associated	device.	

get_tdls_peer_connected_device	 	

Table	23	-	UPI	to	get	WiFi		measurements	

	

Table	24	reports	the	UPI_R	functions	for	setting	the	general	(WiFi	independent)	parameters	and	the	
relative	descriptions.	

Function	 Description	

set_tx_power	 Set	the	device	transmission	power	

get_tx_power	 Get	the	device	transmission	power		

set_tx_channel	 Set	the	device	transmission	channel		

get_tx_channel	 Get	the	device	transmission	channel	

set_tx_bandwidth	 Set	the	device	transmission	bandwidth	

Table	24	-	UPI	to	configure	generic	WiFi		functions	

	

Table	25	 reports	 the	UPI_R	 functions	 for	 setting	 the	WiFi-specific	 functions	and	operation	modes	
with	the	relative	descriptions.	

Function	 Description	

set_ap_conf	 Set	 hostapd	 configuration,	 the	 function	 enables	
functionality	 to	 setting	 Access	 Point	 mode	 on	 WiFi	
device	and	relative	configuration.	
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start_ap	 Start	hostapd,	the	function	runs	the	Access	Point.	

stop_ap	 Stop	hostapd,	the	function	stops	Access	Point.	

network_dump	 Return	the	connection	information	a	given	interface	to	
some	network.	

add_device_to_blacklist	 Add	 the	given	device	 to	 the	AP’s	blacklist,	 i.e.	AP	will	
not	 reply	 with	 Probe	 Reply	 packets	 or	 Association	
Replies.		

remove_device_from_blacklist	 Remove	the	given	device	from	the	AP’s	blacklist.	

disconnect_device	 Disconnects	a	given	interface	(from	Access	Point	side);	
Send	 a	 disassociation	 request	 frame	 to	 a	 client	 STA	
associated	with	this	AP.	See	[8-9]	for	more	details.	

register_new_device		 Register	a	new	station	to	the	Access	Point	 (Register	a	
new	STA	within	the	AP,	i.e.	afterwards	the	STA	is	able	
to	exchange	data	frames).	See	[8-9]	for	more	details.	

disconnect_from_network	 Disconnects	a	given	interface	(from	station	side).	

connect_to_network	 Connects	a	given	interface	(in	managed	WiFi	mode)	to	
some	network	e.g.	WiFi	network	identified	by	SSID	

trigger_channel_switch_in_device	 Trigger	 a	 channel	 switch	 in	 the	 device	 connected	 to	
this	AP	node,	see	[8-9]	for	more	details.	

set_modulation_rate	 Sets	a	fix	PHY	modulation	rate	(MCS).	

get_csi	 Receives	Channel	State	Information	(CSI)	samples	from	
the	 WiFi	 driver	 (currently	 supported	 by	 Atheros	
chipsets	using	ATH9K	driver).	

scan_psd	 Receives	 Power	 Spectral	 Density	 (PSD)	 samples	 from	
WiFi	 driver	 (currently	 supported	 by	 Atheros	 chipsets	
using	ATH9K	driver).	

is_rf_blocked	 Returns	 information	 about	 rf	 blocks	 (Soft	Block,	Hard	
Block).	

rf_unblock	 Turn	off	the	soft	block.	

sync_by_ap	 Allows	to	synchronize	the	clock	of	a	node	(including	an	
Access	 Point	 node)	 as	 a	 function	 of	 the	 timestamp	
provided	 by	 a	 given	 reference	 AP,	 which	 acts	 as	 a	
synchronization	node.	

Table	25	-	UPI	to	management	specific	WiFi		technology	

	

4.2 LTE	
LTE	 (Long	 Term	 Evolution)	 or	 the	 E-UTRAN	 (Evolved	Universal	 Terrestrial	 Access	 Network)	 is	 the	
access	part	of	 the	Evolved	Packet	System	(EPS).	The	main	 features	of	 the	LTE	access	network	are	
high	spectral	efficiency,	high	peak	data	rates,	short	round	trip	time	as	well	as	flexibility	in	frequency	
and	 bandwidth.	 The	 LTE	 access	 network	 is	 a	 network	 of	 base	 stations,	 evolved	 NodeB	 (eNB),	
generating	a	flat	architecture.	LTE	has	penetrated	in	the	global	 market	 as	 the	 key	 4G	 solution,	
able	to	deliver	speeds	ranging	from	100Mbps	to		over	1Gbps	per	cell.		
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This	section	presents	how	WiSHFUL	support	LTE	technology.	The	LTE	support	has	been	developed	
within	the	FLEXFUL	Open	Call	1	extension	and	can	be	summarized	in	the	following	phases:		

1. Development	or	extension	of	the	appropriate	UPI_R	for	the	radio	configuration	and	control	
of	the	LTE	BS	parameters	for	any	commercial	equipment.	

2. Development	or	extension	of	 the	appropriate	UPI_N	for	 the	network	configuration	of	 the	
LTE	EPC	and	the	LTE	access	network.	UPI_N	components	enable	the	interconnection	of	the	
EPC	and	the	BSs	in	a	modular	way.	

3. Development	of	the	appropriate	UPI	for	LTE	User	Equipment	(UE).	UPI_R	and	UPI_N	have	
been	developed	in	order	to	control	and	interconnect	the	nodes	bearing	the	UE.	Moreover,	
the	UPI_R	functions	are	able	to	monitor	the	LTE	signal	parameters	(e.g.	RSSI,	RSRP,	RSRQ,	
SNR,	etc.)	

However,	 in	 this	deliverable,	we	consider	only	 the	definition	of	 the	UPI_R,	being	UPI_N	functions	
reported	in	deliverable	D4.4.	

	

4.2.1 Implementation	details	
The	 WiSHFUL	 platform	 for	 supporting	 LTE	 technology	 is	 based	 on	 the	 commercial	 base	 station	
LTE245F	 provided	 by	 ip.access	 [10],	 and	 on	 a	 wide	 variety	 of	 different	 LTE	 dongles	 as	 user	
equipments.	The	LTE245F	 is	dual	band	capable	and	 is	available	 in	3GPP	Bands	1/13,	4/13,	2/5	or	
7/13.	 Supporting	 2x2	 MIMO	 with	 an	 output	 power	 of	 +10dBm	 per	 port,	 the	 LTE245F	 provides	
comprehensive	 LTE	 operation	 in	 a	 compact	 form	 factor.	 The	 dongles	 are	 provided	 by	Huawei	 or	
ZTE.	

FLEXFUL	 is	 an	 extension	 project	 that	 deals	 with	 the	 integration	 of	 the	 existing	 LTE	 equipment,	
residing	 in	 several	 FIRE	 islands,	 to	 the	WiSHFUL	 project.	 Apart	 from	 the	NITOS	 testbed,	which	 is	
offered	as	an	extension,	the	same	framework	is	able	to	handle	identical	resources	that	are	installed	
at	other	WiSHFUL	testbeds,	e.g.	 the	w-iLab.t	 testbed.	Subsequently,	 the	UPI	 framework	has	been	
appropriately	 tailored	 in	 order	 to	 appropriately	 expose	 the	 configuration	 parameters	 of	 the	 LTE	
equipment	 (Base	Stations,	 EPCs,	User	Equipment),	 and	enable	 their	 combination	with	 the	 rest	of	
the	 supported	 resources	 in	 a	 unified	 fashion.	 To	 this	 aim,	 FLEXFUL	 has	 developed	 UPI_Ns	 and	
UPI_Rs	 functions	 for	 the	 integration	 of	 the	 LTE	 equipment	 in	 WiSHFUL.	 The	 developments	 has	
addressed	the	following	phases:	

• Separation	of	the	parameters	that	are	altered	as	either	Radio	related	or	Network	related,	in	
order	to	respectively	develop	the	UPI_Rs	and	UPI_Ns	interfaces.		

• Development	of	software	blocks	enabling	the	handling	of	the	UPI_Rs	interfaces	in	a	similar	
way	like	the	existing	parameters.	

• Support	of	UE	configuration	has	been	developed.	UPI_Rs	and	UPI_Ns	have	been	designed	
and	implemented	for	the	different	types	of	UEs	that	exist	in	WiSHFUL.		

Similar	to	WiFi	technology	support,	we	produced	a	list	of	UPI	functions	for	LTE	organized	in	three	
groups:	i)	parametric	functions;	ii)	generic	functions;	and	iii)	specific	functions.	The	parametric	and	
measurement	functions	specialize	the	generic	black-box	set/get	functions	to	configurations,	which	
are	specific	of	the	LTE	protocols,	such	as	the	RACH	preambles,	or	to	statistics	which	are	specific	of	
LTE.	 The	 generic	 functions	 are	 a	 set	 of	 UPI_R	 black-box	 functions	 working	 on	 technology-
independent	parameters,	such	as	the	transmission	power,	which	are	supported	by	LTE.	Finally,	the	
specific	functions	are	a	set	of	functions	able	to	modify	functionalities	specific	of	the	LTE	technology.	
The	complete	list	of	UPI	functions	provided	by	the	FLEXFUL	project	represents	for	experimenters	a	
software	 tool	 useful	 for	 speeding-up	 the	 definition	 of	 experiments	 on	 LTE	 technology.	 The	
remaining	 part	 of	 this	 section	 reports	 the	 description	 of	 the	 UPI	 functions	 that	 support	 LTE	
technology.		
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Table	26	reports	the	UPI_R	functions	to	get/set	the	LTE	parameters	with	the	relative	descriptions.	

	

Parameters	 Description	

get_tracking_area_code	
set_tracking_area_code	

set/get	the	TAC	of	the	LTE	network	

get_PLMNID	
set_PLMNID	

set/get	the	PLMNID	that	is	used	

get_ENB_name	
set_ENB_name	

set/get	the	eNB	name	

get_Eci	
set_Eci	

set/get	the	CellID	parameter	

get_ENB_type	
set_ENB_type	

set/get	the	eNB	type	(0	is	for	home,	1	for	macro)	

get_max_ERAB	
set_max_ERAB	

set/get	the	maximum	Radio	Access	Bearers	per	UE	

get_PUSCH_power_control	
set_PUSCH_power_control	

set/get	the	Power	Control	on	the	PUSCH	channel	

get_PDCCH_power_control	
set_PDCCH_power_control	

set/get	the	Power	Control	on	the	PDSCH	channel	

get_SINR_PUCCH_power_contrl	
set_	SINR_PUCCH_power_control	

set/get	the	SINR	Power	Control	on	the	PUCCH	
channel	

get_HARQ_PUCCH_power_control	
set_HARQ_PUCCH_power_control	

set/get	the	HARQ	Power	Control	on	the	PUSCH	
channel	

get_Freq_PUSCH_power_control	
set_Freq_PUSCH_power_control	

set/get	the	Power	Control	on	the	PUSCH	channel	for	
frequency	selection	

get_PUCCH_SINR_target	
set_PUCCH_SINR_target	

set/get	the	target	SINR	for	the	PUCCH	channel	

get_PUCCH_BLER_target	
set_PUCCH_BLER_target	

set/get	the	target	BLER	for	the	PUCCH	channel	

get_EARNFCN_dl	
set_EARNFCN_dl	

set/get	 the	 EARFCN	 for	 the	 DL	 channel	 (center	
frequency)	

get_EARNFCN_ul	
set_EARNFCN_ul	

set/get	the	EARFCN	for	the	UL	channel	(center	
frequency)	

get_phy_cell_id	
set_phy_cell_id	

set/get	the	Physical	Cell	ID	

get_PBCH_power_offset	
set_PBCH_power_offset	

set/get	the	power	offset	for	the	PBCH	channel	

get_PSCH_power_offset	
set_PSCH_power_offset	

set/get	the	power	offset	for	the	PSCH	channel	

get_SSCH_power_offset	
set_SSCH_power_offset	

set/get	the	power	offset	for	the	SSCH	channel	

get_num_RACH_preambles	
set_num_RACH_preambles	

set/get	the	number	of	RACH	preambles	

get_tx_mode	
set_tx_mode	

set/get	the	transmission	mode	

get_MCSDl	 set/get	the	MCS	used	for	the	DL	channel	
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set_MCSDl	
get_MCSUl	
set_MCSUl	

set/get	the	MCS	used	for	the	UL	channel	

get_CQI_report	
set_CQI_report	

set/get	the	CQi	reporting	

get_UE_report	
set_UE_report	

set/get	the	UE	reporting	

get_UE_inactivity_timer	
set_UE_inactivity_timer	

set/get	the	UE	inactivity	timer	

get_cipher_algo	
set_cipher_algo	

set/get	the	ciphering	algorithm	used	

Table	26	–	UPI_R	to	managing	the	LTE	parameters	

	

Table	27	reports	the	UPI_R	functions	for	tuning	the	general	(LTE	independent)	parameters	and	the	
relative	descriptions.	

Functions	 Description	

get_tx_channel	 getting	the	transmission	channel	

set_tx_channel	 setting	the	transmission	channel	(ip.access	femtocell	support	bands	
7	and	13)	

get_tx_bandwidth	 getting	the	bandwidth	used	for	the	DL	channel	

set_tx_bandwidth	 setting	the	bandwidth	used	for	the	DL	channel	(5/10	MHz)	

get_rx_bandwidth	 getting	the	bandwidth	used	for	the	UL	channel	

set_rx_bandwidth	 setting	the	bandwidth	used	for	the	UL	channel	(5/10	MHz)	

get_tx_power	 getting	the	transmission	power	of	the	cell	

set_tx_power	 setting	the	transmission	power	of	the	cell	

register_new_device	 attaching	a	UE	to	the	LTE	network	

disconnect_device	 detaching	a	UE	from	the	LTE	network	

Table	27	-	LTE	UPI_R	generic	functions		

	

Table	 28	 reports	 the	 UPI_R	 functions	 for	 configuring	 LTE-specific	 functionalities	 and	 operation	
modes	with	the	relative	descriptions.	

Functions	 Description	

get_admin_state	 checking	whether	the	cell	is	radiating	

set_admin_state	 turning	on/off	the	cell	

restart	 restarting	the	cell	

UE_activate	 activating	the	UE	connection	within	a	PDN	

UE_deactivate	 deactivating	the	UE	connection	within	the	PDN	

Table	28	-	LTE	UPI_R	specific	technology	functions	
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5 Additional	software	tools	enabling	the	white-box	approach	
In	this	section	we	present	a	group	of	software	tools	available	to	experimenters	for	more	advanced	
configurations	 of	 the	 wireless	 nodes.	 In	 particular,	 they	 permit	 to	 work	 on	 WiSHFUL	 facilities	
according	 to	 the	 white-box	 approach	 and	 offer	 platform-specific	 tools	 for	 defining	 new	 radio	
programs.	Radio	programs	 implement	the	 logic	of	 the	so	called	 lower-MAC	operations,	which	are	
time	 critical	 operations	 for	 driving	 he	 hardware	 and	 reacting	 to	 hardware	 signals.	 Although	 the	
WiSHFUL	repository	provides	some	exemplary	radio	programs,	based	on		CSMA	and	TDMA	access	
schemes,	two	WiSHFUL	platforms	(namely,	the	WMP	and	TASIC	platforms)	allow	the	execution	of	
more	general	 schemes,	which	can	be	defined	by	composing	elementary	primitives	 in	a	high-level	
programming	language,	such	as	a	state	machine	or	a	chain	of	operations	with	time	contraints.		For	
both	 the	 platforms,	 we	 made	 available	 a	 programming	 environment,	 devised	 to	 edit	 already	
available	radio	programs	or	define	new	radio	programs	from	scratch.		

	

5.1 Editor	for	Radio	Programs	of	the	WMP	platform	
The	Wireless	MAC	 Processor	 Graphic	 Editor	 (WMPE	 or	WMP-Editor)	 is	 a	 tool	 for	 the	 graphical	
editing	and	for	compiling	WMP-specific	radio	programs.	The	editor	was	developed	as	an	extension	
of	a	previous	tool	that	was	designed	for	internal	use	and	for	the	initial	WMP	release	within	the	FP7	
project	 FLAVIA.	 The	 extensions	 have	 been	 dedicated	 to	 the	 enrichment	 of	 the	 programming	 API	
and	to	the	improvement	of	the	user	interface.				

By	using	this	graphical	tool,	the	experimenter	can	design	and	implement	a	new		radio	program	in	
terms	of	 finite	state	machines.	By	the	mean	of	graphical	operations	 it	 is	possible	to	assemble	the	
finite	state	machine	by	adding	states	and	transitions.	Transitions	can	be	customized	by	composing	
conditions,	 actions	 and	 events,	 which	 are	 the	 fundamental	 building	 blocks,	 as	 described	 in	
deliverable	 D3.1.	 The	 WMPE	 contains	 also	 a	 compiler	 that	 translates	 the	 finite	 state	 machine	
representation	in	a	radio	program.	In	this	section	we	describe	the	WMPE	introducing	the	different	
design	styles	supported	by	the	tool,	which	is	available	on	the	gitHUB	[11].	

	

5.1.1 Editor	elements	and	description	
The	radio	program	graphical	representation	provides	two	main	types	of	editor	elements:	blocks	and	
transitions.	Blocks	are	graphical	boxes	representing	states	of	 the	radio	program,	while	 transitions	
are	graphical	arrows	representing	state	changes.	Each	state	has	a	number	of	outgoing	transitions	
triggered	 by	 the	 occurrence	 of	 events	 and	 enabled	 by	 the	 verification	 of	 one	 or	 more	 optional	
conditions.	
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Figure	16	-	WMP-Editor	Layout	

	

The	basic	 layout	of	WMP-Editor	 is	shown	in	Figure	16.	It	 is	an	all-in-one	window	organized	in	two	
main	frames.	On	the	 left	side	there	are	 listed	the	tuneable	parameters	for	the	state	machine	and	
the	window	zoom.	On	the	right	frame	there	is	the	graphical	representation	of	the	state	machine	as	
it	 defined	by	 the	 programmer.	 The	WMP-Editor	 uses	 a	 simple	 right-click	 pop-up	 to	 add	 and	 edit	
state	 blocks.	 A	 transition	 links	 two	 states	 and	 is	 created	 by	 clicking	 on	 the	 starting	 state	 and	
dragging	and	releasing	on	the	ending	one.	By	double-clicking	the	selected	transition,	a	new	window	
opens	and	transition	properties	can	be	edited,	using	events,	conditions	and	actions	(see	Figure	17).	
Two	 actions	 can	 be	 associated	 to	 one	 transition,	 by	 selecting	 them	 from	 the	 drop-down	menu.	
Radio	programs	have	only	one	starting	state,	which	can	be	assigned	with	a	right	click	on	the	block	
state	 and	 is	 displayed	 with	 a	 different	 shape.	 Events,	 conditions	 and	 actions	 are	 optional	 for	
transitions.	 Events	 trigger	 transitions,	 which	 result	 in	 the	 state	 machine	 evolution.	 Transitions	
without	events	are	 run	 immediately	because	no	 triggering	event	has	 to	be	waited	 for.	By	adding	
conditions	to	transitions	it	is	possible	to	define	more	complex	behavioural	logics.	
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Figure	17	–	Window	editor	with	transition	properties	(events,	conditions	and	actions)	

	

In	Figure	18	an	exemplary	 finite	state	machine	 is	shown	containing	a	condition	associated	to	one	
transition.	Consider	being	on	the	RX	state;	a	transition	occurs	only	if	the	RX_END	event	occurs.		

If	 the	RX_QUEUE(FRAME)	 is	 true,	 then	 the	next	 state	 is	 TX_AC,	otherwise	 the	new	 status	will	 be	
IDLE.	
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Figure	18	-	Example	of	transitions	with	event	and	condition	

	

5.1.2 New	Radio	Programs		
This	 section	 describes	 an	 example	 of	 state	 machine	 graphical	 implementation,	 namely	 the	
Distributed	Coordination	Function	(DCF).	This	and	other	examples	of	radio	programs	can	be	found	
at	[12].	Files	containing	graphical	radio	programs	have	the	scxml	extension	and	can	be	edited	by	the	
WMP-Editor.	

This	DCF	state	machine	implements	the	standard	IEEE	802.11	DCF	and	is	presented	in	Figure	19.	Its	
graphical	representation	can	be	logically	split	into	two	parts:	on	the	left	it	is	described	the	ingress	
chain	for	dealing	with	the	incoming	frames,	on	the	right	they	are	managed	the	outgoing	ones.	The	
initial	 state	 is	 ‘IDLE’	 and	 going	 to	 the	 left	 or	 to	 the	 right	 depends	 on	 the	 occurred	 event:	 if	
QUEUE_OUT_UP,	then	the	machine	starts	the	transmit	operation	mode,	 if	RX_PLCP_END,	 it	starts	
the	receive	operation	mode.	These	two	operation	modes	are	described	below.	

During	the	reception	operation	mode,	when	in	the	RX_HEADER	state,	the	RX_MAC_HEADER_END	
is	waited	for,	indicating	the	end	of	the	header	of	the	incoming	frame.	After	that,	the	status	of	the	
state	machine	shifts	to	CHECK_IF_SCHEDULE_ACK.	This	state	has	two	outgoing	transitions	towards	
the	 RX	 state,	 without	 being	 triggered	 by	 any	 event.	 Depending	 the	 condition	 on	 the	
RX_QUEUE(FRAME)	an	acknowledgement	is	expected	or	not.	

	


