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Executive Summary

This deliverable reports the first operational radio control software platform and provides details
about the implementation of the unified programming interface, named UPI_R, that is offered to
experimenters from the first open call at the end of Year 1.

We briefly present a general overview of the WIiSHFUL radio control software platform, for
providing a high-level representation of the software modules available to experimenters and
better specifying the role of the platform-agnostic UPI_R interface. The interface represents a
unified abstraction for dealing with different experimentation platforms for wireless nodes and
configuring a specific solution under test at the radio level, able to perform dynamic adaptations.
As described in D3.1, the experimenters can access the same UPI_R functions for working on the
IRIS architecture for SDR platforms, the Time Annotated Instruction Set Computer (TAISC)
architecture sensor nodes, and the Wireless MAC Processor (WMP) architecture for wireless
network interfaces. Additionally, we also provide the same UPI_R functions for traditional driver
architecture of a wireless network interface based on the Atheros chipset, that we call Atheros
platform.

We detail the implementation of the UPI_R functions for the different experimentation platforms,
by specifying how heterogeneous platform-dependent tools and operating system tools have been
harmonized by exposing a single unified interface to experimenters. This harmonization allows
experimenters to easily prototype a novel wireless solution, by also porting their solutions from one
platform to another or from one operating system to another. As a preliminary operation, the
UPI_R functions need to acquire information about the platform capabilities, because different
platforms can support different programmability models and configuration parameters. Then,
according to the general design described in D3.1, the UPI_R functions are organized into three
groups dealing with three main goals: configuring the experimentation platform, at both the
hardware and radio program levels, monitoring the node and network conditions by accessing all
the signals and internal state information of the experimentation platforms, adapting on-the-fly
the node behavior by loading and activating context-specific radio programs.

Finally, we present some control program examples, mainly extracted by the showcases described
in D2.3, which have been used for testing the interface and demonstrating its main functionalities.
In the Appendix A, the exemplary code snippets are complemented with the list of all the UPI_R
tuneable parameters and available measurements.
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List of Acronyms and Abbreviations

CSMA Carrier Sense Multiple Access

GCP Global Control Program

GITAR Generic extension for Internet-of-Things ARchitectures
LCS Local Control Service

MCE Monitor and Configuration Engine

STA Wireless Station

TAISC Time Annotated Instruction Set Computer

TDMA Time Division Multiple Access

UPI Unified Programming Interface

UPL_G Unified Programming Interface Global

UPI_HC Unified Programming Interface Hierarchical Control
UPI_M Unified Programming Interface Management
UPIL_N Unified Programming Interface Network

UPL_R Unified Programming Interface Radio

VM Virtual Machine

XFSM Extended Finite State Machines
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1 Introduction

The WiSHFUL architecture is devised to provide i) unified interfaces to experimenters for easily
prototyping novel and adaptable wireless solutions on different radio platforms, ii) a control
framework for supporting dynamic on-the-fly reconfigurations of the network nodes according to
time-varying estimates of the network operating conditions. This document is focused on the
presentation of the UPI_R interface, which is one important component of the WiSHFUL unified
interfaces (UPI_N, UPL_R, UPI_G, UPI_HC, UPI_M) devised to configure the node behaviour at the
lower MAC and PHYHY layers. However, such an interface can be used by experimenters by means
of the functionalities provided by the control framework, whose implementation is documented in
the companion deliverable D4.2.

The document is organized as follows. In section 2, we provide a high-level description of the
WISHFUL control framework functionalities that can be exploited by the experimenter for
configuring the radio and the dynamic radio adaptations of the solution under test. We remark
that for radio configuration we mean both the configuration of the PHY layer and lower MAC layer,
i.e. the configuration of the transceiver (transmission formats, spectrum, antennas, etc.) and the
configuration of the time-critical access rules for utilizing the wireless resources allocated to the
solution under test. The framework allows working on a global control program that can act on
single nodes or groups of nodes. The global control program can execute the UPI_R local calls by
means of the UPI_G interface and can define some control functions that can migrate on the local
nodes for supporting time-critical reconfigurations. Indeed, the global control framework is based
on a proactive approach, i.e. it reconfigures the nodes on the basis of the global view of the
network by means of timer-driven actions. Since these global views and reconfigurations introduce
latency, time-critical adaptations can be supported by exploiting the local monitoring and
configuration engines. The rest of the document deals with the UPI_R implementation and is more
technical. Section 3 provides the documentation of the implemented UPI functions, while section 4
details the implementation of the UPI functions on the different experimentation platforms
available in WIiSHFUL. Some code snippets and exemplary function usages are discussed in
section 6.

2 General description of WiSHFUL radio control software platform

In this section, we provide a high-level description of the WiSHFUL control framework and its
implications for radio control. The framework allows orchestrating the utilization of the UPI_R and
UPI_N interface at a global and local level, thus supporting dynamic adaptations of the wireless
nodes according to the aggregation of radio parameters monitored by different nodes and
estimates of the network state. Nodes can be monitored and controlled singularly or in clusters,
using the global and local controllers of the WiSHFUL architecture, called Monitor and
Configuration Engines (MCE). The control framework, as detailed in D4.2, provides some basic
services for coordinating the UPI_R calls, which basically include time synchronization among the
nodes (for relying on a common temporal signal), blocking or non-blocking interface calls, time-
scheduled and remote execution of UPI_R functions, loading of local control programs on the
nodes. These services can be exploited for the definition of the control programs, which work on
both radio and network control.

2.1 Global, local and hybrid control

The WISHFUL architecture supports a two-tier control hierarchy: one global Monitoring and
Configuration Engine (MCE) orchestrates several remote MCEs residing on wireless nodes. The
global MCE provides monitor and configuration services that can be used by the experimenter to
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write a Global Control Program (GCP), controlling the behaviour of the solution under test by
means of the UPI_G interface. On the other hand, local control programs running on local MCEs
control single devices by means of the UPI_R and UPI_N interfaces, respectively, for radio and
network control. These two tiers work in a coordinated manner, being orchestrated at the global
level. Indeed, global control programs can instantiate local control programs on wireless nodes,
performing a sort of control by delegation, or can act directly on the wireless nodes in a
coordinated manner. Control by delegation is needed when the reconfiguration decisions or the
parameters to be monitored have strict time constraints, which cannot be guaranteed by the
control network. In fact, the physical channel used for conveying control messages to/from the
global controller can be unreliable and introduce some latencies. Since radio performance depends
on highly variable network conditions (e.g. channel propagation, fading, interference, access
timings, etc.), control by delegation is particularly important for radio control. The architecture also
supports hybrid approaches, in which some control operations are managed at the global level,
while some others are demanded to wireless nodes. The coordination between global and local
control programs is obtained by using the UPI_HC, which is the main driver for this hierarchical
control.

(
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Configuration Services

Global MCE MCS = Monitor and Configuration Service
MCE = Monitor and Configuration Engine
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Figure 1 - WiSHFUL architecture, UPIs and supported platforms

Figure 1 illustrates how the WIiSHFUL radio control works on three different radio platforms
(namely, IRIS, TAISC, WMP). The global MCE runs remotely on a Linux machine and allows
implementing node configurations that depend on network-level decisions and can be executed in
a time-coordinated fashion among multiple nodes. Each of the WiSHFUL enabled nodes runs a local
MCE that offers the same local services and the same UPI_R functions on different radio platforms
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(IRIS, TAISC, WMP, ATHEROS) by means of a specific connector module. This unified approach
unloads the experiment from the burden to deal with a multiplicity of configuration and utility
tools, (e.g. iw, iwconfig, iptables, iwlist, iperf, b43fwdump, etc). These tools, indicated in Figure 1 as
Local Control Services, are heterogeneous upon platforms/operating systems and depend on the
hardware and software configuration of the device under test. To provide unified interfaces over
different technologies, platforms and programmable models, we implemented some platform-
specific connector modules. These connectors expose the same UPI functions, by linking them to
platform-specific implementation. Furthermore, they also disambiguate the platform-specific
configuration tools.

2.2  WIiSHFUL Connector Module

The Connector Modules, also called adaptation modules in D3.1, are responsible of exposing the
same UPI_R functions on completely different hardware and software radio platforms. The module
has been designed for achieving two main goals: i) diverting platform-independent UPI_R calls to
platform-dependent implementation,s and ii) providing a unified way to deal with a plethora of
tools provided by heterogeneous operating systems (e.g. iw, iwconfig, iptable) or platforms (e.g.
bytecode-manager for the WMP).

Figure 2 represents a zoomed view of the MCE reported in Figure 1. It illustrates how the connector
maps the UPI_R calls on the different radio platforms currently supported by WiSHFUL. The local
MCE delegates each UPI_R call to the appropriate UPI_R connector that executes the call using
platform-specific sub modules. In general all local MCEs and connector modules are currently
implemented in Python, except for Contiki sensor nodes that, next to the Python implementation,
also have a native implementation using GITAR. The native implementation is used when the
sensor nodes are decoupled. In case they have a Linux host PC (e.g. in testbeds) the Python
implementation can be used. This allows to easily prototype wireless solutions for sensors that can
also work in real deployments, when the host PCs are not available.
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manager i WMP

= e B B43 "—’I |
WMP Connector iw iwconfig | I |
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Figure 2 WiSHFUL adaptation modules
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The following python code shows how the WiSHFUL connector is implemented in python. It
automatically takes the right action depending on the radio platform of the device under test.

def set up_connector (self, connector module):

if connector module == CM DOT80211_ LINUX:
self. cm = Dot80211 Linux Impl()

elif connector module == CM _WMP_ LINUX:
self. _cm = WMP_Linux Impl ()

else:
self.log.fatal ('Unknown connector module ...')
os._exit(0)

During the initialization phase, the interfaces of the devices under test provide information about
their platform type; then, a specific connector is selected by passing to the set_up_connector() the
right parameter (e.g. CM_DOT80211_LINUX, CM_WMP_LINUX). This function sets the value of
self._cm in UPI_RN_Impl class in order to point the platform-specific functions of the UPI_R
interface. When the specific module is connected, all the calls to UPI_R functions will trigger the
execution of the platform-specific code, even if the UPI_R functions are completely generic as
shown by the following code.

LINIRT]

Delegate all function calls to the UPI_R/N implementation in connector module.

LINIRT]

def getParameterlLowerlayer (self, interface, myargs):
return self._ cm.getParameterLowerLayer (interface, myargs)

def setParameterlLowerlayer (self, interface, myargs):
return self._ cm.setParameterLowerLayer (interface, myargs)

3 UPL_R implementation

In this section we present the UPI_R implementation, and we report the documentation of the
UPI_R usage, automatically created using Sphinx [1] in the Appendix B.

The UPL_R interface is responsible of radio configuration for setting-up wireless links between the
nodes and allocate per-flow resources on each link, i.e. for programming the wireless datapath. A
programmable datapath gives the possibility to set per-flow specific transmission formats,
transmission power, access priorities, etc. As introduced in D3.1, UPI_R range of action includes
spectrum allocations, transceiver configurations, link set-up, statistic collections, medium access
logic, and virtualization.

As a preliminary operation, the UPI_R functions need to acquire information about the platform
capabilities, because different platforms can support different programmability models and
configuration parameters. Then, according to the general design described in D3.1, the UPI_R
functions are organized into three groups dealing with three main goals: configuring the
experimentation platform, at both the hardware and radio program levels, monitoring the node
and network conditions by accessing all the signals and internal state information of the
experimentation platforms, adapting on-the-fly the node behavior by loading and activating
context-specific radio programs. In the following, we present the UPI_R functions by grouping them
according to these four goals:

1) Acquisition of nodes information;

2) Setting nodes capabilities;

3) Monitoring nodes state;

4) Changing the radio program on-the-fly.
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UPIL_R functions are called exactly in the same way over different platforms and examples about
their usage are reported in Section 5. Figure 3 reports the UPI_R class diagram and its member
functions, whose platform-specific implementation will be described in the rest of the section.
From the figure, we can easily identify the classes used for representing the main WiSHFUL
abstractions (as detailed in D3.1) for describing the wireless node behaviors at the radio level: the
execution engine, the radio programs, and the radio NIC.

© object © wishful_upis.upis.upi_n.radio_info_t
. ® platform_info
T ® monitor_Llist
© param_Llist

© wishFul_upis.upis.upi_rn.UPI_R
@ getRadioPlatForms(self) f radwcf,program,us: )
@ getRadiolnfo(self, interface) D execution_engine_list

@ setParameterLowerlLayer(self, myargs)
@ getParameterLowerLayer(self, myargs)
@ getMonitor(self, myargs)

@ getMonitorBounce(self, myargs)

m setActive(self, myargs)

@ setinactive(self, myargs)

@ getActive(self, myargs)

® __metaclass__
 NETWORK_INTERFACE_HW_ADDRESS
D IEEE80211_L2_BCAST_TRANSMIT_RATE
© IEEE80211_L2_GEN_LINK_PROBING
© IEEE80211_L2_SNIFF_LINK_PROBING
D IEEE80211_CONNECT_TO_AP
D IEEE80211_AP_CHANNEL
© IEEE80211_CHANNEL
D IEEE80211_MCS
© IEEE80211_CCA
D TX_ POWER
 TX ANTENNA
D RX_ANTENNA
© MAC_ADDR_SYNCHRONIZATION_AP
# TDMA_SUPER_FRAI
 TDMA_NUMBER_OF_SYNC_SLOT
# TDMA_ALLOCATED_SLOT
© TDMA_MAC_PRIORITY_CLASS
cw
CW_MIN
CW_MAX
_TIMESLOT
_MAC_PRIORITY_CLASS
D CSMA_BACKOFF_VALUE
 NUM_TX
 NUM_TX_UNIT
© NUM_TX_SUCCESS
© NUM_TX_SUCCESS_UNIT
 NUM_RX
© NUM_RX_UNIT
© NUM_RX_SUCCESS

I

I

I

I

 NUM_RX_SUCCESS_UNIT
D NUM_RX_MATCH

D NUM_RX_MATCH_UNIT
 NUM_FREEZING_COUNT
 NUM_FREEZING_COUNT_UNIT
D BUSY_TYME

» BUSY_TYME_UNIT

D TX ACTIMVITY

D TX ACTIVITY_UNIT

D TSF

® TSF_UNIT
© wishful_upis.upis.upi_rn.execution_engine.t © wishful_upis.upis.upl_rn.radio_program_t © wishful_upis.upis.upl_rn.RadioPlatForm_t
D execution_engine_id ® radio_prg_id » platform_id

© execution_engine_name
® supported_platform
# execution_engine_pointer

 radio_prg_name
© supported_platform
 radio_prg_pointer

 platForm_type

Figure 3 - UML diagram of the UPI_R class and its ancestors

During the implementation phase, few minor details diverged from indications given in deliverable
D3.1 [2]. In fact, some changes were required in order to push further the abstractions about radio
program concepts, and better clarify their usage or decouple them from the platform in use.

* Two functions names were changed in order to be more significant to experimenters.
getRadioNICs() and getRadioNICinfo() have been changed in getRadioPlatforms() and
getRadiolnfo(). This better clarifies that such functions are related to the radio capabilities of
the platform.

* Two functions were removed from UPI_R: inject() and getlnject(). This simplifies the radio
program activation phase, because they are executed anyway but the experimenter does not

10
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need to explicitly call them. Inject() is now automatically called by setActive(), if needed, i.e.
if the radio program was not previously injected on the radio platform.

* A new function was added, namely getMonitorBounce(). This avoids the experimenter to call
getMonitor() several times in a row. getMonitorBounce() receives several parameters that
specify how often measurements have to be sampled, reported and when the reporting
process has to be stopped.

* The support for Atheros cards has been added. This permits to control Atheros tunable
parameters and behavior (e.g. controlling when data packets of a particular flow are allowed
to be transmitted or not).

Additional features described in deliverable D3.1 will be implemented at theYear 2 of the project,
such as setMonitor(), defineEvent(), and related radio capabilities.

3.1 Common implementation

The UPI_R implementation relies both on generic Linux system tools (e.g. iw, iwconfig, etc.) and
platform-specific tools. The description of platform-specific tools is postponed to the following
subsections, which deal with WiSHFUL supported platforms. UPI_R functions adhere to code style
for returning values: retval = 0 for SUCCESS, retval = 2 for FAILURE, retval = 1 for expressing
function-dependant results.

Linux radio configuration tools

The first configuration tool is the "iw" command, a Linux system tool based on Netlink nl80211. It
allows managing wireless interfaces. This permits to:

* establish a basic connection;
* get station statistics;

* modify transmit bitrates;

¢ set TX power.

Exemplary iw tool results are shown in Table 1, where interface statistics are collected.

Table 1 — Example of ‘iw’ tool result

#iw dev wlan0O station dump

station 00:14:a4:62:c8:24 (on wlanO0)
inactive time: 72 ms
rx bytes: 3272040
rx packets: 90890
tx bytes: 0
tx packets: 0
tx retries: 0
tx failed: 0
signal: -43 dBm
signal avg: -41 dBm
tx bitrate: 1.0 MBit/s
authorized: yes
authenticated: vyes
preamble: long
WMM/WME : no
MEP: no
TDLS peer: no

To have such level of detail, iw has to be followed by parameters indicating the interface (e.g.
‘wlan0’) and ‘station dump’, to indicate reporting all available information on the station. A

11
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complete list of iw parameters can be found in [3]. Another command, iwconfig is also
specialized for setting and getting wireless-specific network parameters. Its popularity is due to its
similarity with ifconfig, the most used Linux system tool for interface configuration. However, it
is older than iw and its use is deprecated.

3.2 WMP

In this section we describe the implementation of the UPI_R for the WMP platform [4]. After a brief
introduction on the WMP platform and its own tools, the UPI_R implementation for the WMP is
presented, maintaining the structure proposed in the previous section, distinguishing functions by
their goal: loading and activating, monitoring as well as configuring.

The WMP realization that is made available to experimenters using the WiSHFUL framework is
implemented on a Broadcom AirForce54G wireless card (see Figure 4). The AirForce54G chipset is
built around an 88 MHz processor with 64 registers supporting arithmetic, binary, logic and flow
control operations. The other main blocks include a transmission and reception engine supporting
802.11b/g CCK and OFDM encodings and verifying the frame checksum; a set of internal registers
for keeping hardware configuration settings; data memory for storing variables and composing
arbitrary frames as well as a code memory.

v J 2
s .,

™
s

Template

q RAM I
XE CPU

Internal
unlla%

(a) (b)

Figure 4 - Broadcom B43 architecture (a) and miniPCl card (b)

The WMP Engine implementation replaces the original card firmware with an assembly code
implementing the execution environment able to run the radio program. For supporting the upper-
MAC operations and interacting with the other protocol layers, we use the b43 soft-MAC driver,
which adapts the Linux internal mac80211 interface to network card. The UPI_R implementation
for the WMP includes two WMP-specific tools: the bytecode-manager and the libb43 library.

The bytcode-manager or MAClet-manager is a userspace CH program that implemented the
interface with the WMP platform, the main functionality are related to the management of the
radio program [5]. To enable the control of the WMP platform, the bytecode-managers uses the
libb43 library [6].

The libb43 library is a user space library implemented in Python and C#. It provides a set of
functions to read/write the registers and the memory areas of Broadcom b43 wireless cards. The
library permits to manage two Linux kernel modules: one for debugfs and the other for B43 driver.

12
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The debugfs is a simple memory-based filesystem, designed specifically to debug Linux kernel code.
This helps user space developers to interface their program with the driver and the underlying
hardware. Table 2 reports the main functions provides by the libb43 library.

Table 2 — Main functions provides by the libb43 functions

readlé6 (reqg) :
""Do a 16bit MMIO read on physical registers and frame queue (template RAM)"""

read32 (reqg) :
"""Do a 32bit MMIO read on physical registers and frame queue (template RAM)"""

writel6 (reg, value):
""Do a 1l6bit MMIO write on physical registers and frame queue (template RAM)"""

write32 (reg, value):
"""Do a 32bit MMIO write on physical registers and frame queue (template RAM)"""

shmReadl6 (routing, offset):
"""Do a 1l6bit SHM read on general purpose registers and internal memory"""

shmWritel6 (routing, offset, value):
"""Do a 1l6bit SHM write on general purpose registers and internal memory """

shmRead32 (routing, offset):
"""Do a 32bit SHM read on general purpose registers and internal memory """

shmWrite32 (routing, offset, value):
"""Do a 32bit SHM write on general purpose registers and internal memory """

3.2.1 Acquiring nodes information

In this UPI_R group, we can find the two functions getRadioNICs() and getRadioNICinfo(). These two
functions allow acquiring the number of wireless interfaces available on the node and their
platform information. Nodes may be required to provide the list of available measurements, the
type of execution engine, the supported radio programs. This information resides within the node
or the wireless network interface card. This can be acquired by the mean of the bytecode-manager.
Therefore, getRadioNICs() and getRadioNICinfo() are translated, for the WMP platform, in WMP-
specific calls to the bytecode-manager.

3.2.1.1 getRadioNICs()

This function gets available NICs on board, their names, their identifiers and the types of their
platforms. This function wraps a call to the bytecode-manager, including its parameters. It checks if
the installed card is a Broadcom b43 wireless card and if it supports the WMP platform. Finally it
returns this result and the name of the interface.

The following code snippet shows the core implementation of the getRadioNICs(). This uses the
python subprocess module to exec the bytecode-manager and its argument “--get-WMP-interface”.
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def getRadioNICs (self):
import subprocess

command = './runtime/connectors/wmp_linux/adaptation_module/src/bytecode-
manager —-get-WMP-interface-name'

nl output = subprocess.check output(command, shell=True,
stderr=subprocess.STDOUT)

flow_info_lines = nl_output.rstrip().split('\n')

radio_list = [radio_platform t() for i in range(len(flow_info_lines))]

for ii in range(len(flow_info_lines)):
tmp = flow_info lines[ii]
items = tmp.split(",")
radio_list[ii].platform id = items[O0]
radio_list[ii].platform type = items[1]

radio_list string = [radio_list[ii].platform id, radio list[ii].platform type]

return radio_list_string

3.2.1.2 getRadioNICinfo(interface, param_key)

This function gets the radio capabilities of a given network card NIC_t in terms of supported
measurements, parameters and radio programs. This information is organized into data structures,

which provide information on the platform type and radio capabilities.

This function, in case of the WMP is a wrapper for the bytecode-manager program, called with the
argument “—get-WMP-interface-capabilities interface”. The following code snippet shows

the core of the function implementation.

def getRadioNICInfo(self,interface,param key):
import subprocess
nic id = interface
platform = param key['platform’]

command = './runtime/connectors/wmp_linux/adaptation_module/src/bytecode-

manager —get-WMP-interface-capabilities' + interface

nl output = subprocess.check output (command, shell=True,
stderr=subprocess.STDOUT)

flow info lines = nl_output.rstrip().split('\n')

radio info = radio info t()

radio info.radio info =radio platform t()

radio info.radio info.radio id = nic id
radio info.radio info.platform = platform

#get available engines

exec _engine current list name = []
exec engine current list pointer = []
for row in flow info lines:

exec_engine_current_ list name.append(row['execution engine name'])

exec_engine_current list pointer.append(row|'execution_engine_pointer'])

radio info.execution engine list = [execution engine t() for i in
range (len (exec_engine current list name))]
for ii in range(len(exec engine current list name)):
radio info.execution engine list[ii].execution engine name =
exec _engine current list name[ii]

radio info.execution engine list[ii].execution engine pointer =

exec engine current list pointer([ii]

#get available radio program
radio prg current list name = []
radio prg current list pointer = []
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for row in flow info lines:
radio prg current list name.append(row['radio prg name'])
radio_prg_current_ list pointer.append(row['radio_prg pointer'])
radio info.radio program list = [radio program t() for i in
range (len(radio prg current list name))]
for ii in range(len(radio prg current list name)) :
radio info.radio program list[ii].radio prg name =
radio prg current list name[ii]
radio info.radio program list[ii].radio prg pointer =
radio prg current list pointer([ii]

b43 = B43 (b43_phy)
radio info.monitor list = b43.monitor list
radio info.param list = b43.param list

ret lst = []
ret 1st = {'radio_info' : [radio info.radio info.radio id,
radio info.radio info.platform],
'event list' : [''], 'monitor list' : [b43.monitor list],
'param_list' : [b43.param list],
‘radio prg list name' : [radio prg current list name], '
radio_prg list_pointer' : [radio_prg current_ list pointer],
'exec_engine list name' : [exec engine current list name], '
exec_engine list pointer' : [exec_engine current list pointer],

}

return ret lst

3.2.2 Configuring nodes

In this UPI_R group, we can find the two functions setParametersLowerlayer() and
getParameterLowerlayer(). These two functions get and set the parameters capabilities of the
platform. The complete list of parameters capabilities can be found in the WiSHFUL framework
documentation [7] or in the Appendix section of this document. The parameters supported by the
WMP platform are identified through the execution of the function getRadiolnfo(). The functions of
this group use the libb43 library, because the parameters capabilities are totally locate on the
platform register and memory area of the wireless card.

3.2.2.1 defsetParameterLowerlLayer(self, myargs)

Parameters correspond to the configuration registers of the hardware platform and to the variables
used in the radio programs. This function (re)set the value(s) of the specified Parameters Radio
Capabilities specified in the dictionary argument.

The following snippet code reports the core of the function implementation, where it is shown how
the b43.shmWrite16() function is used to set registers and memory area of the Broadcom wireless
card.

def setParameterLowerlayer (self, myargs):

b43 = B43 (b43_phy)
write share = False
write gpr = False

if myargs.has key(UPI R.CSMA CW) :
offset_parameter_share= b43.SHM EDCFQCUR + b43.SHM EDCFQ_ CWCUR
offset parameter gpr= b43.GPR_CUR CONTENTION WIN
write share = True
write gpr = True
elif myargs.has key (UPI R.CSMA CW MIN) :
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offset_parameter_share= b43.SHM EDCFQCUR + b43.SHM EDCFQ CWMIN
offset parameter gpr= b43.GPR MIN CONTENTION WIN
write share = True
write gpr = True
elif myargs.has key(UPI R.CSMA CW MAX) :
offset_parameter_share= b43.SHM EDCFQCUR + b43.SHM EDCFQ_ CWMAX
offset parameter gpr= b43.GPR MAX CONTENTION WIN
write share = True
write gpr = True

if write share

b43.shmWritel6 (b43.B43 SHM SHARED, offset parameter share, value)
if write gpr

b43.shmWritel6 (b43.B43 SHM REGS, offset parameter gpr, value)

3.2.2.2 def getParameterLowerlayer(self, myargs)

Parameters correspond to the configuration registers of the hardware platform and to the variables
used in the radio programs. This function get the value(s) of the specified Parameters Radio
Capabilities specified in the dictionary argument. A list of parameters reports the UPI_R attributes.
The following snippet of code shows the core of the function implementation, we use the
b43.shmRead16() to read registers and memory are on Broadcom wireless card.

def getParameterLowerlayer (self, myargs):

offset parameter = myargs|'parameters']

ret 1st = []

if offset parameter == UPI R.CSMA CW:

val = b43.shmReadl6 (b43.B43 SHM REGS, b43.GPR _CUR CONTENTION WIN)
elif offset parameter == UPI R.CSMA CW MIN:

val = b43.shmReadl6 (b43.B43 SHM REGS, b43.GPR MIN CONTENTION WIN)
elif offset parameter == UPI R.CSMA CW MAX:

val = b43.shmReadl6 (b43.B43 SHM REGS, b43.GPR MAX CONTENTION WIN)
elif offset parameter == UPI R.TDMA SUPER FRAME SIZE

if active slot ==
val = b43.shmReadl6 (b43.B43 SHM SHARED,
b43.SHM SLOT 1 TDMA SUPER FRAME SIZE)
val 2 = b43.shmReadl6 (b43.B43 SHM SHARED,
b43.SHM SLOT 1 TDMA NUMBER OF SYNC SLOT)
else
val = b43.shmReadl6 (b43.B43 SHM SHARED,
b43.SHM SLOT 2 TDMA SUPER FRAME SIZE)
val 2 = b43.shmReadl6 (b43.B43 SHM SHARED,
b43.SHM SLOT 2 TDMA NUMBER OF SYNC SLOT)

self.log.error ('readRadioProgramParameters(): val %s : val_2 %s' %
(str(val), str(val 2)))
val = val * val 2
elif offset parameter == UPI R.TDMA NUMBER OF SYNC SLOT
if active slot ==
val = b43.shmReadl6 (b43.B43 SHM SHARED,
b43.SHM SLOT 1 TDMA NUMBER OF SYNC SLOT)
else
val = b43.shmReadl6 (b43.B43 SHM SHARED,
b43.SHM SLOT 2 TDMA NUMBER OF SYNC SLOT)
elif offset parameter == UPI R.TDMA ALLOCATED SLOT
if active slot ==
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val = b43.shmReadl6 (b43.B43 SHM SHARED,
b43.SHM SLOT 1 TDMA ALLOCATED SLOT)
else
val = b43.shmReadl6 (b43.B43 SHM SHARED,
b43.SHM SLOT 2 TDMA ALLOCATED SLOT)
else:
self.log.error ('readRadioProgramParameters () : unknown parameter')

3.2.3 Monitoring nodes

In this UPI_R group, we can find the two functions getMonitor() and getMonitorBounce(). These
two functions allow collecting the measurements capabilities from the platform. The complete list
of measurements capabilities can be found in the WiSHFUL framework documentation [7] and also
in appendix, for the sake of completeness. The measurements supported by the WMP platform are
identified through the execution of the function getRadiolnfo(). Functions of this group use the
libb43 library and the iw tool. In the first case we make a direct reading from the memory areas and
registers of the Broadcom wireless card. In the second case we first run the iw tool and then we
parse the text result and reformat it according to the needs of the WiSHFUL framework.

3.2.3.1 getMonitor(myargs)

This UPI_R function is able to get the radio measurements thanks to the abstraction of the
hardware platform and radio programs in terms of Radio Capabilities. This function get the current
value(s) of the Measurements Radio Capabilities specified in the dictionary argument.

The following snippet of code shows the core of the function implementation, we implement two
cases, one in which we run the iw tool, and other, where we use the libb43 library.

if iw _command monitor:

cmd str = 'iw dev ' + interface + ' station dump'
cmd output = subprocess.check output (cmd str, shell=True,
stderr=subprocess.STDOUT)
# parse serialized data and create data structures
flow info lines = cmd_output.rstrip().split(’\n')
for ii in range(len(flow info lines)):
tmp = flow info lines[ii]
items = tmp.split("\t")
if ii == 3:
rx packet = items([2]
elif ii ==
tx packet = items[2]
elif ii == 6:
tx retries = items[2]
elif ii == 7:
tx failed = items([2]
else:
continue
tx packet success = int (tx packet)
tx packet = int(tx packet) + int(tx retries) + int(tx failed)
if tx packet success < 0
tx packet success = 0

for ii in range (0, len (key)):
if keyl[ii] == UPI RN.TSF:
while True :
v3 = b43.readl6 (b43.B43 MMIO TSF 3)
v2 = b43.readl6 (b43.B43 MMIO TSF 2)
vl = b43.readl6 (b43.B43 MMIO TSF 1)
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v0 = b43.readl6 (b43.B43_MMIO TSF_O)

test3 = b43.readl6 (b43.B43 MMIO TSF 3)
test2 = b43.readl6 (b43.B43 MMIO TSF 2)
testl = b43.readl6 (b43.B43 MMIO TSF 1)

if v3 == test3 and v2 == test2 and vl == testl
break
ret lst.append( (v3 << 48) + (v2 << 32) + (vl << 16) + v0 )
if keyl[ii] == UPI RN.BUSY TYME:

ret lst.append( b43.sHmRead32(b43.B43_SHM_SHARED, b43.BUSY TIME CHANNEL)

if key[ii] == UPI RN.NUM FREEZING COUNT:
ret lst.append( b43.shmReadl6 (b43.B43 SHM SHARED, b43.NUM FREEZING COUNT)

if keyl[ii] == UPI RN.TX ACTIVITY:
ret lst.append( b43.shmRead32(b43.B43 SHM SHARED, b43.TX ACTIVITY) )
if key[ii] == UPI_RN.NUM RX:

total receive = b43.shmReadl6 (b43.B43 SHM SHARED, b43.BAD PLCP COUNTER)
#trace failure

total receive += b43.shmReadl6 (b43.B43 SHM SHARED,
b43.INVALID MACHEADER COUNTER) #trace failure

total receive += b43.shmReadl6(b43.B43 SHM SHARED, b43.BAD FCS COUNTER)
#trace failure

total receive += b43.shmReadl6 (b43.B43 SHM SHARED,
b43.RX_TOO LONG_COUNTER) #trace failure

total receive += b43.shmReadl6 (b43.B43 SHM SHARED,
b43.RX_TOO_ SHORT COUNTER) #trace failure

total receive += b43.shmReadl6 (b43.B43 SHM SHARED,
b43.RX CRS GLITCH COUNTER) #trace failure

total receive += b43.shmReadl6 (b43.B43 SHM SHARED, b43.GOOD FCS COUNTER)
#trace success

ret_lst.append(total_receive)

if key[ii] == UPI RN.NUM RX SUCCESS:
ret lst.append (b43.shmReadl6 (b43.B43 SHM SHARED, b43.GOOD FCS COUNTER))
if key[ii] == UPI_ RN.NUM RX MATCH:
ret lst.append(rx packet)
if key[ii] == UPI R.NUM TX:
ret lst.append(tx packet)
if key[ii] == UPI R.NUM TX SUCCESS:

ret lst.append(tx packet success)

3.2.3.2 getMonitorBounce(myargs)

The UPI_R interface is able to get the radio measurements thanks to the abstraction of the
hardware platform and radio programs in terms of radio capabilities. The getMonitorBounce()
function works like getMonitor (), but it reports measurements periodically. More specifically,
the function accepts three extra arguments and implements two more functionality in comparison
to getMonitor(). The additional arguments are SLOT_PERIOD, FRAME_PERIOD, and ITERATION.
Several calls are scheduled every FRAME_PERIOD, which corresponds to the reporting period of
measurements. The slot period indicates the periodicity of measurement reading in the interface,
while the number of ITERATIONSs specifies when this function terminates its periodic measurement
reporting. The following code snippet shows the usage of this function and its parameters.

def getMonitorBounce (self, myargs) :
import subprocess

iw_command monitor = False
microcode monitor = False
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key = myargs [’'measurementes’]
slot_period = myargs ['slot period']
frame_period = myargs ['frame_period']
interface = myargs ['interface']

cumulative reading = []

reading = []

num_ sampling total = frame period / slot period
num_ sampling = 0

while True :

# getMonitor () call

cumulative reading.append(reading)

reading = []

num_sampling += 1

if num sampling == num sampling total
4 £
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return cumulative reading
time.sleep(slot period/1000000.0)

return cumulative reading

3.2.4 Changing the radio program on-the-fly

In this section we describe the implementation of the UPI_R functions devoted to manage the radio
program on WMP. The WMP platform that is currently available in WiSHFUL offers two radio
programs, one for CSMA and another for TDMA. We assume that both radio programs are available
on a central repository, a database or a file.

Before being called, the radio program needs to be loaded on the microinstruction memory of the
platform: being there, it can be executed by the execution engine. An UPI_R function is used to
copy the radio program in the microinstruction memory (where it can be executed by the execution
environment) and immediately set it as active, i.e. it starts to be executed. setActive() is the
UPL_R function devoted to inject and run radio programs.

The Figure 5 shows the component element present in the WMP platform. The system consists in
the platform architecture and a software program, called Bytecode-Manager to inject, and control
the radio program, the software running at the application level, and interacts with the WMP. The
Bytecode-Manager is responsible of enabling and loading the radio program on the WMP, and
switching the activation status of the injected radio programs.

The WMP platform receives commands from the Bytecode-Manager and performs the requested
operation. As shown in Figure 5Error! Reference source not found., two independent radio
programs can be stored on the WMP, this design choice enables immediate reconfiguration of the
MAC algorithm on wireless cards because the switch between two radio programs in the
microinstruction memory requires the time of few instructions. This permits to automatically
switch between these two behaviours accordingly to user requests or even periodically.
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Figure 5 - WMP architecture

3.2.4.1 setActive(myargs)

This function activates the passed radio program, one the platform. This operation required that
the radio program file description is present on the micro instruction memory of the platform, or in
other words, that it is injected. Each radio program injected on platform is associated with an index.
This represents the memory slot in which the radio program is copied.

For the Broadcom version of the WMP, only two radio program can be contemporary injected in
the microinstruction memory and only one can be active. The implementation of this function
provides, two separated phases, in the first phase we check is the passed radio program is already
present on microinstruction memory, two cases there may be, the radio program is present, in this
case we get the index of the memory slot in which the radio program is stored (see Figure 5). In the
second case, the radio program is not present on the microinstruction memory, we get the most
old used index, or a new index (if available), and use it to copy the radio program description in the
correspondently memory slot. The second phase of function implementation uses the slot memory
index, in which the radio program is injected, to active it.

The function uses the python module subprocess to exec the user level bytecode-manager
program.

When we inject the radio program, we use the argument I <index>” that specifies the index of the
memory slot in which the radio program is copied, and the argument <«-m <rp_path>" specifies the file
system path where the radio program txt file can be found.

When we active the radio program, we use the argument “-a <index>” that specifies the index of the
memory slot in which the radio program is stored. The complete function implementation is shown
below.

def setActive(self, myargs):
import subprocess
radio program name = myargs ['radio_program name']
position = None
position = myargs |['position']

#get the current radio program injected
injected radio program = getInjectedRadioProgram()

#get the position of the radio program to active, if it is not present, we
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inject it
if not(injected radio program.has key(radioProgramName) )
radio program path = myargs['path']

if position == None
position = getOldPosition ()
command =
'./runtime/connectors/wmp_linux/adaptation_module/src/bytecode-manager -1 ' +
position + ' -m ' + radio program path
nl output = subprocess.check output (command, shell=True,

stderr=subprocess.STDOUT)
flow info lines = nl_output.rstrip().split('\n’)
if not(flow info lines[5] == 'end load file')
return FAILURE

else
position = injected radio program[radioProgramName].position
command = './runtime/connectors/wmp_linux/adaptation_module/src/bytecode-
manager -a ' + position
nl output = subprocess.check output (command, shell=True,

stderr=subprocess.STDOUT)

flow info lines = nl_output.rstrip().split('\n’)

if position == 'l' and flow info lines[0] == 'Active byte-code 1'
return SUCCESS

elif position == '2' and flow info lines[0] == 'Active byte-code 2'
return SUCCESS

else

return FAILURE

3.2.4.2 setIlnactive(myargs)

When setlnactive is called, one of the two radio programs stored in the microinstruction memory is
inactivated. The index of the radio program represents the memory slot in which the radio program
is stored (see Figure 5Error! Reference source not found.). The function uses the python module
subprocess to exec the user level bytecode-manager program. The bytecode-manager is called with
the argument «-d <index>” that specifies the index of the memory slot in which the radio program is
stored. The complete function implementation is shown below.

def setInactive(self, myargs):
import subprocess
position = myargs |['position']

command = './runtime/connectors/wmp_linux/adaptation_module/src/bytecode-
manager -d ' + position
nl output = subprocess.check output (command, shell=True,

stderr=subprocess.STDOUT)

flow info lines = nl_output.rstrip().split('\n’)

if position == 'l' and flow info lines[0] == 'Inactive byte-code 1'
return SUCCESS

elif position == '2' and flow info lines[0] == 'Inactive byte-code 2'
return SUCCESS

else

return FAILURE

3.2.4.3 getActive(myargs)

When getActive is called, the index of the current radio program active is reported. The index of the
radio program represents the memory slot in which the radio program is stored (see Figure 5 Error!
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Reference source not found.). This function uses the python module subprocess to exec the
bytecode-manager, passing the argument “wv». The complete function implementation is showed
below.

def getActive(self, myargs):
import subprocess

command = './runtime/connectors/wmp_ linux/adaptation_module/src/bytecode-
manager -v'
nl output = subprocess.check output (command, shell=True,

stderr=subprocess.STDOUT)

flow info lines = nl_output.rstrip().split('\n')
items = flow info lines[1].split(" ")

active radio program = items([4]
return active radio program

3.3 TAISC

This section describes the UPI_R implementation in TAISC, to simplify the structure, after a short
introduction on TAISC and the available hardware platforms; this section is organized in four
subsections, one for each group of UPI_R functions, as defined in the previous section.

TAISC is implemented on a RMO090 [8] sensor node. The RM090 has a 16MHz msp430f5437 CPU,
128 kB ROM and 16kB RAM. It is equipped with the CC2520 IEEE-802.15.4-compliant transceiver.
Both the hardware platform and radio are supported in Contiki. TAISC, however, replaces the lower
levels of the Contiki network stack (e.g. radio driver, radio dutycycling (RDC) protocol and mac
protocol (MAC)). For this purpose, a TAISC specific MAC was created that enables to link TAISC with
the upper layers in Contiki.

The UPI_R implementation for TAISC platform can be used in two settings, depending on where the
local control program and MCE is executed, as also discussed in D4.2.

* Testbed setting: The local control program and MCE are executed on the Linux host-pc to which
the sensor node is connected. For this purpose a connector module was provided, enabling all
UPI interactions over ZeroMQ [9] / ZeroRPC [10] as used for the other platforms. The connector
module uses a custom python module libContiki to enable UPI usage over serial.

* Decoupled setting: The local control program and MCE are executed on the sensor node in a
fully decoupled setting. Now, the WiSHFUL global MCE uses CoAP to remotely execute the UPI
functions.

The TAISC architecture, as defined in D3.1, is illustrated in Figure 6. Important for the WiSHFUL UPIs
are the control and management interfaces provided by TAISC. They allow reconfiguring
parameters, obtaining monitoring information or receiving monitoring events from the radio
programs (radio binaries on the figure) by reading/writing to the general purpose RAM (left side of
figure). Moreover, new radio programs can be injected by writing to the TAISC ROM (right side of
figure) and using the radio binary mgmt functionality.
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Figure 6 Overview of the TAISC architecture. Left: RAM memory blocks. Middle: logical processing unit.
Right: ROM memory.

3.3.1 Acquiring nodes information

Two functions are defined in this UPI group: getRadioNICs() and getRadioNICinfo(). They allow
acquiring the following information:
* Number of wireless interfaces of the node and supported platforms
¢ List the capabilities of the node
* Supported configuration parameters
* Measurements node capabilities
* Execution environment used on the NIC (TAISC)
* Available radio programs (CSMA, TDMA)

This information resides in a (user-friendly) string format on the Linux local MCE, in the testbed
setting, and on the global MCE proxy (see D4.2), in the decoupled setting. To reduce the memory
overhead on sensor nodes, the unique names (string format) are replaced by unique IDs (integer
format). The IDs are obtained by calculating the 16-bit CRC of the unique name.

3.3.1.1 getRadioPlaftorms()

This function returns information about the available interfaces on the node. The returned NIC_t
object contains the name of the interface (i.e. ‘wpan 0’ for TAISC) and the supported platform type
(i.e. TAISC). This function is implemented based on the motelist command as illustrated in the next
code snippet.

def getRadioNICs(self, myargs):

import subprocess

command = 'motelist -c'

motelist = subprocess.check output(command, shell=True,
stderr=subprocess.STDOUT) .rstrip()

NICList = []

for mote in motelist:

if mote.split (', ') [0] == '/dev/rm090':
NICList.append(NIC t('wpan(O','TAISC'"))
return NICList
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3.3.1.2 getRadioPlatforminformation(interface, param_key):

This function returns the radio capabilities of the given interface (NIC_t object) in terms of
supported configuration parameters, monitoring measurements and supported radio programs.
The information elements used by the UPI_R interface, to manage parameters, measurements and
radio program, are organized into data structures, which provide information on the platform type
and radio capabilities. When executed, this function return information about available radio
capabilities (measurements and parameters, radio_info_t) of each interface (NIC_t) on the available
radio programs (radio_prg_t) available for transmissions over the radio interface. The following
code snippet illustrates how this is done for TAISC, it uses the custom python module libTAISC to
convert unique IDs into unique names.

def getRadioNICInfo(self, myargs):
interface = myargs['interface']
radio info = radio _info t()
radio info.NIC info = interface
radio info.param list = 1ibTAISC.getSupportedParameters(interface)
radio info.event list = 1ibTAISC.getSupportedEvents(interface)
radio info.monitor list = 1ibTAISC.getSupportedMeasurements (interface)
return radio info

3.3.2 Configuring nodes

There are two UPI_R functions in this group: setParametersLowerlayer() and
getParameterLowerlayer(). They allow getting/setting the configuration parameters of the radio
platform. The complete list of configuration parameters is listed in the WiSHFUL documentation
(http://wirelesstestbedsacademy.github.io/wishful_upis/) and in the Appendix of this document.
The parameters supported by TAISC can also be retrieved at runtime using the function
getRadioNICinfo(). The functions of this group use the custom IlibTAISC python module for
retrieving TAISC specific (NIC) info and on the custom libContiki Python module for using the UPIs
over serial.

3.3.2.1 setParameterLowerLayer(interface,param_key_values)

The parameters that can be configured correspond to the configuration registers of the radio
hardware platform and to the variables used in the radio programs executed in TAISC. This function
(re)set the value(s) of the specified parameters in the param_key_values dictionary argument. The
keys of this dictionary are the parameter names, the values are the configuration values. The
parameter names are converted to unique IDs for use on the sensor node. The following code
snippet illustrates how this is done on the Linux MCE.

def setParameterLowerlLayer(self, myargs):

interface = myargs['interface']
param_ keynames values = myargs['param key values']
param keyids values = {}

for param key in dct param key values.keys():

param key id = 1ibTAISC.mapUniqueNameOnId(param key)

param keyids values[param key id] = param key values[param key]
return libContiki.setParameters(interface, dct param keyids wvalues)

Internally, another conversion is required to map the unique IDs of configuration parameters on
offsets in the TAISC RAM memory. For this purpose an offset table is maintained in the mac
wrapper linking TAISC to Contiki, as illustrated in the next code snippet.

| error t setParameter(void* value, param t* p){
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int i;
//first find the correct index in the offset table
for (i= ;i<NUM_PARAMETERS;i++){
if(offsets[i] .uid == p->uid) break;
}
//now try to change the parameter in TAISC RAM
if(i<NUM_PARAMETERS){
return taisc set parameter(value,offsets[i].offset,p->len);
}

return ;

3.3.2.2 getParameterLowerlayer(interface, param_keys)

The parameters correspond to the configuration registers of the radio hardware platform and
configuration settings of the radio programs. This function gets the value(s) of the specified
parameter keys added to the param_keys list. The possible parameter keys are defined as
attributes of the UPI_R class. The parameter names are converted to unique IDs for use on the
sensor node. The following code snippet illustrates how this is done on the Linux MCE.

def getParameterLowerlLayer(self, myargs):
interface = myargs['interface']
lst param keynames = myargs['param keys']
lst param keyids = []
for param key in lst param keynames:
lst param keyids.append(libTAISC.mapUniqueNameOnId(param key))
return libContiki.getParameters(interface,lst param keyids)

Internally, another conversion is required to map the unique IDs of configuration parameters on
offsets in the TAISC RAM memory. For this purpose an offset table is maintained in the mac
wrapper linking TAISC to Contiki, as illustrated in the next code snippet.

void* getParameter (param t* p){
int 1;
for (i=0;i<NUM PARAMETERS;i++) {
if(offsets[i] .uid == p->uid) {
return taisc wrapper get parameter (offsets[i].offset);

}

return NULL;

3.3.3 Monitoring nodes

There are two UPI functions in this group: getMonitor() and getMonitorBounce(). They allow
obtaining (getMonitor) and collecting (getMonitorBounce) the measurements values from the radio
platform. The complete list of possible measurement values is listed in the WiSHFUL
documentation ( http://wirelesstestbedsacademy.github.io/wishful_upis/ ) and in the Appendix of
this document. The measurements supported by TAISC can be retrieved at runtime using the
function getRadioNICinfo(). The functions of this group use the custom libTAISC python module for
retrieving TAISC specific (NIC) info and on the custom libContiki Python module for using the UPIs
over serial.
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3.3.3.1 getMonitor(interface, measurement_keys)
This UPI_R function gets the current value(s) of the measurement values specified in the
measurement key list. The following snippet of code shows the core of the function
implementation in the Linux MCE for TAISC in Contiki.

def getMonitor(self, myargs):
interface = myargs['interface']
lst measurement keys = myargs['measurement keys']
lst measurement keysids = []
for key in measurement keys:
lst measurement keysids.append(libTAISC.mapUniqueNameOnId (key)
return libContiki.getMonitor (interface,lst param keyids)

Internally, the getMonitor function is implemented similarly to the getParameter function.

3.3.3.2 getMonitorBounce(interface,  measurement_keys, collect_period, report_period
,hum_iterations, result_callback):

This UPI_R function enables to schedule the collection of the measurement values specified in the
measurement key list. The measurements are collected every collect_period and reported every
report_period. This is repeated a num_ijterations number of times. For every report, the
result_callback is called. The following snippet of code shows the core of the function
implementation in the Linux MCE for TAISC in Contiki.

def getMonitorBounce(self, myargs):

interface = myargs['interface']

lst measurement keys = myargs|['measurement keys']

callback = myargs['result callback']

collect period = myargs['collect period']

report period = myargs['report period']

num iterations = myargs['num iterations']

lst measurement keysids = []

for key in measurement keys:

1st measurement keysids.append(libTAISC.mapUniqueNameOnId (key))

libContiki.getMonitorBounce (interface,lst measurement keysids,collect perio
d,report period,num iterations,callback)

return True

To implement this in Contiki for TAISC, some additional steps are required. First off all, a Process
must be created that gets the measurements every collect_period and generate a report every
report_period. Secondly, the total memory size required for storing the measurements needs to be
considered. Currently 128 bytes are foreseen. Then a timer is scheduled for every collect_period
after which measurements are added to a report. The reports are sent every report_period by
counting how many collect_period fit in a report_period. This repeats for num_iterations. The
following code snippet illustrates this process:

PROCESS THREAD(monitor bounce process, ev, data)
{
PROCESS BEGIN() ;
getMonitorBounceArgs_t* args= ((getMonitorBounceArgs_t¥*) data);
uint32 t collect period = args->collect period;
uint32 t report period = args->report period;
uint8 t num iterations = args->num iterations;
uint8 t num values = args->num measurements;
int i,j,n;
uint8 t num collects in report = report period / collect period;
measurement info t* msrmnt info list = args->measurement info;
etimer set(&collect timer, collect period);
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//check if buffer can contain measurements
if (check collect buffer size(num values, msrmnt info list,
num collects in report)) {
for (i=0;i<num iterations,i++) {
for(j=0;j<num collects in report;j++) {
PROCESS WAIT EVENT UNTIL(etimer expired(&collect timer));
for (j=0;j<num measurements;j++) {
//first get a pointer to the parameter
measurement t* m = paramDB get parameter (
msrmnt info list[i]);
//call get function to obtain the value
appendMeasurement (msrmnt_info list[i],m->get(m))
}
etimer set(&collect timer, collect period);
}
//generate the measurement report
generateMeasurementReport () ;
}
}
PROCESS END() ;

3.3.4 Changing the radio program on-the-fly

This section describes how the radio program, executed in TAISC, can be changed on-the-fly via the
UPI_R interface. TAISC currently provides a CSMA and a TDMA radio program. Both radio programs
are pre-installed in TAISC and can be (de-)activated at runtime by using the setActive/setinActive
function. The run-time injection of radio programs (e.g. TAISC bytecodes) is planned for Year 2 as a
high priority extension and already supported by design.

To allow injection of radio program bytecode, TAISC pre-allocates ROM and RAM memory from the
sensor node memory by defining an extra section for this purpose. An interface is provided that
allows writing bytecode to the TAISC ROM and loading bytecode from the TAISC ROM. As illustrated
in the next code section:

/**

* The startChain command makes it possbile to schedule a chain from upper MAC.
Will return FAIL if the chain is alreay scheduled, not found or

if the diff value is not in the range of 0..0x7FFFFFF

@param 'TAISC ChainIDT cid' the chainId reference

@param 'TAISC relBigReferenceT diff' relative timestamp to start the chain.
should be in range of 0..0x7FFFFFF

* @return 'TAISC ChainIDT' the chain id of the installedChain

*/

TAISC ChainIDT taiscAPI taiscControlplane installChain(void* bytecode, uintl6 t
bytecode len);

*
*
*
*
*

/**

The startChain command makes it possbile to schedule a chain from upper MAC.
Will return FAIL if the chain is alreay scheduled, not found or

if the diff value is not in the range of 0..0x7FFFFFF

* % X ok X X

@param 'TAISC ChainIDT cid' the chainId reference

@param 'TAISC relBigReferenceT diff' relative timestamp to start the chain.
should be in range of 0..0x7FFFFFF

*/

error t taiscAPI taiscControlplane startChain(TAISC ChainIDT cid,
TAISC relBigReferenceT diff);
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This interface is used by the local monitoring and configuration engine to implement the UPI
functions described in the next subsections.

3.3.4.1 setActive(interface, radio_program_name, radio_program_index)

This function activates the radio program with name radio program name installed on index
radio program_ index in the TAISC ROM. The index of the radio program represents the chain ID
in TAISC. The following code snippet illustrates the implementation in the Linux MCE.

def setActive(self, myargs):

interface = myargs['interface']

radio program name = myargs['radio program name']

radio program index = myargs['radio program index']

return libContiki.activateRadioProgram(interface,
1ibTAISC.mapUniqueNameOnId(radio program name), radio program index)

Radio programs are represented in TAISC as chains of instructions. Currently only one radio
program / chain can be active. To activate a chain, the load chain function must be executed. If
another radio program chain was active, it must be stopped first as illustrated in the next code
snippet.

error t activateRadioProgram(uintl6é t radio program id, uint8 t
radio program index) {
radio program t rp* = get radio program(radio program id,
radio program index) ;
if (rp != NULL) {
if( rp->id '= activeRadioProgram->id) {
taisc wrapper stop chain(activeRadioProgram->index) ;
taisc wrapper load chain(rp->index) ;
activeRadioProgram = rp;
return SUCCESS;
}
}
return FAIL;

3.3.4.2 setinactive(interface, radio_program_name)

This function de-activates the radio program with name radio program name. The following
code snippet illustrates the implementation in the Linux MCE.

def setlInactive(self, myargs):
interface = myargs['interface']
radio program name = myargs['radio program name']
return libContiki.deActivateRadioProgram(interface,
1ibTAISC.mapUniqueNameOnId(radio program name))

To activate de-activate a radio program, the stop chain function must be executed.

error t deActivateRadioProgram(uintl6é t radio program id) {
if (activeRadioProgram != NULL && activeRadioProgram->id ==
radio program id) {
taisc wrapper stop chain(activeRadioProgram->index) ;
activeRadioProgram = NULL;
return SUCCESS;
}
return FAIL;
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3.3.4.3 getActive(interface):

This function returns the name of the active radio program. The following code snippet illustrates
the implementation in the Linux MCE.

def getActive(self, myargs):
interface = myargs['interface']
libContiki.getActiveRadioProgram(interface)
return None

In Contiki this translates to the following code.

error t geActiveRadioProgram() {
if (activeRadioProgram != NULL) {
return activeRadioProgram->id;

}

return 0;

3.4 lIris

This section describes the UPI_R implementation in Iris, to simplify the structure, after a short
introduction on Iris and the available hardware platforms; this section is organized in four
subsections, one for each group of UPI_R functions, as defined in the previous section.

Iris is a software defined radio framework that allows users to design and construct radios from the
composition of user defined signal processing blocks. The processing blocks of Iris are written in
C++ and run on the general purpose processor of a computer with a Linux based operating system.
This computer is then interfaced to a universal software radio peripheral (USRP) frontend device
which handles the radio frequency aspects of the radio, which are limited to basic up or down
conversion and minor filtering in the typical case. The central operation of the Iris framework is
then the management of user defined signal processing blocks within so-called engines. These
engines may be organized to support operation at either the PHY or MAC layers of radio operation.
Finally, user radio programs, composed by their signal processing blocks, are described with a XML
document to the managing engines. This XML document specifies which blocks should be loaded,
any parameters that should be based to these blocks, and how blocks should be connected. Such
XML descriptions are primarily used to configure radios at the beginning of their operation.

The UPI_R implementation for Iris focuses on providing a standard way for users to expose radio
control and monitoring functionality. This is achieved by developing an Iris engine to manage
processing blocks which supports the operation of the UPI_R. Thus, the implementation of UPI
functionality sits on top of an enabling Iris engine as depicted below. To take advantage of the
capabilities of WiSHFUL, users must simply specify which parameters should be exposed in the
enabling Iris Engine. A slim layer of WiSHFUL UPI functionality is then able to translate UPI calls into
an internal socket based Iris call for accomplishing radio control in a standard manner. This
approach maintains the flexibility of Iris to realize the needs of users in terms of custom signal
processing blocks and chains, while allowing these elements to be exposed to and controlled by the
unified WiSHFUL framework.
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WiSHFUL UPI
Iris Engine
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Figure 7 - Organization of WiSHFUL UPI functionality in relation to Iris

3.4.1 Acquiring nodes information

Two functions are defined in this UPI group: getRadioPlatforms() and getRadioiNFO(). They allow to
acquire the following information:
* Number of wireless interfaces of the node and supported platforms
¢ List the capabilities of the node
* Supported configuration parameters
* Measurements node capabilities
* Available radio chains (e.g. CSMA, TDMA)

Recall that the radio elements within Iris are defined in software, meaning that the NICs for Iris are
the user defined radio chains. These radio chains, including specification of processing blocks, are
defined within XML files that the Iris engine uses to load radio programs. Each such radio chain
maintains the unique string formatted name specified by the user.

3.4.1.1 getRadioPlatforms ()

This function returns information about the available interfaces on the node. The returned NIC_t
object contains the name of the interface (i.e. the user defined name of the radio program for Iris)
and the supported platform type (i.e.lris). This function makes use of an Iris socket call through the
custom liblris python module as illustrated in the next code snippet.

def getRadioNICs(self, myargs):
return libIris.call(‘getRadioNIC:all’)

3.4.1.2 getRadioiNFO(interface, param_key):

This function returns the radio capabilities of the given interface (NIC_t object) in terms of
supported configuration parameters, monitoring measurements and supported radio programs.
The information elements used by the UPI_R interface, to manage parameters, measurements and
radio program, are organized into data structures, which provide information on the platform type
and radio capabilities. When executed, this function return information about available radio
capabilities (measurements and parameters, radio_info_t) of each interface (NIC_t) on the available
radio programs (radio_prg_t) available for transmissions over the radio interface. The following
code snippet illustrates how this is done for Iris, it uses Iris socket calls through the custom liblris
python module to the engine which collects the parameters and events specified for availability to
WIiSHFUL.

def getRadioNICInfo(self, myargs):
interface = myargs['interface']
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radio info = radio info t()

radio info.NIC info = interface

radio info.param list = libIris.getSupportedParameters (interface)
radio info.event list = libIris.getSupportedEvents(interface)

radio info.monitor list = libIris.getSupportedMeasurements(interface)
return radio info

3.4.2 Configuring nodes

There are two UPI_R functions in this group: setParametersLowerlayer() and
getParameterLowerlayer(). They allow getting/setting the configuration parameters of the radio
platform. The complete list of configuration parameters is listed in the WiSHFUL documentation
(http://wirelesstestbedsacademy.github.io/wishful_upis/) and in the Appendix of this document.
Note that the parameters supported are ultimately the choice of the user defining the underlying
radio chains within Iris. For ease of discussion we will assume a chain that exposes all supported
parameters here. Should an unsupported parameter be requested, an error is returned. The
parameters supported by Iris radio chains can be retrieved at runtime using the function
getRadioPlatforms(). The functions of this group use the custom liblris python module for retrieving
Iris specific (NIC) info.

3.4.2.1 setParameterLowerlayer(interface,param_key_values)

The parameters that can be configured correspond to those exposed by the radio designer to the
WIiSHFUL framework. This function (re)set the value(s) of the specified parameters in the
param_key_values dictionary argument. The keys of this dictionary are the parameter names, the
values are the configuration values. The following code snippet illustrates how this is done in Iris.

def setParameterLowerLayer(self, myargs):
interface = myargs['interface']
param _key values = myargs[ 'param key values']
return libIris.setParameters(interface, param key values)

3.4.2.2 getParameterLowerlayer(interface, param_keys)

The parameters correspond to those exposed by the radio designer to the WiSHFUL framework.
This function gets the value(s) of the specified parameter keys added to the param_keys list. The
possible parameter keys are defined as attributes of the UPI_R class. The following code snippet
illustrates how this is done in Iris.

def getParameterLowerlLayer(self, myargs):
interface = myargs['interface']
lst param keynames = myargs['param keys']
return liblIris.getParameters(interface,lst param keynames)

3.4.3 Monitoring nodes

There are two UPI functions in this group: getMonitor() and getMonitorBounce(). They allow
obtaining (getMonitor) and collecting (getMonitorBounce) the measurements values from the radio
platform. The complete list of possible measurement values is listed in the WiSHFUL
documentation ( http://wirelesstestbedsacademy.github.io/wishful_upis/ ) and in the Appendix of
this document. Note that the parameters supported are ultimately the choice of the user defining
the underlying radio chains within Iris. For ease of discussion we will assume a chain that exposes
all supported parameters here. Should an unsupported parameter be requested, an error is
returned. The parameters supported by Iris radio chains can be retrieved at runtime using the
function getRadioNICinfo(). The functions of this group use the custom liblris python module for
retrieving Iris specific (NIC) info.
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3.4.3.1 getMonitor(interface, measurement_keys)

This UPI_R function gets the current value(s) of the measurement values specified in the
measurement key list. The following snippet of code shows the core of the function
implementation in Iris.

def getMonitor(self, myargs):
interface = myargs['interface']
lst param keynames = myargs['measurement keys']
return libIris.getMonitor (interface,lst param keynames)

3.4.3.2 getMonitorBounce(interface,  measurement_keys, collect_period, report_period
,hum_iterations, result_callback):

This UPI_R function enables to schedule the collection of the measurement values specified in the
measurement key list. The measurements are collected every collect_period and reported every
report_period. This is repeated a num_ijterations number of times. For every report, the
result_callback is called. The following snippet of code shows the core of the function
implementation in Iris.

def getMonitorBounce(self, myargs):
interface = myargs['interface']
lst measurement keys = myargs|['measurement keys']
callback = myargs['result callback']
collect period = myargs['collect period']
report period = myargs['report period']
num iterations = myargs['num iterations']
lst measurement keysids = []
libIris.getMonitorBounce (interface,lst measurement keys,collect period,repo
rt period,num iterations,callback)
return True

To implement this functionality the liblris python module, a monitor bounce thread is instantiated
containing two timer threads. The first of these timer threads collects the requested measurements
every collect_period, by calling a the getMonitor function discussed above and adds measurements
to an internal queue. The second timer thread reads the contents of this queue every report_period
to deliver measurements to the defined callback.

3.4.4 Changing the radio program on-the-fly

This section describes how the radio program, executed in Iris, can be changed on-the-fly via the
UPI_R interface. For the purposes of this discussion we will consider a CSMA and a TDMA radio
program. Both radio programs are added to the Iris engine via XML description and can be (de-
)activated at run-time by using the setActive/setinActive function.

3.4.4.1 setActive(interface, radio_program_name, radio_program_index)

This function activates the radio program with name radio program name loaded into the Iris
engine. If the radio program is not present in the Iris engine, it will be loaded before to active it.
Each radio program should be described by an XML file, conforming to standard Iris format, that
specifies the elements of the radio program. Furthermore the processing blocks employed by the
radio program to be inject must be available to the Iris engine in a precompiled form. The liblris
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custom python module is then used to load and active the radio program.The index of the radio
program is not necessary in Iris. The following code snippet illustrates the implementation in Iris.

def setActive(self, myargs):
radio program name = myargs['radio program name']
xml file location = myargs[‘xml path’]
return libIris.activateRadioProgram(radio program name, xml file location)

3.4.4.2 setinactive(interface, radio_program_name)

This function de-activates the radio program with name radio program name. The following
code snippet illustrates the implementation in Iris.

def setlInactive(self, myargs):
radio program name = myargs['radio program name']
return liblIris.deActivateRadioProgram(radio program name)

3.4.4.3 getActive(interface):

This function returns the name of the active radio program. The following code snippet illustrates
the implementation in Iris.

def getActive(self, myargs):
return libIris.getActiveRadioProgram()

3.5 Atheros-based IEEE 802.11 Subsystem

In this section we describe the implementation of the UPI_R for the Atheros-based IEEE 802.11
platform. After a brief introduction on the platform and its own tools, the UPI_R implementation is
presented, maintaining the structure proposed in the previous section, distinguishing functions by
their goal: loading and activating, monitoring as well as configuring.

WIiSHFUL allows building TDMA on top of today’s off-the-shelf WiFi hardware by providing a flexible
and extensible software solution. Currently, we are focusing on the programmability of the
downlink whereas in the future also the uplink will be considered. As a platform we use the
Atheros-based IEEE 802.11 platform which is a Commercial off-the-shelf (COTS) 802.11 compliant
chip on a Linux platform.

Following the Software-defined networking (SDN) paradigm we separate the control plane from the
data plane and provide an API to allow local or global control programs to configure the channel
access function. In particular we allow configuring the TDMA downlink channel access like define
the number and size of time slots in the TDMA superframe. Moreover, for each time slot a medium
access policy can be assigned which allows restricting the medium access for particular stations
(identified by their MAC address) and traffic identification (e.g. VolIP or video). The latter can be
used to program flow-level medium access. The data plane itself resides in each AP and is
controlled by the WiSHFUL runtime system.

The control plane in our design is managed by the either a global or local WiSHFUL controller which
takes as input the channel access scheme specified by applications. Any application is self-
responsible to decide on how to map the per-flow QoS requirements on the channel access. An
example would be to measure which wireless links are suffering from hidden node problem and to
assign exclusive time slots for flows requiring high QoS.

The provided centralized coordination for channel access requires a tight time synchronization
among APs. In WiSHFUL time synchronization is performed using the wired backhaul network and
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WiSHFWL

hence is not harming the performance of the wireless network. We use the Precise Time Protocol
(PTP) giving us an accuracy in microsecond level.

The WIiSHFUL agent running on each AP locally is responsible for coordination of channel access as
configured by the local or global controller.

WIiSHFUL provides hybrid TDMA MAC on commodity devices. So far a connector is provided for
Linux boxes using Atheros WiFi chips supporting the Ath9k driver. Specifically, we provide a patch
to the Linux Compat Wireless. The implementation was tested with Intel x86 nodes.

The following figure illustrates the components involved. The TDMA mac processor, called HMAC,
for the platform is realized as a userspace daemon written in C. It receives control commands like
the slot duration and the number of slots in a superframe from either the local WISHFUL execution
engine or the remote agent. Therefore, it starts the HMAC daemon. The agent controls
(reconfiguration) the HMAC daemon using a message passing system (ZMQ). The task of the
daemon is to pass slots configuration information to the wireless network driver using the NETLINK
protocol. Moreover, it is responsible to inform the wireless driver about the beginning of each time
slots. The patched wireless driver uses the slot configuration information to control which network
queues are active and which are freezed. Only packets from active queues are allowed to be sent.

Wishful global
controller
A
User-space
PTP Wishful timing /
agent agent slot config
(Python)

Ethernet driver WiFi driver )
(HW timestamping) (queue control)

Wired
backhaul
(Ethernet)

A

Figure 8. Components of the Atheros-based IEEE 802.11 subsystem.

The UPI functions allow the installation, at runtime reconfiguration and uninstallation of a hybrid
TDMA MAC. The mac_profile is an object-oriented representation of the hybrid MAC configuration.

€ helpers.mac_layer.AbstractMAC

T

m _init__(self)

€ helpers.mac_layer.HybridTDMACSMAMac

m __init__(self, no_slots_in_superframe, slot_duration_ns)
m getNumSlots(self)

m addAccessPolicy(self, slot_nr, ac)

m getAccessPolicy(self, slot_nr)

m getSlotDuration(self)

m printConfiguration(self)

€ helpers.mac_layer.AccessPolicy

m _init_ (self)

m disableAll(self)

m allowAll(self)

m addDestMacAndTosValues(self, dstH
m getEntries(self)

m printConfiguration(self)

The following example show how to set-up a new hybrid MAC instance using the provided helper
classes which are hiding the UPI calls:
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new MAC for ea node

access policy to J;ct 0
AccessPollcy()

3 ~ss of the 1link des
dstHWAddr '12:12:12:12:12: 12'
# best effort

tosval = 0
acBE.addDestMacAndTosValues (dstHWAddr, tosVal)
slot nr = 0

mac. addAccessPollcy(slot nr, acBE)

a " n time guara
acGuard = AccessPollcy()
acGuard.disableAll () # guard slot
slot nr =1

mac. addAccessPollcy(slot nr, acGuard)

DT -177 for Fitrat+1n t Vel
UPI call for activat ng h [AC prc

radioHelper. 1nstallMacProcessor(node, iface, mac)

3.5.1 Acquiring nodes information

Two functions are defined in this UPI group: getRadioPlatforms() and getRadioiNFO(). They allow to
acquire the following information:
* Number of wireless interfaces of the node and supported platforms
¢ List the capabilities of the node
¢ Supported configuration parameters, i.e. slot duration, total number of slots, ...
* Measurements node capabilities
* Available radio chains (e.g. CSMA, hybrid TDMA)

3.5.1.1 getRadioPlatforms ()

This function returns information about the available interfaces on the node. The returned NIC_t
object contains the name of the interface (i.e. the user defined name of the radio program for
Atheros platform) and the supported platform type (i.e. Atheros).

3.5.1.2 getRadioiNFO(interface, param_key):

This function returns the radio capabilities of the given interface (NIC_t object) in terms of
supported configuration parameters, monitoring measurements and supported radio programs.
The information elements used by the UPI_R interface, to manage parameters, measurements and
radio program, are organized into data structures, which provide information on the platform type
and radio capabilities. When executed, this function return information about available radio
capabilities (measurements and parameters, radio_info_t) of each interface (NIC_t) on the available
radio programs (radio_prg_t) available for transmissions over the radio interface.

3.5.2 Configuring nodes

There are two basic UPI_R functions in this group: setParametersLowerlLayer() and
getParameterLowerlayer(). They allow getting/setting the configuration parameters of the radio
platform. The complete list of configuration parameters is listed in the WiSHFUL documentation
(http://wirelesstestbedsacademy.github.io/wishful_upis/) and in the Appendix of this document.

However, we provide helper classes, which allow a more user-friendly way to program the HMAC
processor. See functions provided by the RadioHelper class.
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3.5.2.1 setParameterLowerLayer(interface,param_key_values)

The parameters that can be configured correspond to those exposed by the radio designer to the
WIiSHFUL framework. This function (re)set the value(s) of the specified parameters in the
param_key_values dictionary argument. The keys of this dictionary are the parameter names, the
values are the configuration values. This function is used to configure an MAC processor, i.e. setting
the number of slots and slot durations in TDMA MAC.

3.5.2.2 getParameterLowerlayer(interface, param_keys)

The parameters correspond to those exposed by the radio designer to the WiSHFUL framework.
This function gets the value(s) of the specified parameter keys added to the param_keys list. The
possible parameter keys are defined as attributes of the UPI_R class.

3.5.2.3 Wireless mode control

In this section we provide a description of implemented UPI that allows to configure the EDCA
parameters and per-flow transmission power.

a. EDCA parameters settings

The Enhanced Distributed Channel Access (EDCA) is an extension of the basic DCF defined in IEEE-
802.11e standard. It was introduced to support Quality-of-Service. The EDCA mechanism defines
four access categories (AC): AC_BK (background), AC_BE (best effort), AC_VI (video) and AC_VO
(voice). Each AC is characterized by specific values for the access parameters. Different settings
allow to statistically prioritizing channel access for one AC over another. As there are four packet
queues associated with each AC, it is possible to assure prioritized access for some flows (packets).

There are four parameters that are possible to set for each AC:

* Minimal Contention Window (cwmin) value,
* Maximal Contention Window (cwmax) value,
* Arbitration Inter-frame Space (aifs) value,

* Transmission Opportunity (txop) value

We have implemented UPI functions that allow changing each parameter listed above. In Table 3,
example configuration of configuration of EDCA parameters is presented. First, an experimenter
has to create EdcaQueueParameters object that contains all mentioned parameters. Then with
usage of setEdcaParameters() function she is able to configure EDCA for specific WiFi interface in
SUT node.

We have implemented a patch for ath9k driver that allows changing EDCA parameters. The
DebugFs was used to set/retrieve EDCA parameters to/from proper WiFi interface. We used
Atheros AR928X card in our implementation.
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Table 3 Example of configuration of EDCA parameters

#Define EDCA parameters for each queue

queueParam0 = EdcaQueueParameters(aifs=1, cwmin=1, cwmax=3, txop=9)
queueParaml = EdcaQueueParameters(aifs=50, cwmin=15, cwmax=63, txop=4)
queueParam?2 = EdcaQueueParameters (aifs=55, cwmin=63, cwmax=127, txop=2)
queueParam3 = EdcaQueueParameters(aifs=99, cwmin=127,cwmax=511, txop=0)

#Configure hardware queues of wireless NIC in node

radioHelper.setEdcaParameters (node=nodel, ifname='wlan0O', queueld=0,
gParam=queueParam0)

radioHelper.setEdcaParameters (node=nodel, ifname='wlan0O', queueld=l,
gParam=queueParaml)

radioHelper.setEdcaParameters (node=nodel, ifname='wlan0O', queueld=2,
gParam=queueParam?2)

radioHelper.setEdcaParameters (node=nodel, ifname='wlan0O', queueld=3,

gParam=queueParam3)

In order to get to know what are currently set EDCA parameters, one needs to use
getEdcaParameters() function. Then retrieved values can be displayed using helper function
printEdcaParameters() (see Table 4).

Table 4 Getting and printing EDCA parameters

#Get and print EDCA parameters from node
gParams = radioHelper.getEdcaParameters (node=nodel, ifname='wlan0O')
radioHelper.printEdcaParameters (node=nodel, ifname='wlanO', gParam=gParams)

We also provided function setFlowTransmissionQueue(), which can be used to instruct the SUT
node to send flow defined by 5-tuple, with speficied hardware queue. An example of such function
is presented in Table 5. We exploit the fact that MAC layer is sending packets to proper queue
based on Type-of-Service value, thus setFlowTransmissionQueue() is configuring proper iptable
rules to set proper TOS value in packets of defined flow.

Table 5 Sending flows with specified hardware queue

#Define flow
flowDesc = FlowDesc(src="192.168.1.4", dst="192.168.1.5")

#Instruct node to send flow with speficied hardware queue
radioHelper.setFlowTransmissionQueue (node=nodel, ifname="wlan0", queueld=0,
flowDesc=flowDesc)

b. Per-flow transmission power

Besides the UPI function to set transmission power for a specific interface, a function to set per-
flow transmission power is provided.

Example of configuration of per-flow transmission power is presented in Table 6. First, an
experimenter has to create FlowDesc objects that describe the flow with usage of 5-tuple. Second,
using UPI function, setPerFlowTxPower(), one can instruct the node to send all packets of a defined
flow using a specified transmission power.

We have implemented a patch for ath9k driver that allows setting per-flow transmission power.
The DebugFs was used for communicating with driver. We used Atheros AR928X card in our
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implementation. The Per-Flow TX Power list is an associative table with flow mark being a key and
TX power being a value. The function setPerFlowTxPower() adds new entry in driver’s Per-Flow TX
Power list and configures iptable rule to set mark in packets of defined flow.

Table 6 Example of configuration of Per-Flow TX Power

#Define flows

flowl = FlowDesc(src="192.168.1.4", dst="192.168.1.5", prot='tcp',
dstPort="5001")

flow2 = FlowDesc(src="192.168.1.4", dst="192.168.1.5", prot='tcp',
dstPort="5123")

#Configure TX power for flow

radioHelper.setPerFlowTxPower (node=nodel, ifname='wlanO', flow=flowl,
txPower=10)
radioHelper.setPerFlowTxPower (node=nodel, ifname='wlanO', flow=flow2,

txPower=20)

In order to get current per-flow transmission power list from node for specified interface, one
needs to use the getPerFlowTxPowerlist() function (see Table 4). The retrieved list can be
displayed using helper function printPerFlowTxPowerList().

Table 7 Getting and printing Per-Flow TX Power list

#Get and print Per-Flow TX Power list from wireless interface in node

perFlowTxPowerList = radioHelper.getPerFlowTxPowerList (node=nodeO,
ifname="wlan0")
radioHelper.printPerFlowTxPowerList (node=node0, ifname='wlanO',

data=perFlowTxPowerList)

Finally, in Table 8, we present UPI function cleanPerFlowTxPowerlist(), that can be used to clear
Per-Flow TX Power list of specified wireless interface in SUT node.

Table 8 Cleaning Per-Flow TX Power entry/list

#Clean Per-Flow TX Power list of wireless interface in node
radioHelper.cleanPerFlowTxPowerList (node=node0, ifname='wlan0")

3.5.3 Monitoring nodes

Specific UPI functions are implemented to get measurements values from the radio platform. The
complete list of possible measurement values is listed in the WIiSHFUL documentation
(http://wirelesstestbedsacademy.github.io/wishful_upis/) and in the Appendix of this document.

3.5.3.1 getMonitor(interface, measurement_keys)

This UPI_R function gets the current value(s) of the measurement values specified in the
measurement key list. So far no functionality was implemented.
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3.5.4 Changing the radio program on-the-fly

This section describes how the radio program, executed in Iris, can be changed on-the-fly via the
UPI_R interface. The application developer can switch between CSMA and a TDMA radio program.
Moreover, he can change the behaviour of a running radio program by calling either
setParameterLowerlayer() directly or using the helper class.

3.5.4.1 setActive(interface, radio_program_name, radio_program_index)

This function activates the radio program. So far a CSMA and TDMA is implemented and can be
activated.

3.5.4.2 setInactive(interface, radio_program_name)

This function de-activates the radio program with name radio program name. The allowed
options are CSMA and TDMA.

4 UPI_M implementation

All management related functions are grouped in the UPI_M interface because they are required
for managing protocol software modules at any layer. Moreover, software management requires
functionality on both the local and global level. UPI_M deploying, installing and activating software
packages. We consider how software package the execution environment to deploy in all the
platform. Moreover, we use the UPI_M interface to deploy the radio program on platform. The
UPI_M interface will be implemented in the Year 2 of the project, however, we need to implement
some part of this features and only for the WMP platform in this year. In this year we do not
consider the feature to deploy the software package and the radio program, but we consider the
feature to install the execution environment. This section introduces UPI_M, its functions and how
the implementation is done. In order to execute the radio program on WMP platform we need
install the execution environment on platform, this operation is addressed by the UPI_M interface.
Another feature addressed by UPI_M and implemented in this year is the operation to setup the
wireless link.

4.1 UPIL_M implementation

The UPI_M functions implemented on the WMP platform are two, installExecutionEngine() and
initTest(). The first allows to configure the Broadcom wireless card to use the WMP engine (ables to
run the radio program), the second allows to establish the links of the wireless network.

installExecutionEngine(param_key):

The architectures of the nodes present in the testbed define an execution environment or
execution engine able to run radio programs defined in a high-level programming language. This
management function install an execution environment on a node. In the case of WMP platform
the execution engine is implemented on the microcode wireless card, the function action is to copy
the WMP supported microcode on the precise linux file system directory. Consequently, the reload
of microcode on Broadcom wireless card provide the correct execution environment able to run the
two radio program provided by the WiSHFUL framework.

initTest(myargs):
This function is a management function used to setup the wireless link. The function performs
three different action:

1) restart the broadcom driver module
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2) creates infrastructure BSS, the node in which is executed is used such Access Point

3) associate node to infrastructure BSS.
The different action are addressing by the key argument 'OPERATION' in the dictionary data type of
arguments. The supported value for the key 'OPERATION' are :

* 'module’, used to restart the module;

* 'create-network’, used to create the IBSS;

* 'association' used to associate the node to the IBSS.

This function uses the Linux system command "rmmod" and "modprobe" to restart the card
module driver, it uses the "hostapd" tool to create the IBSS network on Access Point node, and the
"iwconfig" command to creating the wireless link on station node.

The following snippet code shows the core of the function implementation, according with the type
of operation, we perform the correct command.

def initTest(self, interface, param key):
import subprocess
key = param key['OPERATION']

if key[ii] == "module":
#restart module
if key[ii] == "association":

value 1 = param key['SSID']
value 2 param key['IP_ADDRESS']

#association the station

if key[ii] == "create-network":
value 1 = param key['SSID']
value 2 param_key['IP_ADDRESS']

#restart module

5 Examples of control programs using UPIs

The section provides some examples of control programs that can be used by experimenters as a
starting point to develop their own controllers. These examples are taken from the control
programs used in the showcases discussed in D2.3.

5.1.1 Defining a local controller

The local controller is a code that runs locally, i.e. on the System Under Test (SUT). The
implementation of the local controller can be done directly on the node itself (using the
LocalManager), or, under the coordination of the global controller. In this last case, it can be
defined on the global controller (the definition of the run_local_controller function), then it is
remotely sent to SUTs (when run_local_controller is called).

It contains the definition of the following nested functions, which have to be customized by the
experimenter:
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¢ def customLocalCtrlFunction(myargs)

¢ def resultCollector(json_message, funcld)
¢ def ctrIMsgCollector(json_message)

¢ def stop_local_controller(mytestbed)

These functions define, respectively, the actions to be run by the local controller, passing
parameters that have to be defined by the experimenter, those to manage messages, to ... and
those to be executed when the local controller has to be stopped.

def run local controller (mytestbed, disable=0):

wnn

Custom function used to implement local WiSHFUL controller

wnn

def customlLocalCtrlFunction (myargs):

wnn

Custom callback function used to receive result values from scheduled calls,
i.e. if you schedule the execution of a

particular UPI_R/N function in the future this callback allows you to be
informed about any function return values.

numCBs = {}

numCBs['res'] = 0

# use in while to lern if the local logic stopped e.g.

# while numCBs['res'] < 2:

def resultCollector(json_message, funcId):

[§

wnn

Custom callback function used to receive control feedback results from local
controllers.

wnn

def ctrlMsgCollector (json_message) :

wnn

Stop function used to send stop function to local controllers.

wnn

def stop_local_controller (mytestbed) :

# START MAIN PART

if disable:
stop_local controller (mytestbed)
return

# register callback function for collecting results

mytestbed.global mgr.setCtrlCollector (ctrlMsgCollector)

# deploy a custom control program on each node

CtrlFuncImpl = customLocalCtrlFunction

CtrlFuncargs = {'INTERFACE' : ['wlanO']}

# get current time

now = get_now_full second()

# exec immediately

exec_time = now + timedelta (seconds=3)

log.info('Sending local WiSHFUL controller on all nodes - start at : %s',

41




WASHFUL H2020 - GA No. 645274 D3.2

str (exec_time))

#nodes = upi_ hc.getNodes ()

for node in mytestbed.wifinodes:
node.measurement_types.append('FREEZING NUMBER')
node.measurement types.append('CW')

nodes = mytestbed.nodes

try:
# this is a non-blocking call
callback = partial (resultCollector, funcId=99)
#isOntheflyReconfig = True
mytestbed.global mgr.runAt (nodes, CtrlFuncImpl, CtrlFuncargs,
unix time as_ tuple(exec_time), callback )
except Exception as e:
log.fatal ("An error occurred in local controller WiSHFUL sending and
running : %$s" % e)

log.info("Local logic STARTED")
return

5.1.2 Waiting for events

In several cases it is useful to wait for an event. In the following snippet a traffic flow is waited for
100 seconds.

wnn

Wait for traffic stopped

wnn

seconds = 0
traffic number = get traffic()
while seconds < 100 and traffic number != 0:

traffic number = get_traffiZ()

log.debug('waiting for traffic end , traffic number = %d (%d)' %
(traffic number, seconds) )

time.sleep (1)

seconds += 1

5.1.3 Setting a radio program

A radio program can be set on a specific node by indicating the node index, using the
active_TDMA_radio_program function, passing TDMA configuration parameters in the form KEY :
value.

wnn

Set TDMA radio program on nodes
node_index = 0
#superframesize in ms
superframe size len = 700 * len(mytestbed.wifinodes) #at modulation rate 24Mbps
for node in mytestbed.nodes:
active_TDMA radio_program(node, log,mytestbed.global mgr,
nodes NIC info[node_index])
tdma_params={'TDMA_ SUPER_FRAME SIZE' : superframe_size_ len,
'TDMA NUMBER OF SYNC_SLOT' : len(mytestbed.wifinodes), 'TDMA ALLOCATED_ SLOT':
node_index}
set TDMA parameters(node, log,mytestbed.global mgr, tdma params)
node_index += 1
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The full set of tuneable/readable parameters can be found in upi_rn.py, groped by PHY, TDMA, and
CSMA parameters, where also it is reported the full list of available radio measurements.

5.1.4 Collecting measurements

Measurements to be collected have to be listed in a vector, then the request for these
measurements is broadcasted to all nodes indicated in the first parameter. The request for
measurements can be done ‘one shot’, i.e. only once. In most cases, however, it is needed a
periodical reading. The UPI permits to indicate the reporting period (how often measurements are
reported to the controller), the number of iterations (how many readings), the sampling time (how
often measurements are read on the SUT). Meaningful values are those for which
my_reporting_period is greater than sampling_time. In fact, obviously, measurements samples
have to be collected on the SUT before being reported. The number of iterations implicitly defines
the ending time of the measurement process.

wnn

Start measurement collector for measure FREEZING NUMBER on all nodes
measurements = (UPI_RN.TSF, UPI_RN.NUM FREEZING COUNT)
my reporting period=2000000
my iterations=60
meas_collector.collect_values_from nodes (nodes=mytestbed.wifinodes,
node list=mytestbed.nodes, measurement_ types=measurements,
ucallback=programmable callback, sampling time=1000000,
reporting period = my reporting period, iterations = my iterations)

5.1.5 Configuring Logs

wnn

Init WiSHFUL framework

FORMAT = '> % (asctime)-15s % (message)s'
logging.basicConfig (format=FORMAT)

log = logging.getLogger ()

log.setLevel (logging.DEBUG)

This snippet defines the logging format to be used in all logging messages by the controller. The
available logging levels are inherited from python, as follows.

LEVELS = {'debug': logging.DEBUG,
'info': logging.INFO,
'warning': logging.WARNING,
'error': logging.ERROR,
'critical': logging.CRITICAL}

5.1.6 Defining a testbed

The testbed definition is implemented using OMF. As an extra alternative, a testbed is an object of
the class TestbedTopology, to which we need to pass the name of the experiment, the logging
object and the number of nodes.

nnn
khkkkkkkkkkkkkkkkkkkkk

Start framework and get information from Experiment Controller
khkkkkhkhkkkhhkkkkkkkkkkk

wnn

mytestbed = TestbedTopology("SC3", log, 4) # uses 4 nodes and "SC3" name for

43




WASHFUL H2020 - GA No. 645274 D3.2

nodes group name
mytestbed.initializeTestbedTopology () # discovery and allocate nodes

When the global controller requires measurement data coming from the nodes, we need to launch
the measurement collector. In our case the controller requests information about the available
NICs on wireless nodes and their related information. These can be requested to a global manager,
which handles nodes in a testbed.

5.1.7 Collecting measurements

wnn

Start WiSHFUL controller measurement collector
meas_collector = MeasurementCollector (mytestbed, log)
nodes NIC info = []
for node in mytestbed.nodes:
nodes_NIC_info.append(getPlatformInformation(node, log, mytestbed.global mgr))

5.1.8 Monitoring traffic flows

The global controller monitors the number of active traffic flows and waits until one flow is
detected. The information about the number of traffic flows is obtained by reading a csv file
(get_traffic() reads this file). This configuration file is written by the experiment controller, it is the
current interface between the experiment controller and this controller.

wnn

Wait for some traffic start in testbed
seconds = 0
traffic number = get traffic()
while seconds < 100 and traffic_number ==
traffic number = get traffic()
log.debug('waiting some traffic start, traffic_number = %d (%d)' %
(traffic number, seconds) )
time.sleep (1)
seconds += 1

44




WASHFUL H2020 - GA No. 645274 D3.2

6 Improvements and extensions

For the next year of the project, we envision some improvements and extensions on the WiSHFUL
software architecture for radio control, which involve the unified UPI_R interface, the monitoring
and configuration engines, and the general control framework.

As far as concerns the unified UPI_R interface, we plan to complete the implementation of the
functions defined in D3.1 (basically, by adding the defineEvent function), and to add more advanced
functions for supporting the white-box experimentation approach. Indeed, in the current software
release, experimenters can use non-standard MAC/PHY solutions by choosing among pre-defined
radio programs available in the WiSHFUL repository. Although in some cases these programs
implement similar protocols (e.g. CSMA or TDMA protocols) which expose the same set of
configurable parameters, their implementation is platform-specific and is hidden to experimenters.
We plan to extend the UPI_R functions for enabling some forms of more advanced MAC/PHY
programming, in which experimenters can define their own protocols.

As far as concerns the WiSHFUL monitoring and configuration engines, during the implementation
phase it clearly emerged that MCEs currently work on node-level abstractions, i.e. by enforcing
desired configurations on single nodes or groups of nodes. However, network-level decisions could
benefits of some network abstractions to be automatically translated into node-level
decisions/measurements by the configuration engines. For example, being the concept of radio link
dependent on time-varying channel conditions and node mobility, the estimation of the network
topology (i.e. nodes in radio visibility or in interference ranges) can be considered a network
abstraction relevant to any control program. Such an abstraction can be built by aggregating
different types of measurements and actions on single nodes, and offered as a network-wide
service integrated into the WiSHFUL framework (rather than leaving its implementation to
experimenters).

Finally, as far as concerns the control framework, we noticed that the control of the solution under
test and the definition of a specific experiment could be somehow harmonized for avoiding
redundancies of similar functionalities and for efficiency reasons. More into details, WiSHFUL
experimenters usually deal with two independent control problems: i) the WiSHFUL control, i.e.
defining a network/radio control logic that is not experiment-specific, but implements a novel
adaptive wireless solutions able to work in different network conditions and even in real networks;
ii) the experiment control, i.e. defining a specific experiment in which it is possible to select
different network nodes and to define the dynamics of the traffic flows, the control program and
the relevant statistics. Although the two aspects are logically independent, i) the availability of UPI
interface for the Experiment controller can facilitate the configuration of the nodes and network
topology (e.g. node associations), ii) the availability of Experiment control information in the
WIiSHFUL controllers can avoid the duplication of some functionalities, such as node associations.
Therefore, we plan to investigate on the possibility to add an interface between the WiSHFUL
control framework and the experiment control framework.
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7 Conclusions

In this deliverable, we describe the first release of the WiSHFUL software architecture for radio
control, which comprises of two main components: i) the WIiSHFUL control framework, for
providing a global view of the solution under test to the experimenter and defining the radio
control logics, and ii) the unified UPI_R interface for monitoring and configuring the radio
behaviours of the nodes. Radio control is devised to easily prototype novel wireless solutions,
which can include dynamic adaptations of the MAC/PHY of the devices. The solutions can be
platform-agnostic, thanks to the abstractions provided by the UPI_R interface, and can work on
heterogeneous hardware platforms, including sensors, wireless cards and software-defined-radio.

The implementation has been carried out according to the general design specified in D3.1 (apart
from the minor modifications discussed in the first paragraph of section 4), and validated in the
showcases presented in D2.3. While in the first design we only considered three different
experimentation platforms (IRIS,TAISC and WMP), during the implementation phase the UPI_R
functions have been provided for an additional platform, i.e. a commercial wireless card with an
Atheros chipset, widely used by experimenters.

The UPI_R implementation is based on the development of connector modules, able to map
platform-independent function calls into platform-specific tools and functionalities (which may vary
as a function of the platform capabilities). The implementation of the control framework includes
the implementation of global and local Monitoring and Configuration Engines, and the
implementation of control services to be used for both radio and network control. Because of its
generality, the framework is able to support different control forms, including global, local and
hybrid decisions; however, for radio control, we expect that local control can be the dominant
solution, because of the strict time constraints of MAC/PHY protocols.
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Appendix A. Available and tuneable elements for radio programs
A.l Parameters

PHY PARAMETERS

NETWORK INTERFACE HW ADDRESS = "NETWORK INTERFACE HW ADDRESS"
""" MAC address of wireless network interface card"""

IEEE80211 L2 BCAST TRANSMIT RATE = "IEEE802l1_L2_BCAST_TRANSMIT_RATE"
""" To Measure the transmit rate of generated 802.11 broadcast traffic at

rate """

IEEE80211 L2 GEN LINK PROBING = "IEEE80211 L2 GEN LINK PROBING"
""" To send out 802.11 broadcast link probes """

IEEE80211 L2 SNIFF LINK PROBING = "IEEE8021l_L2_SNIFF_LINK_PROBING"
""" To Receive 802.11 broadcast link probes """

IEEE80211 CONNECT TO AP = "IEEE80211 CONNECT TO AP"
manw connect to ap man

IEEESOle_AP_CHANNEL = "IEEESOZII_AP_CHANNEL"
""" TEEE 802.11 PHY channel """

IEEESOle_CHANNEL = "IEEESOZII_CHANNEL"
""" TEEE 802.11 PHY channel """

IEEE80211_MCS = "IEEE80211_MCS"
""" IEEE 802.11 Modulation and Coding Scheme (MCS) index value """

IEEE80211 CCA = "IEEE80211 CCA"
""" TEEE 802.11 Clear channel assessment (CCA) threshold """

TX_POWER = "TX POWER"
""" Transmission power in dBm """

TX ANTENNA = "TX ANTENNA"
""" Antenna number selected for transmission """

RX ANTENNA = "RX ANTENNA"
""" Antenna number selected for reception """

MAC_ADDR_SYNCHRONIZATION AP = "MAC ADDR SYNCHRONIZATION_ AP"

D3.2

full

"nnTTo set the Access Point MAC address used for synchronlzlng the TSF timer """

END PHY PARAMETERS

TDMA RADIO PROGRAM PARAMETERS

TDMA SUPER FRAME SIZE = "TDMA SUPER FRAME SIZE"
""" Duration of a periodic TDMA frame """

TDMA_NUMBER_OF_SYNC_SLOT = "TDMA NUMBER_OF SYNC SLOT"
"nn Number of temporal slots included in a TDMA frame """

TDMA ALLOCATED SLOT = "TDMA ALLOCATED_SLOT"
""" Slot number allocated to the NIC"""

TDMA_MAC_PRIORITY CLASS = "TDMA MAC PRIORITY CLASS"
nnn Service class QUEUE associated to the TDMA radio program """

END TDMA RADIO PROGRAM PARAMETERS
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CSMA RADIO PROGRAM PARAMETERS

CSMA CW = "CSMA CW"
""" Current value of the Contention Window used by the CSMA radio program"""

CSMA_CW_MIN = "CSMA_ CW_MIN"
"nv Minimum value of the Contention Window used by the CSMA radio program"""

CSMA CW_MAX = "CSMA CW_MAX"
""" Maximum value of the Contention Window used by the CSMA radio program"""

CSMA_TIMESLOT = "CSMA_ TIMESLOT"
"nv Duration of the backoff slot used by the CSMA radio program"""

CSMA MAC PRIORITY CLASS = "CSMA MAC PRIORITY CLASS"
""n Service class QUEUE c associated to the CSMA radio program """

CSMA BACKOFF VALUE = "CSMA BACKOFF_ VALUE"
"nn Current backoff value used by ‘the CSMA radio program"""

END CSMA RADIO PROGRAM PARAMETERS

A.2 Measurements

RADIO MEASURAMENT

NUM TX = "NUM TX"

""" Total number of transmitted frames measured since the interface has been
started"""

NUM TX UNIT = "samples"
""n Unit of measurement of NUM_TX """

NUM_TX_ SUCCESS = "NUM_TX SUCCESS"
""" Total number of successfully transmitted frame measured since the interface
has been started """

NUM TX SUCCESS_UNIT = "samples"
""" Unit of measurement of NUM _TX SUCCESS """

NUM RX = "NUM RX"
""" Total number of received frames since the interface has been started """

NUM RX UNIT = "samples"
""" Unit of measurement of NUM RX """

NUM RX SUCCESS = "NUM RX SUCCESS"
""" Total number of successfully received frames since the interface has been
started """

NUM RX SUCCESS_UNIT = "samples"
""" Unit of measurement of NUM _RX SUCCESS """

NUM RX MATCH = "NUM RX MATCH"

""" Total number of received frames addressed to the node since the interface has
been started.

This measurement traces the number of received frame in which the receiver address
field matches with the

network interface card MAC address """

NUM RX MATCH UNIT = "samples"
""" Unit of measurement of NUM RX MATCH """

NUM_FREEZING_COUNT = "NUM FREEZING COUNT"
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""" Total number of backoff freezes since the interface has been started """

NUM FREEZING COUNT UNIT = "samples"
""" Unit of measurement of NUM FREEZING COUNT """

BUSY TYME = "BUSY TIME"

""" Time interval in which the transceiver has been active (including reception,
transmission and carrier sense).

The unit of measurement is microseconds since the interface has been started, the
register size is 32bit

(cycle on 4294 sec)"""

BUSY TYME UNIT = "us"
""" Unit of measurement of BUSY TIME """

TX ACTIVITY = "TX ACTIVITY"

""" Time interval in which the transceiver has been involved in transmission.

The unit of measurement is microseconds since the interface has been started, the
register size is 32bit

(cycle on 4294 sec)"""

TX ACTIVITY UNIT = "us"
""" Unit of measurement of TX ACTIVITY """

TSF = "TSF"

""" The Time Synchronization Function (TSF), i.e. the timer that all stations in
the same Basic Service Set (BSS) use

for the synchronization """

TSF UNIT = "us"
""" Unit of measurement of TSF """
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Appendix B. Implementation of WiSHFUL architecture for radio platforms

The next pages give the documentation of the UPI_R usage, automatically created using Sphinx [1],
and also available on a public git repository that will be publicly accessible to experimenters [3].
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wishful_upis package

wishful_upis.upis.upi_m module

class wishful upis.upis.upi_m.UPI_M
Bases: object

initTest (myargs)
Thisfunctionis a managementfunctionusedto setupthenodesbeforethe experiment, the functioncan
performs different action.Theyare i) restart the driver module, ii) createsinfrastructure BSS, the node is
usedsuch AccessPoint, iii)associate nodetoinfrastructureBSS. Thedifferentactionare addressing the
key ‘OPERATION’ in the dictionary data typeof arguments.

Parameters myargs — listof parameters, in termof a dictionarydata type (listof key: value) in
which: Thekey“interface” specify thenetwork interface touse. The key ‘operaiton’ is used
tospecify the action, thesupported valuefor the key‘operation’ are ‘module’, usedto restart
the module, ‘create-network’, used to createthe IBSS, and ‘association’used to associate the
nodeto the IBSS. The key ‘ssid’is usedtodefinethe essidofthe IBSS. The key ‘ip_address’
is used to define the ip address of thewireless interface.

Return result return0 iftheparametersettingcallwassuccessfullyperformed, 1 partialsuccess,
2error.

example: >>args={‘interface’: ‘wlan0’, ‘operation’: [’create-network’], ‘ssid’: ["MyNetwork’], ‘ip_-
address’ : [192.168.1.1°] }]

>> result = UPI_M.initTest(args)
>> print result

0

installExecutionEngine (myargs)
Thearchitecturesofthenodespresentin thetestbeddefineanexecution environment or executionengine
able to run radio programs definedin a high-levelprogramming language. This managementfunction
install an execution environ ment on a node. If theexecutionengineisimplementedon themicrocode
wireless card, the function the copy and ablethe correct microcode.

:param myargs:listof parameters, interm ofa dictionarydata type(list ofkey: value) in which: thekey is
‘execution_engine’and thevalue is the pathof theexecutionengine file(s). :return result: return O ifthe
parameter setting call was successfullyperformed, 1 partial success,2 error.
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example: >>args = {‘execution_engine’ : ['runtime/connectors/wmp_linux/execution_engine/wmp’] }
>> result = UPI_M.installExecutionEngine(args)
>> print result

0

wishful_upis.upis.upi_rn module

class wishful_ upis.upis.upi_rn.RadioPlatform t

The informationelements used bythe UPI_R interfaceare organized intodata structures, which provide infor-
mation on theplatform type of each interface,over theradio interface. Thisclass representing the data structure
information of a radio interface, it contains anidentifierandthe platformtype.

platform id=*
interface identifier or interface name

platform_ type=*
platform interface

class wishful_upis.upis.upi_rn.UPI_R

Bases: object

BUSY_TYME =‘BUSY_TIME’
Timeinterval inwhichthe transceiver hasbeen active(includingreception, transmissionand carrier sense).
Theunitof measurementis microseconds since theinterfacehas been started, theregister sizeis32bit
(cycle on 4294 sec)

BUSY TYME UNIT =‘us’
Unit of measurement of BUSY_TIME

CSMA_BACKOFF_VALUE =‘CSMA_BACKOFF_VALUE’
Current backoff value used by the CSMA radioprogram

CSMA_CW = ‘CSMA_CW’
Current value of the Contention Windowused by theCSMA radio program

CSMA_CW_MAX =‘CSMA_CW_MAX’
Maximum value of the Contention Window usedby the CSMA radioprogram

CSMA_CW_MIN=‘CSMA_CW_MIN’
Minimum value of the Contention Windowusedby theCSMA radio program

CSMA_MAC_PRIORITY_CLASS =‘CSMA_MAC_PRIORITY_CLASS’
Service class QUEUE c associatedto theCSMA radio program

CSMA_TIMESLOT =‘CSMA_TIMESLOT’
Duration of the backoff slot used by the CSMAradioprogram

IEEE80211_AP_CHANNEL =‘IEEE80211_AP_CHANNEL’
IEEE 802.11 PHY channel

IEEE80211_ccCA=‘IEEES80211_CCA’
IEEE 802.11 Clear channel assessment (CCA)threshold

IEEE80211_CHANNEL = ‘IEEE80211_CHANNEL’
IEEE 802.11 PHY channel

IEEE80211_CONNECT_TO_AP =‘IEEE80211_CONNECT _TO_AP’
Connect to ap
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IEEE80211_L2_ BCAST_TRANSMIT_RATE =‘IEEE80211_L2_BCAST_TRANSMIT_RATE’
To Measure the transmit rate of generated 802.11 broadcasttraffic at fullrate

IEEE80211_L2_ GEN_LINK PROBING=‘IEEE80211_L2_GEN_LINK_PROBING’
To send out 802.11 broadcast link probes

IEEE80211_IL2_ SNIFF_LINK_PROBING= ‘IEEE80211_L2_SNIFF_LINK_PROBING’
To Receive 802.11 broadcast link probes

IEEE80211_MCS =‘IEEE80211_MCS’
IEEE 802.11 Modulation and Coding Scheme (MCS) indexvalue

MAC_ADDR_SYNCHRONIZATION_AP =‘MAC_ADDR SYNCHRONIZATION_AP’
To set the Access Point MAC address used for synchronizing theTSF timer

NETWORK_INTERFACE_ HW_ADDRESS =*NETWORK_INTERFACE_HW_ADDRESS’
MAC address of wireless network interfacecard

NUM_FREEZING_COUNT =*NUM_FREEZING_COUNT’
Total number of backoff freezes since theinterface has been started

NUM_FREEZING_COUNT_UNIT =‘samples’
Unit of measurement of NUM_FREEZING_COUNT

NUM_RX = ‘NUM_RX’
Total number of received frames since the interface hasbeen started

NUM_RX MATCH = ‘NUM_RX_MATCH’
Total number ofreceived frames addressed to thenode since the interfacehas been started. This measure-
ment tracesthe number of received framein which thereceiver addressfield matches withthe network
interface card MAC address

NUM_RX MATCH_UNIT = ‘samples’
Unit of measurement of NUM_RX_ MATCH

NUM_RX_SUCCESS = ‘NUM_RX_SUCCESS’
Total number of successfully received frames since the interface hasbeen started

NUM_RX_ SUCCESS_UNIT = ‘samples’
Unit of measurement of NUM_RX_SUCCESS

NUM_RX_UNIT =‘samples’
Unit of measurement of NUM_RX

NUM TX = ‘NUM_TX’
Total number of transmitted frames measuredsince theinterface has beenstarted

NUM_TX_ SUCCESS = ‘NUM_TX_SUCCESS’
Total number of successfully transmitted frame measuredsincethe interface has beenstarted

NUM_TX_ SUCCESS_UNIT = ‘samples’
Unit of measurement of NUM_TX_SUCCESS

NUM_TX_UNIT =‘samples’
Unit of measurement of NUM_TX

RX_ANTENNA = ‘RX_ANTENNA’
Antenna number selected for reception

TDMA_ALLOCATED_SLOT = ‘TDMA_ALLOCATED_SLOT’
Slot number allocated to the NIC

TDMA_MAC_PRIORITY_CLASS =‘TDMA_MAC_PRIORITY_CLASS’
Service class QUEUE associated to the TDMA radio program

53



wishful UPI R Documentation, Release 1.0

TDMA_NUMBER_OF_SYNC_SLOT = ‘TDMA_NUMBER_OF_SYNC_SLOT’
Number of temporal slots included in a TDMA frame

TDMA_SUPER_FRAME SIZE =‘TDMA_SUPER_FRAME_SIZE’
Duration of a periodic TDMA frame

TSF = ‘TSF’
The Time Synchronization Function (TSF), i.e. thetimerthatallstationsin thesame BasicServiceSet
(BSS) use for the synchronization

TSF_UNIT = ‘us’
Unit of measurement of TSF

TX_ACTIVITY =“TX ACTIVITY’
Time intervalin whichthe transceiver has been involved in transmission. The unit of measurement is
microseconds since the interface has been started, theregistersize is32bit (cycle on 4294 sec)

TX ACTIVITY UNIT =‘us’
Unit of measurement of TX_ ACTIVITY

TX_ ANTENNA = ‘TX_ANTENNA’
Antenna number selected for transmission

TX_POWER = ‘TX_POWER’
Transmission power in dBm

getActive (myargs)
Eachradioprogramisassociatedwitha nameandanindex. Whenexecuted, thisfunctionreturntheindex
of the radioprogram active.

Parameters myargs — a dictionary data type (key: value)where thekeys are: The key“inter-
face” specify the network interface to use.

Return result the index of theactiveradioprogram.
Example >> args ={‘interface’: ‘wlan0’}
>> result =UPI_RN.getActive(args)

>> print result
2

getMonitor (myargs)
The UPI_Rinterfaceis able to get the radiomeasurements thanksto theabstraction of the hardware
platform and radio programs in terms of Radio Capabilities. ~Asubsetofradio capabilitiesarethe low-
level measurements. The low-level measurements arecontinuously monitoredby the hardwareplatform
and by the radioprograms. Themeasurementcapabilitiescanbe usedtogetinformation andstatistics
about the state of the physical links or the internal state of the node. Thisfunction get the value(s) of the
Measurements RadioCapabilities specifiedin the dictionaryargument. The list ofavailable measurements
are defined as attribute of the UPI_R class, you canusetheUPI_RN.getRadiolnfofunctionto findthe
platform supported measurements.

Parameters myargs — listof parameters, in termof a dictionarydata type(list ofkey: value)
inwhich: the keyis‘measurements’ andthe valueisa listof UPI_Rattributesfor measure-
ments, the key in‘interface’ specify network interfaceto be uses. Anexampleof argument
dictionaryis {“measurements”: [UPI_RN.NUM_FREEZING_COUNT, UPI_RN.TX_AC-
TIVITY]}.

Return result list ofparameters andvalues, interm of a dictionary datatype (list ofkey: value)
in whichthe key arethe UPI_R attributesfor measurements, andvalue is thereading of the
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measurement. Anexample of argumentdictionary datatype is {UPI_RN.NUM_FREEZ-
ING_COUNT :150, UPI_RN.TX_ACTIVITY : 45670}.

Example >> args = {‘interface’:  ‘wlan0’, ‘measurements’: [UPI_RN.NUM_FREEZING_-
COUNT]}

>> result =UPI_RN.getMonitor(args)
>> print result
{UPI_RN.NUM_FREEZING_COUNT :150}

getMonitorBounce (myargs)
The UPI_R interface is able to get the radio measurements thanksto the abstractionof the hardware plat-
form and radioprograms in terms of Radio Capabilities. ~Asubset ofradiocapabilities arethe low-level
measurements.The low-level measurements arecontinuously monitored by the hardware platformand by
the radio programs. Themeasurement capabilitiescan beusedto getinformation andstatisticsabout the
state of the physical links or theinternal state of the node. ThisfunctionworkssimilarlytogetMonitor, it
gets thevalue(s)of theMeasurements RadioCapabilities specifiedin thedictionary argument, butin cy-
cling mode. The function gets themeasurements every SLOT_PERIOD and stores them on node memory.
EveryFRAME_PERIODallmeasurementsare reported to thecontroller, andthis operation is performed
a number of times specified by ITERATION. A callback function is usedto receive the measurements
results. The listofavailablemeasurementsaredefinedasattributeof theUPI_Rclass, youcan usethe
UPI_RN.getRadiolnfo function to find the platform supported measurements.

Parameters myargs — listof parameters, in termof a dictionarydata type (listof key: value) in
which: Thekey ‘interface’ specify thenetworkinterface tobeused. Thekey ‘measurements’
is usedto give the listof UPI_R attributesfor measurements.  Thekey ‘slot_period’is used
todefinethe timebetweentwoconsecutivemeasurementreadings, inmicrosecond. The key
‘frame_period’ is used todefine the time between two consecutive reports to the controller,
inmicroseconds. The key ‘iterator’is usedtodefine howmany timesthemeasurements have
to be performed.

Return result list ofparameters andvalues, interm of a dictionary data type (list ofkey: value)

in which the key are the UPI_R attributesfor measurements, and value isthe measure-
ment reading. Anexampleofargumentdictionarydatatype is{ UPI_RN.TX_ACTIVITY
:45670}.

Example >> args= { ‘interface’: ‘wlan0’, ‘measurements’: [UPI_RN.BUSY_TIME, UPI_-
RN.TX_ACTIVITY], ‘slot_period’: 500000,

“frame_period’: 2000000, ‘iterator’: 60}

>> result =UPI_RN.getMonitorBounce(args)

>> print result

{UPI_RN.BUSY_TIME : 1505, UPI_RN.TX_ACTIVITY: 45670}

getParameterLowerLayer (myargs)
The UPI_R interface isable to configure the radio behavior thanks to the abstraction of the hardware plat-
formand radioprograms in terms of Radio Capabilities. A subset of radio capabilities arethe parameters.
Parameters correspondto the configurationregisters of the hardware platformand to the variables used in
the radio programs. This function getthe value(s) of the Parameters Radio Capabilities specified in the
dictionaryargument. TheavailableparametersaredefinedasattributesoftheUPI_Rclas, youcanusethe
UPI_RN.getRadioInfo function to find the platform supported parameters.

Parameters myargs — listof parameters, in termof a dictionarydata type(list ofkey: value)
in which:the key is ‘parameters’ andthe valueis alist of UPI_R attributes for parameters,
the key in‘interface’ specify network interface to be uses. An argumentdictionary example
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is{ ‘interface’: ‘wlan0’, ‘PARAMETERS’: [UPI_RN.CSMA_CW,UPI_RN.CSMA_CW_-
MIN, UPI_RN.CSMA_CW_MAX]}.

Return result list ofparameters andvalues, interm of a dictionary data type (list ofkey: value)
in which the key is the UPI_R class attribute,  and value is the current setting of the at-
tribute. Anexampleofargumentdictionarydatatypeis{ UPI_RN.CSMA_CW: 15, UPI_-
RN.CSMA_CW_MIN : 15, UPI_RN.CSMA_CW_MAX :15}.

Example >>args={‘interface’: ‘wlan0’, ‘parameters’ : [UPI_RN.CSMA_CW]}
>> result =UPI_RN.getParameterLowerLayer(args)
>> print result
{UPI_RN.CSMA_CW :15}

getRadioInfo (interface)
Gets the radio capabilities of a given networkcard RadioPlatform_tin termsofsupported measurement
and supported parameter and list of supp orted radio program. The information elements used by the UPI_-
R interface, tomanage parameters, measurementsand radioprogram, are organized intodata structures,
which provide information onthe platformtype andradio capabilities. When executed, this function
return information about available radio capabilities (measurements and parameters) of each interface
(RadioPlatform_t)on theavailable radio programs(radio_prg_t)availablefortransmissions over the radio
interface.

Parameters interface — networkinterfaces to use

Return result returna listin termofa dictionarydatatype(listof key: value). in whichare
presentthe keyshowed below: ‘radio_info’—> a listof pairvalue, thefirst valueisthe inter-
faceidentifierandthe secondisthe supportedplatforms. ‘monitor_list’—>a listofsupported
measurementsbetween the attribute of the class UPI_R ‘param_list’ —> a list of supported
Parameters between the attributeofthe class UPI_R ‘exec_engine_list_name’ —> a listof
supported execution environmentname ‘exec_engine_list_pointer’—> a list ofsupported ex-
ecution environment path ‘radio_prg_list_name’—> a list ofsupportedradio program name
‘radio_prg_list_pointer’ —> a list of supported radio program path

example: >> interface = ‘wlan(’

>> current_platform_info =radio_info_t()

>>param_key = { ‘platform’: ‘wmp’}

>> current_platform_info_str = UPI_RN.getRadiolnfo(interface,param_key)

>> current_platform_info.platform_info.platform_id = current_platform_info_str[ radio_info’][0]

>> current_platform_info.platform_info.platform = current_platform_info_str[’radio_info’][1]

>> current_platform_info.monitor_list = current_platform_info_str[’monitor_list’]

>> current_platform_info.param_list =current_platform_info_str[’param_list’]

>> current_platform_info.execution_engine_list_name =current_platform_info_str[’exec_engine_-
list_name’]

>>current_platform_info.execution_engine_list_pointer = current_platform_info_str[’exec_engine_-
list_pointer’]

>> current_platform_info.radio_program_list_name = current_platform_info_str[’radio_prg_list_-
name’]

>> current_platform_info.radio_program_list_path = current_platform_info_str[’radio_prg_list_-
pointer’]
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getRadioPlatforms ()
Gets available NIC on board andtype of supported platforms. The information elements used by the UPI_-
R interface, tomanage parameters, measurementsand radioprogram, are organized intodata structures,
whichprovideinformationon theplatformtypeandradiocapabilities. When executed, this functionreturn
information aboutavailable interfaces onnode, the name orthe identifier ofthe interfaceand the supported
platform type.

Return current_NIC_list a listof pair value, thefirst value is theinterface identifier and the
second is the supported platforms.

example: >> current NIC_list = RadioPlatform_t() >> current NIC list_string = UPL -
RN.getRadioPlatforms() >> current_NIC_list.platform_info = current_NIC_list_string[0] >>
current_NIC_list.platform =current_NIC_list_string[1]

setActive (myargs)
Thisfunctionactivatesthepassedradioprogram, onetheplatform. Whenexecuted, thisfunctionstopsthe
currentradio program and enables theexecution of theradioprogram specified inthe parameter radioPro-
gramName. Twoadditionalparameterscanbeused, oneoftheseisrequired. Thepathoftheradioprogram
description is required. Theoptionally parameterspecify theindex, inorder toassociate anindexto the
radio program.

Parameters myargs —a dictionary data type (key: value) wherethe keysare: The key ‘inter-
face’specify thenetwork interfaceto use. Thekey ‘radio_program_name’specifythe name
of radio program. Thekey ‘path’ in which the value specifythepath ofradio programde-
scription, and ‘position’ in whichthe valuespecify the radio program indexassociated.

Return result return0 iftheparametersettingcallwassuccessfullyperformed, 1 partialsuccess,
2error.

Example >>args= {‘interface’: ‘wlan(’, ‘radio_program_name’: ‘CSMA’,"PATH’:./radio_-
program/csma.txt’ }

>> result =UPI_RN.setActive(args)
>> print resultO

setInactive (myargs)
When executed, this function stops the radio program specified in the parameter radio_program_name.

Parameters myargs — a dictionary data type (key: value)where thekeys are: The key“inter-
face” specify thenetwork interface to useand thekey ‘radio_program_name’ inwhich the
value specify the name of radio program,

Return result return0 iftheparametersettingcallwassuccessfullyperformed, 1 partialsuccess,
2error.

Example >>args={‘interface’: ‘wlan0’, ‘radio_program_name’ : ‘CSMA’}
>> result =UPI_RN.setlnactive(args)

>> print result
0

setParameterLowerLayer (myargs)
The UPI_R interface isable to configure the radio behavior thanks to the abstraction of the hardware plat-
form andradio programs in terms of Radio Capabilities. A subsetof radio capabilitiesare the parameter.
Parameters correspondto the configurationregisters of the hardware platformand to the variables used in
theradioprograms. This function(re)setthevalue(s)of theParametersRadioCapabilitiesspecified inthe
dictionary argument. ThelistofavailableparametersisdefinedasattributesoftheUPI_Rclass, youcan
use the UPI_RN.getRadioInfo function to find the platform supported parameters.
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Parameters myargs — listof parameters and values toset,  in term ofa dictionarydata type
(list of key: value)inwhichkeysis theinterface( ‘interface’)tospecify networkinterface
tobeuses and the desired UPI_Rattribute, andvalueisthe valuetoset. An exampleof
argument dictionary data typeis {UPI_RN.CSMA_CW : 15, UPI_RN.CSMA_CW_MIN:
15, UPI_RN.CSMA_CW_MAX: 15}.

Return result return0 iftheparametersettingcallwassuccessfullyperformed, 1 partialsuccess,
2error.

Example >> args= {‘interface’: ‘wlan0’, UPI_RN.CSMA_CW: 15, UPI_RN.CSMA_CW_-
MIN :15, UPI_RN.CSMA_CW_MAX : 15}

>> result =UPI_RN.setParameterLowerLayer(args)
>> print result
[0, 0, 0]

class wishful_upis.upis.upi_rn.execution_engine_t
The informationelements used bythe UPI_R interfaceare organized intodata structures, which provide infor-
mationona specificexecutionenvironment. Thisclassrepresentingthe datastructurethatcontainsthe execution
environment information.

execution_engine_id="¢
Identifier of the execution environment

execution_engine_name =’
Name of the execution environment

execution_engine_pointer="*¢
Path of the execution environment

supported_platform=*’
Platform of the execution environment

class wishful_upis.upis.upi_rn.radio_info t
The information elementsused by the UPI_R interface are organized into data structures,  whichprovide in-
formation on radio capabilities(monitor_t, param_t) of eachinterface (RadioPlatform_t)on the available radio
programs (radio_prg_t), over theradio interface. This class representingtheradio capabilitiesof a given net-
workcardRadioPlatform_t in termsof measurementlist, parameters lists, execution environmentlistand radio
program list.

execution_engine_list =None
The list of supported execution environment

monitor_list =[]
The list of supported measurements

param_list =[]
The list of supported parameters

platform_info =None
Interface information structured such as RadioPlatform_t object

radio_program_list =None
The list of supported radio program

class wishful upis.upis.upi_rn.radio_program_t
The informationelements used bythe UPI_R interfaceare organized intodata structures, which provide infor-
mation on a specific radio program. This class representingthe data structure thatcontains the radio program
information.
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radio_prg id=¢
Identifier of the radio program

radio_prg_name=*
Name of the radio program

radio_prg pointer=*¢
Path of the radio program

supported_platform=*
Platform of the radio program
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