WiSHFUL H2020 - GA No. 258301 D3.1

* %%

*
® #
*
*‘k**
European
~ Commission
——

Wireless Software and Hardware platforms for

Flexible and Unified radio and network control

Project Deliverable D3.1

Design of software architecture for radio control

Contractual date of delivery: 30-06-2015

Actual date of delivery: 30-06-2015

Beneficiaries: CNIT, IMINDS, TCD, TUB, SNU, RUTGERS

Lead beneficiary: CNIT

Authors: Ilenia Tinnirello (CNIT), Pierluigi Gallo (CNIT), Domenico Garlisi

(CNIT), Daniele Croce (CNIT), Bart Jooris (IMINDS), Peter
Ruckebusch (IMINDS), Ingrid Moerman (IMINDS), Nicholas
Kaminski (TCD), Anatolij Zubow (TUB), Sunghyun Choi (SNU), Ivan

Seskar (RUTGERS)
Reviewers: Nicholas Kaminski (TCD)
Work package: WP3 — Radio Control
Estimated person months: 8
Nature: R
Dissemination level: PU
Version: 2.1

Abstract:

This deliverable describes the first specification of UPI_R interface defined for configuring the
MAC/PHY stack of the WIiSHFUL programmable radio nodes. The specification is based on the
abstraction of three architectures, namely Iris, TAISC and WMP, into a general radio architecture
with the following common building blocks: i) an execution engine able to run radio programs
defined in an high-level programming language, ii) a radio manager responsible of loading and
activating the radio programs in the engine, iii) a hardware platform providing some primitive
commands and signals, used for defining the radio programs; iv) a radio controller responsible of
configuring the radio programs and the hardware platform according to the rules specified in the
control program. The UPI_R interface works on data structures which implement the main
abstractions of the general radio and exposes three sets of functions working on the control,
management and data plane. Control functions deal with the monitoring and configuration of the
radio platforms during their operation; management functions permit to handle radio programs by
loading the program in the execution engines and activating them; data plane functions make use
of the higher layer flow classification and can adapt or switch the radio program based on the flow

\N'iSHFu‘L H2020 - GA No. 258301

D3.1

type.

Keywords:
Programmable radio architecture; radio capabilities; MAC/PHY adaptations.

WiSHFUL H2020 - GA No. 258301 D3.1

Executive Summary

This public deliverable reports the WISHFUL general software architecture for radio control and its
unified programming interface, named UPI_R, offered to experimenters in the first open call at the
end of year 1.

First, we introduce the concept of programmable radio architecture, i.e. a hardware and software
platform exposing an advanced programming interface which allows the experimenter to easily
program low-level MAC/PHY mechanisms. We present three programmable radio architectures that
will be integrated in the WiSHFUL testbed, Iris, Time Annotated Instruction Set Computer (TAISC) and
Wireless MAC Processor (WMP), by describing the general architectures, the relevant programming
languages, and the support of the general programmability requirements emerged in D2.1.

Second, we generalize these architectures in a common radio architecture, in which the hardware
platform is abstracted in a set of radio capabilities. The desired radio flexibility is achieved by tuning
the hardware configuration parameters and by loading specific radio programs.

Finally, we detail the specification of the UPI_R interface and the design of the platform-specific
adaptation modules that will be implemented for exposing the same UPI_R interface on Iris, TAISC
and WMP. The complete definition of UPI_R is reported using a C-style pseudo-code, with data
structures derived from the general radio architecture and functions grouped into control,
management and data-plane functions. Two examples of MAC/PHY adaptations programmed by
using the UPI_R interface are also presented.

WiSHFUL

H2020 - GA No. 258301

List of Acronyms and Abbreviations

WMP
TAISC
TDMA
CSMA
UPI
UPI_R
UPI_N
VM
XFSM
cisc
ISC
RISC
TAISC
TSCH
HII

Wireless MAC Processor

Time Annotated Instruction Set Computer
Time Division Multiple Access

Carrier Sense Multiple Access

Unified Programming Interface

Unified Programming Interface radio
Unified Programming Interface network
Virtual Machine

Extended Finite State Machines

Complex Instruction Set Computer
Instruction Set Computer

Reduced Instruction Set Computer

Time Annotated Instruction Set Computer
Time Synchronized Channel Hopping

Hardware Independent Interface

D3.1

WiSHFUL H2020 - GA No. 258301 D3.1

Table of contents

T INtrodUCHION ... —————————— 7
2 Programmable Radio Architectures available in WISHFULcccceeeee..... 7
0 1 RN 8
0 O A [=T o o 11 £ =Tt (=TSP T RO PT O PPOPROP 8

2.1.2 Iris Programming LangUage..ccceeeeee ettt ettt ettt aararaee 9

A I Y RN 10
N R N LI VT [R oo o] o 10 =] O PP PPPPPPPPPPPPPPIRE 10

2.2.2 TAISC arChit@CTUIE..c..viiiiieiiii ettt st an e sia e sene e sanee e 12

2.2.3 TAISC ON RIMOO0.....couiiiiiiietieteete sttt sttt ettt ettt et st st s re e s be e s b e e b e e beebeeneenneemeesneesrnennnens 15

2.3 Wireless IMAC PrOCESSON ..eeeeeereeerreerreeereeereeereemmeeemeeemeermeeeteetteeemmeeteeemeeemmeemeeteeememeeeeemeeenee 16
2.3.1 WIMP @rChit@CTUIEeviiiiiiiiii ettt st sere e sanee e 16

2.3.2 WIMP PrimitiVES..ccoiiiiiiiiiiiii ittt 17

2.3.3 WIMP Programming LanGUage..c.coeeeeeeeieieieieiiieeieeeeeeeeeeeee ettt e et e ee e et e e e e e e e e e e e e e eeeeeeseseseeesesesererees 18

2.3.4 WMP Implementation over a commercial WiFi card........cccouvveiieiiiiiiiiiiieee e 19

2.3.5 WMP Implementation over a WARP V3 b0oard.........ccccveeiiiiiiiiieieee et 19

3 Mapping UPI_R Requirements into WiSHFUL programmable Radio

ArchiteCtures ... —————— 20
0 1N 21

5 20 7Y] N 25

3.3 Wireless IMAC PrOCESSON ..ceeeeerreerreerreeereerreeereemmeermeeeteeereeeteeetteemmeemeeeteeemeeemmeemeemmmeeeeeeemeeenee 29

4 Abstracting Radio Architecturescccooiiimiiimiieccesccccr s 35
5 Unified Radio Control Interfaceccovmmiiiiniiiiimne e 36
5.1 Radio Capabilitiesccccciiiueriiiiineiiiiiineniiiiiniiiiiensiiiieneiiiieniiiiensisisessssssenssssssnssssssnsssssses 36

5.2 UPI_R Data and FUNCLIONScciiueeiiiiiieiiiiineiiiieneiiiieneisiienesisiienssssssensssssssnsssssssssssssssnsssssaes 39
5.2.1 UPI_R Data StrUCTUIES ceeeeie ettt et et et e e e e e e e e e e et e e e e e e e e e e e e ee e s e s e s e seserererees 39

5.2.2 UPI_R FUNCHIONS 1ottt e et et et et et et et et e eeeerete e e s e e e e e e e e e s e ae s e s e s e sereserens 41

5.3 Adaptation MOAUIESccceiiiiiieiiiiiiiiiiiiiniiiirniitienessiieneisitenssssseenssssssensssssssnsssssssnsssssaes 45
T T8 A U o I =T =T o] =Y Lo T ol [SRS 45

5.3.2 UPI_R adaptation fOr TAISC.......cceiiiiieeeiiiee e ciiee e et e e saee e ettt e e sestee e seaaaaeeseseeessssaeeesnssaesesnssesennes 46

5.3.3 UPI_R adaptation fOr WIMPcoi ittt ettt e ettt e e et e e saaa e e e s nv e e e eentaeeesnnsaaeesnsreaennns 47

6 Example of UPI_R utilization ... e e 51
6.1 Adapting CSMA contention WIiNdOW........ccceeiiiimeiiiieneiiiieneiiiieniiiieesisimensssssesssssssnsssssses 51

WiSHFUL H2020 - GA No. 258301 D3.1

L I A - T a 'o] T B T =T Yol o1 [o P PEPRT 51

6.1.2 ReqUIremMeENnts FOr UPI_R......coiciiii e cciiee e siee ettt e e see e e ettt e e e ette e e senaaeeestteeeesnsaeeesnnsaaeesnssenennes 52

6.1.3 Control Program PSEUAO-COE.......cciiiiiiiiiiiieee e e ittt te e e et e e e e e ssarrr e e e e e s ssssaraeeeeessesnnsrnnees 52

6.2 from CSIMA 10 TDIMIA......ceeiiiiireiiiitneeiitienesissienesssssenssssssenssssssensssssssnsssssssnsssssssnsssssssnsssssans 53
o A - [o] 1o D LYY ol o1 [] o PR PEPR 53

6.2.2 ReqUIremMeENnts FOr UPI_R......coociieieiiiiecciiee e ciee ettt e e ste e e et e e e e tte e e saaaeeestbeeeesnsaeeesnnsaeeesnsseaennns 53

6.2.3 Control Program PSEUAO-COE......cciiiiiiiiiiiiieee s ieiiireeee e e es st e e e e e e ssareeee e e e s ssssnraeeeeessessnnsnnnens 54

7B O o 4 e 11 T3 T o POt 55
L & =Y =1 = Lo =P 55

WiSHFUL H2020 - GA No. 258301 D3.1

1 Introduction

This deliverable describes the software architectures provided by WiSHFUL for supporting radio
control. Three different programmable radio architectures, designed by project partners in previous
research projects for different hardware platforms (namely, microcontroller devices with a radio
chip, general purpose devices with a wireless network interface, and software defined radios
(SDR)) are integrated into the WiSHFUL testbeds and offered to experimenters of novel services and
protocols with a common programming model and interface. With programmable radio architectures
we mean a hardware and software platform exposing an advanced programming interface which
allows easy programing of low-level MAC/PHY mechanisms, usually implemented in a closed
standard-compliant form, without knowing the internal details of the platform.

The deliverable describes: i) how the different radio architectures support the WiSHFUL general
requirements; ii) the abstraction of these programmable radio architectures into a common
programming model; ii) the design of a platform-independent UPI_R interface and the mapping of
this interface to the different platforms; iii) some UPI_R utilization examples.

Two different utilization paths are considered, as originally discussed in the proposal:

* Path 1 (Black boxes approach) offers limited flexibility, but maximal ease of use. WiSHFUL
programmable radio architectures are offered with a pre-defined set of functionalities and
radio programs (implementing different protocols and transceivers) that can be selected by
experimenters who focus on service creation. Radio programs support a simple parametric
interface, defined in terms of configurable parameters and output signals. The experimenter
can also define a control program for dynamically reconfiguring the radio programs based on
simple rules that work on the program output signals and platform-supported measurements.

* Path 2 (White boxes approach) offers full flexibility, and hence requires more expert
knowledge. Experimenters can also define novel radio programs, by using the platform-
specific programming languages and interfaces, for testing not only novel services, but also
novel protocols and networking models. To this purpose, WiSHFUL will offer a common tool
for editing and debugging the radio programs and for compiling the programs into platform-
specific executable components.

This document focusses on the black-box approach, while the white-box approach will be considered
during the second year activities of the project.

2 Programmable Radio Architectures available in WISHFUL

With programmable radio architectures, we mean a hardware and software platform exposing an
advanced programming interface that allows to easy program low-level MAC/PHY mechanisms,
usually implemented in a closed standard-compliant form, without knowing the internal details of
the platform. This is different from classical SDR platforms, which offer the possibility of
programming every MAC/PHY function from scratch, but do not consider unified abstractions that
span several platforms (even non-SDR platforms).

Examples of programmable platforms, which focus on the design of hardware and software systems
able to support MAC/PHY programmability, without exposing these simplifying abstractions, include
GNUradio [1], WARP [2], USRP [3], SORA [4], AirBlue [5]. Conversely, the programmable radio
platforms offered by WiSHFUL offer the possibility to load several MAC/PHY programs already
available for experimenters or to define novel wireless protocols and radio behaviors by means of
platform-agnostic software-defined programs specified in a high-level programming language.

The following subsections discuss the three different programmable radio architectures available in
WIiSHFUL and provided to experimenters.

WiSHFUL H2020 - GA No. 258301 D3.1

i The Iris architecture, developed on top of PCs connected to Universal Software Radio
Periperals (USRPs).
ii. The Time Annotated Instruction Set Computer (TAISC) architecture conceived for sensor
nodes and developed on top of RM090 sensor nodes.
iii. The Wireless MAC Processor (WMP) architecture, conceived for local-network wireless cards,
and developed on top of two different hardware platforms (a commercial Broadcom card
and the WARP board).

2.1 Iris

Iris is a software platform for realizing radios consisting of core functionality set and a set of libraries
written in C++. This platform provides the means for accomplishing most of the tasks of a wireless
system in software, including generating a signal for transmission or receiving and extracting data
from a transmitted signal. In the typical case this software runs on general-purpose processors such
as those found in PCs or laptops, connected to some flexible radio frontend such as the USRP. This
configuration provides the flexibility to realize nearly any system that sends or receives data
wirelessly. Furthermore, software provides the means for changing the change the properties of the
radio more easily (for example, switching from a garage door opener to a model radar system or vice
versa). Such flexibility and reconfigurability form the core goals of the Iris system.

2.1.1 Iris architecture

The software of Iris fundamentally rests on a plugin architecture. The core functionality of Iris focuses
entirely on managing the interactions of these plugins. Each plugin wraps the operation of a library
that does a specific job (e.g. data scrambling, OFDM modulation, etc.) to interface with the core Iris
functionality. Libraries wrapped for use by the Iris core are referred to as components. The
architecture of Iris is organized into five entities that facilitate the connection and operation of these
components.

Iris
Radio Instance
Controller
XML -
Parser o
V4 N\,
PHY Engine 4 .
// ™
File OFDM Signal
Reader Modulator Scaler
Component
Manager
Figure 1- Iris Architecture
Components:

Component themselves are the central entity of the Iris system. Typically, components process
streams of data to provide some specific aspect of a radio system (e.g. OFDM modulation, or signal
scaling). They have input and output ports and work by reading data from one or more of their inputs
and writing data to one or more outputs. This stream handling occurs in a loop, repeatedly

WiSHFUL H2020 - GA No. 258301 D3.1

processing sets of data from the time that the component is loaded until it is destroyed and
unloaded. Component designers can expose parameters to control the operation of the component
and reconfigure a radio while it is running. The specific functionality encapsulated within a
component is at the discretion of component designer.

Iris currently has two main types of components — the Phy engine and the Stack engine. Phy
components operate on a stream of signal data that flows in one direction from input to output.
Examples of Phy components include modulators and demodulators, channel coders and decoders,
data scrambles, etc. Stack components are a more experimental component type aimed at
supporting bidirectional data, coming from both above and below. This will allow Stack components
to include complete MAC layers, network routing layers and data encryption layers.

Engines

In Iris, components run within an engine. The engine oversees the loading and initialization of
components, schedules the input of data, calls the component work functions, collects output data,
and finally destroys and unloads the component when the radio shuts down. Each component type
runs within a matching engine type.

Component Managers

The component manager handles the loading and unloading of components within Iris engines.
Additionally, this entity manages the collection of components available on a particular machine that
may be loaded into Iris. The component designer must register components with the component
manager prior to their use in a radio.

Controllers

Controllers provide a specialized category of components in that they are plugin libraries wrapped
for use in lIris, but the operation of controllers is entirely different to the components discussed
above. Controllers do not run in an engine and typically do not operate on streams of data. Instead, a
controller has a global view of a running radio and employs user-defined logic to reconfigure
components through their exposed parameters at any time. This functionality is typically used for
radio management.

2.1.2 Iris Programming Language

Iris radio systems are described in an XML configuration file as a set of interconnected Iris entities. An
XML parser interprets the radio design specified in such a configuration file, which enables the
instantiation and operation of the necessary component managers and engines. Furthermore, users
may specify initial parameter settings for each component in the XML configuration file.

The following XML configuration file illustrates an example for a simple OFDM transmitter:
<softwareradio name="Radiol">
<engine name="phyenginel" class="phyengine">
<component name="filerawreaderl" class="filerawreader">
<parameter name="filename" value="testdata.txt"/>
<parameter name="blocksize" value="140"/>
<parameter name="datatype" value="uint8_t"/>
<port name="outputl" class="output"/>

</component>

<component name="ofdmmodl" class="ofdmmodulator">

A
WiSHFYL H2020 - GA No. 258301 D3.1

<port name="inputl" class="input"/>
<port name="outputl" class="output"/>

</component>

<component name="signalscalerl” class="signalscaler">
<parameter name="maximum" value="0.9"/>
<port name="inputl" class="input"/>
<port name="outputl" class="output"/>

</component>

<component name="usrptxl" class="usrptx">
<parameter name="frequency" value="5010000000"/>
<parameter name="rate" value="1000000"/>
<parameter name="streaming" value="false"/>
<port name="inputl" class="input"/>

</component>

</engine>

<link source="filerawreaderl.outputl” sink="ofdmmodl.inputl" />
<link source="ofdmmodl.outputl” sink="signalscalerl.inputl" />
<link source="signalscalerl.outputl” sink="usrptxl.inputl" />
</softwareradio>

This example XML configuration defines four Phy components, running within a single Phy engine.
The data, read from the file “testdata.txt”, is modulated into an OFDM signal, then scaled in
magnitude and finally transmitted. The resulting radio is also visualized in Figure 1.

2.2 TAISC

Like the Iris and WMP solutions, the Time Annotated Instruction Set Computer (TAISC) also aims to
simplify the development of new protocols. The main advantage of TAISC is its time-awareness. In a
TAISC program, the duration of each instruction is known. This not only includes the time required by
the core to execute this instruction, but also the time required by external components to complete
the action indicated by the instruction. By using timing information for all instructions TAISC MAC
protocols can automatically be fine-tuned for optimal energy consumption and spectrum efficiency.
Unlike Iris and WMP, TAISC is designed to run on very constrained hardware and introduces time-
awareness for the execution of protocols. This means TAISC is able to guarantee the exact time of
transmission of packets, while minimizing the radio-on time.

2.2.1 Time aware computer

TAISC aims to simplify the development of new lower MAC protocols by providing a hardware
independent interface (HII) for radio primitives without losing their real time aspect. For this, TAISC
needs to be aware of the duration of each radio primitive.

10

WiSHFUL H2020 - GA No. 258301 D3.1

First, four time classifications are introduced and explained using example radio primitives.

1. Static execution: switching the radio off will always take a fixed amount of time execute

2. Dynamic execution: the time it takes to compare a field against a reference in the last
received frame will be a function of the number of bytes in the field. As the number of bytes
to check is variable, we the time needed to handle 1 byte will be stored.

3. Static transition: starting up the oscillator of the radio consists of a limited fixed amount of
execution time and a static transition time. The latter will take into account the time the
oscillator needs to settle.

4. Dynamic transition: the time needed to transmit a frame will depend on the PHY bit rate,
preamble bytes, etc. At least three different time classes can be derived to transmit a frame
that is already loaded: fixed-length execution time to switch the radio into TX mode, static
transition time to transmit the preamble, and a variable transition time to transmit the bytes
of the frame. As the number of bytes to transmit is unknown at design time of the MAC, only
the time needed to handle one unit (here byte) will be stored.

The time needed to finalize all example primitives can be mapped on this sequence of time fields.
Depending on the mapped instruction, some of the fields might be zero.

Static Dynamic Static Dynamic
Execution | Execution | Transition | Transition

Figure 1 Time classification fields of radio primitives.

By classifying the duration of a radio primitive, it is possible to transform the primitive into a time-
annotated instruction and add it the TAISC instruction set. The timing information of all instructions
is stored per platform in the TAISC library used by the TAISC compiler to create TAISC binaries. The
TAISC compiler will be discussed later.

The TAISC architecture is a slightly modified Von Neumann machine that annotates each instruction
(stored in the program memory) with timing information (both execution time and offset). Other
well-known implementations of the Von Neumann machine are the RISC (Reduced Instruction Set
Computer)[6] and the CISC (Complex Instruction Set Computer)[6]. In comparison with TAISC, RISC
and CISC only take into account the execution time of an instruction and then starts executing the
next instruction immediately. By also taking into account the execution offset, TAISC allows for a
more fine-grained scheduling of instruction. In general, an instruction on an ISC abstracts
functionality like add, copy, etc. In contrast to a RISC and CISC, TAISC can take into account all of the
earlier described time classifications per instruction. By also adopting a rich addressing scheme for
every instruction parameter, a TAISC instruction with a single parameter can have eight different
meanings, and can, as such, be seen as extension of CISC.

11

WASHFUL H2020 - GA No. 258301 D3.1

Figure 2 RISC/CISC (left) versus TAISC block diagrams (right). In the TAISC an ALARM block was added
between the CLOCK and the ALU. The alarm gets configured with the annotated time information
from the current instruction (where the program counter (PC) is pointing to). The ALU gets
triggered when the ALARM and its timer have the same value.

To optimize the spectrum usage in a coordinated system we need two enablers:

* time synchronization,
* starting the execution of an instruction at a specific time.

Both are equally important to achieve high spectrum efficiency. Time synchronization is necessary to
align TX and RX slots. Executing instructions on a predefined time will enable TAISC to allow the PHY
to start shaping its first symbol immediately when a TX slot starts and implies further optimization
(i.e. decreasing) of the slot durations.

To optimize power consumption we need:

* to pack all instructions before (example instructions: radio on and load frame) and after (
example instructions: radio off) a reference instruction (example instruction: TX), without
code nesting of higher layers.

TAISC packs every instruction in the time domain with respect to the time it needs to finalize
(execution and transition). This is in a way similar to the 'Packed' attribute in the C language, which
indicates that a data structure should be stored in memory with the smallest possible space.

We define a sequence of instructions with one optional reference instruction as a TAISC chain. By
using the timing information in the TAISC instruction set, the TAISC compiler can compile a non time-
aware chain, written in a C dialect, into a time-aware TAISC binary. For this purpose, the TAISC
compiler will translate one or more chains into a byte code (binary) and add the time annotation to
every instruction. Since the timing information depends on the radio hardware platform, this
information is also stored in the TAISC library and used by the TAISC compiler when compiling for a
specific target. It is hence possible to compile the same chain into different radio hardware platform
specific binaries. After compilation, the TAISC binary is ready to be added and executed by the TAISC
execution engine where the lower MAC protocol is executed.

In contrast to the classic software interfaces, the TAISC interface does not provide the instructions,
but instead the TAISC binary needs to be uploaded into the TAISC execution engine via the
management interface.

2.2.2 TAISC architecture

Similar to the level of detail found in the hardware representation of commercially available
microcontrollers/radios, the basic building block presented in the TAISC block diagram (Figure 4
Mapping (pink) of the TAIC block diagram (see Figure 2) on msp430f5437. Extra (blue) blocks claimed
for the cc2520 radio.Figure 2) will be discussed in more detail in this section.

12

WiSHFUL

H2020 - GA No. 258301 D3.1
. Data Plane Interface
Control Plane Interface)
__Management Plane Interface
TAISC
RAM Logic Unit ROM
Core
chain Mgt struct " i w—
currentchain in lofuisohingezohaknitoy — chain 1
activeChains i
instruction dispatching + event bus
SPRAM 9 RTbuffer
Management
user defined
shared w
myChannel
myBackoff
Data Plane chain 2
Crre
|4 5
[T T Jxa Core Arithmetic Data Plane : Radio
Module Module Module 3 Module
registers p ¢
endOfFrame 4 b :
mediumChanged
RW RW : RO : Lookup table A
______ qreteeeeeeeeasd
J
data bus

Figure 3 TAISC architecture

The Logic Unit ((A)LU) of the TAISC is covered by its core and a flexible number of modules.

o The execution engine (EE) in the TAISC core has the following tasks:

deciding the execution time of the next instruction and scheduling it using an
Alarm;

managing the Program Counter (PC);

fetching the instruction and its parameters from the ROM,;

dispatching the instruction to its responsible module;

interpreting the incoming events from the different modules;

o Every module holds the implementation of the module, related instructions. These 3
fixed base modules are identical for all platforms (reuse of code):

The Data Plane module manages the access to and from the Data Plane RAM
section. It avoids conflicts between the TAISC module that implements the
Real Time Buffer Management (RTbuffer Management) and the upper layers
that implement the Data Plane interface. Example instructions of this
module are the rxTrigger and txTrigger, which can temporally transfer the
ownership of a selected buffer to the upper layers via the Data Plane
interface.

The Core module contains instructions that manipulate the Program Counter
(PC), which includes jumps and chain management. A typical one-liner
provided by this module abstracts “if event X triggers before timeout Y
then...” (waitForTrigger instruction). This module minimizes the interactions
between upper and lower layer MAC by concentrating the interactions for
Data, Control and Management Plane interfaces at the end of every chain.
This improves the performance of the chains and preserves their atomic
behavior.

The Arithmetic module implements classic arithmetic instructions like copy,
add, subtract, etc. The datatypes they operate on are typically arrays. Hereby
a complex instruction set is implied (TAISC extends CISC). Array operations
for example ease the life of the 802.15.4e MAC developer to support
operations on the five byte Absolute Slot Number (ASN)[9].

13

WiSHFUL

o

H2020 - GA No. 258301 D3.1

Flexible platform specific modules (chip specific implementations)
= One or more communication modules which abstract radio and bus chips
functionality typically with Rx, Tx, Off,... instructions and interact to the Data
plane module via the RTbuffer Management.
= Other communication related hardware abstraction modules to cover RF
switches, RF amplifiers, power supply chips and more.

The platform specific modules have restricted access on the data bus to the RAM. Read only
in general, write access for the module specific registers and write access to the Data plane
section via the RTbuffer Management.

* The TAISC ROM can store one or more compiled TAISC chains and other chain related
constant data like fixed lookup table used in fixed TDMA schemes (a lookup table can
translate a slot number identifier into slot functionality identifier (sleep, RX, TX,...).

* The TAISC RAM is divided into 4 sections:

o

General Purpose RAM (GPRAM) stores the defined variables needed in the different
chains. Some of these variables can store the parameters for a TAISC chain which
implements (part of) a MAC. The Control Plane will enable the exchange of data to
and from this section of RAM. In the MAC upper layer a translation can be made
from a CSMA_basic.setBackoff(X) to a specific location in the RAM. The TAISC
compiler generates related code snippets to be used in the upper layers.

The Data plane section stores the reception and the transmission queues. The
number of buffers and the size of the buffer is instance specific. Both queues
implement a FIFO flavour: “First in Filtered/First Out”. While retrieving data from the
queue, a filter can be defined to match a number of bytes at a given offset, the
oldest buffer matching the given filter will be selected.

The register section holds the module specific volatile registers. For example, every
time the medium changes from idle to busy and vice versa, the radio stores the
timestamp of this event in a dedicated register.

The chain management section is kept consistent by the TAISC core which arbiters
for the EE and the upper layers which interacting via the Management Plane
interface. The number of chains stored in this section is instance specific.

* The upper layer TAISC interfaces:

o

Data Plane interface: discussed in the Data Plane RAM section and Data Plane
Module.

Control Plane interface: discussed in the GPRAM section.

Management Plane interface: provides functionality to upload new compiled chains
into the ROM and activating chains while keeping all the chains consistent regarding
ROM and RAM boundaries of every chain.

14

WASHFUL H2020 - GA No. 258301 D3.1

2.2.3 TAISC on RM090

A proof of concept of the TAISC, which is a hardware concept, is implemented as a Virtual Machine
(VM) on top of a MSP430F5437 microcontroller and the CC2520 802.15.4 radio integrated on the
RMO090 platform[7] (a RMoni product, same chipset is used on LSR ProFLEX01[8]). The TAISC block
diagram is mapped on the msp430 as shown in the next figure.

PA PB PC PD PE PF
| P1x). P2x). P3.x.. Pdx). P5x PBx) PTx . PBx, . Px P10.x Pi1.x

XIN XouT DVCC DVSS AVCC AVSS RST/NMI
1 [1| |

vy v

¥ r r ¥ ¥ r r ¥ ¥ ¥ h 4

/0 Ports
P1/P2
2x8 1i0s
Interrupt
Capability

XT2IN —

IO Ports. WO Ports /O Ports. VO Ports /O Ports.
P3/P4 PS5IP6 PTIP8 Pa/P10 P11
2x8 lI0s 2x8 l0s 2%8 0s 2x8 I/0s 123 I/0s

XT20UT 4

PB PC PD PE PF
1=16 0s || 1=16 /Os 1216 IOs 1x16 /0s 123 I/0s

@ﬁ" I1 3% 3% 3% 3% 3% &
Av v v

Av 4v 4v 4v 4v 4y

- ADC12_A
JTAGS TA1 TBO _Ax: 12 Bit
SBW UART, 200 KSPS
Interface MPY32 Timer_A Timer_B RTC_A CRC16 IrDA, s|”|
3icc 7CC 16 Channels
Registers Registers UCSI_Bx: | (14 ext/2 int)
SPI, 12C Autoscan

Mote: Memory size and available ports and peripherals may vary, depending on the selected device.

Figure 4 Mapping (pink) of the TAIC block diagram (see Figure 2) on msp430f5437. Extra (blue) blocks claimed
for the cc2520 radio.

Targeting a lower MAC TSCH[9]Error! Reference source not found., we aim at 15 KB of ROM (max
256KB) for the TAISC VM 2K ROM for TAISC chains (binary format of TSCH) , 1KB of RAM (max 10KB)
for the TAISC core and buffers, and 10% of CPU (16bit @16MHz) resources. Further A VM brings
some non-negligible extra overhead as shown in Figure 5.

pre Addressing Static Dynamic Static Dynamic post
VM decoding | Execution | Execution | Transition | Transition VM

Figure 5 Extra overhead for TAISC instructions inside a VM

A timer compare block is used to schedule the execution of the next instruction. The time between
timer compare interrupt and the execution of the instruction itself is labelled as preVM. The time
needed to prepare the schedule of the next instruction is labelled as postVM. The addressing for
every parameter also happens in software and implies some overhead and is labelled Addressing
Decoding. We can adopt preVM and Addressing Decoding in the static execution part as a constant
platform overhead. The postVM can be adopted in a minimum inter instruction time which was
already foreseen in the TAISC compiler. Both adoptions imply that the primarily defined time
classifications can also cover a VM implementation of the TAISC.

15

WiSHFUL H2020 - GA No. 258301 D3.1

2.3 Wireless MAC Processor

The Wireless MAC Processor (WMP) [10] is a programmable architecture for wireless cards based on:
i) an abstraction of the card hardware capabilities and ii) a generic behavioral model for running a
control logic which drives the hardware based on the execution of state machines. It allows to
completely repurpose the card hardware by simply loading a novel state machine program, from the
execution of a TDMA-like or CSMA-like access protocol, to the collection of statistics for radio
localization or interference characterization.

2.3.1 WMP architecture

In the WMP architecture, the card hardware capabilities are abstracted by the following sub-systems:

i The transceiver deals with the reception and the transmission of the frames according to a
pre-defined set of modulation and coding schemes.
ii. The transmission queues enqueues traffic flows or control and management frames into
separate queues for achieving different medium access performance.
iii. The reception queue stores incoming packets before they forwarding them to the host.

Each sub-system exposes some configuration parameters, provides some signals at the occurrence of
specific events (such as the arrival of a new frame) and is able to execute some primitive actions
(such as the selection of a modulation and coding scheme for transmitting a frame).

Rather than been controlled by a given protocol, these sub-systems can be governed by a generic
MAC Engine able to run programs defined in terms of Extended Finite State Machines (XFSMs). The
state machines are composed by reusing the set of signals provided by the hardware sub-systems by
means of an interruption block, the set of elementary actions implemented into an operation block,
the set of registers for saving the system state and configuration parameters.

The XFSM defining the MAC protocol is coded in a table, which specifies all the possible state
transitions in terms of input state, triggering event, enabling condition, transition action and output
state. Starting from the initial state and parameters, the MAC Engine fetches the table entry
corresponding to the state, reads the list of all the possible events that can trigger a transition from
that state, and loops until one of these events occurs. It then evaluates the associated conditions on
the system parameters, and if this is the case, it triggers the associated action and parameters'
updates (if any), executes the state transition, and fetches the new table entry for such destination
state.

The MAC engine workflow allows easy extensions for supporting code switching. Indeed, the MAC
engine does not need to know to which MAC program a new fetched state belongs, so that a code
switching is basically achieved by moving to a state in a different transition table and by updating the
system configuration registers and protocol variables (e.g. the operating channel, the transmission
power, etc.) when needed. To this purpose, the program switching transitions can be coded into a
dedicated transition table and added to the list of transitions to be verified from each state of the
program under execution.

Error! Reference source not found.Figure 6 illustrates the Wireless MAC Processor architecture [10],
by enlightening the hardware sub-systems and relevant event/action abstractions. Multiple state
machines can be simultaneously loaded on the engine, while a high-level controller can configure the
protocol variable or switching conditions. A client process for receiving the commands sent by the
controller (not shown in the figure) has been implemented and called MAClet manager, being the
platform-independent MAC program similar to a JAVA applet [11].

16

WiSHFUL H2020 - GA No. 258301 D3.1

<D

[~— 7
XFSM SAP MAC SAP MLME SAP
. lower MAC
XFSM builder Upper MAC SAP
T
Wireless MAC Processor
-
Y_ XFSM model —, — XFSM status —
Registers BIOS
Micro-instruction
memory (XFSM)
Operation block g XFS.M
engine
Data memory Interruption block
data events actions
Y
[IITTT]—
y RXqueue Transceiver
TX queue HW status
Platf PHY DATA MLME-PLME
latform SAP XFSM SAP

Figure 6 Wireless MAC Processor architecture.

2.3.2 WMP Primitives

Table 1 summarizes the list of WMP primitives that can be exploited for defining the MAC programs.
The primitives include the elementary actions that can be performed on the card hardware, the
signals triggered by the card and the data that can be configured on the hardware system and
program variables.

Actions are commands acting on card hardware. Ordinary arithmetic and memory related (set/get)
operations work on WMP data, which are given by protocol variables, physical registers and packet
queues, while dedicated actions implement atomic MAC functions such as transmit a frame, set a
timer, write a header field, switch to a different frequency channel, etc. Actions are not
programmable. As the instruction set of an ordinary CPU, the hardware vendor provides them. The
set of actions may be extended by the device vendor, and include advanced operations on the PHY,
such as the configuration of the physical channel and the selection of the desired encoding scheme.

Events include hardware interrupts such as channel up signals, indication of reception of a valid
preamble or end of a valid frame, expiration of timers, and signals conveyed from the higher layers
such as the enqueuing of a new packet. As in the case of actions, the list of supported events is a-
priori provided by the hardware design.

Conditions are Boolean expressions evaluated by comparing the card internal registers, the fields of
the enqueued frames or the protocol variables with a given parameter. Registers, frame fields and
program variables are either explicitly updated by actions, or implicitly updated by events. Registers
store general hardware parameters whose settings represent the hardware configuration and
operational state (such as the channel, antenna, transmit power, rate, etc.). Frames, enqueued in the
transmission or reception queue, store the payload and MAC header fields (e.g., source or
destination addresses, frame size, frame type, etc). The programmer can define the protocol
variables (e.g. contention window, backoff counter, etc). Registers provide an interface to the PHY,
while variables are used to achieve a more compact protocol description.

17

H2020 - GA No. 258301

WiSHFUL

D3.1

Actions, events, and registers on which conditions may be set, form the application programming
interface exposed to third party programmers. This APl is implemented (in principle) once-for-all,
meaning that programs may use such building blocks to compose a desired operation, but have no
mean to modify them. Since a MAC program is a list of labels specifying the events, actions and
conditions associated to each state transition, by defining a common set of labels for the API (i.e. a
machine language), the MAC program can be coded in a bytecode and transported over data frames
from one node to another.

Table 1 WMP Application programming interface: supported events, actions and configuration data.

events actions data
CH_UP rx_header() channel
CW_DOWN rx_msdu() antenna
RX_PLCP_END start_timer(reg,prm) power
RX_MAC_HEAD_END | extract_bk(reg, prm) txrx_on
RX_END tx_start(prm) backoff_slot
RX_ERROR update_cw(reg, prm) rx_checksum
QUEUE_OUT_UP repor_to_host(prm) busy_time
IFS_EXPIRED start_ifs(prm) backoff_value
TX_END set(reg/var, var/prm) bandwidth
TIMER_EXPIRED get(reg/var, var/prm) slot_time
write(queue, field, var/prm) | + protocol
read(queue, field, var/prm) variables
incr(var) + payload
hw_reset() fields

2.3.3

MAC programs are defined in terms of eXtensible Finite State Machines (XFSM). XFSMs are a
generalization of the finite state machine model and permit to conveniently control, with a more
compact description, the actions performed by the MAC protocol as a consequence of the
occurrence of events. In particular, they allow reducing the state space by decoupling a program
state (tracked by the state machine executor) from a set of system variables updated by actions and
events.

WMP Programming Language

In order to show the API potential for programming different behaviors on the same platform, Figure
7 shows two simple state machines implementing, respectively, a TDMA and a CSMA protocol. Self-
explaining labels indicate MAC program states, capitals represent events and square brackets enclose
the conditions (when associated to a transition). The examples are limited to the management of
frame transmissions (i.e. acknowledgments and frame receptions are not included in the figures) for
better enlightening the possibility to program the medium access timings according to completely
different logics.

In the leftmost part of Figure 7, for example, a simple program for accessing the channel access at
regular time intervals is modeled with two states: a waiting state and a transmission state. From the
waiting state, a first transmission event is scheduled in case of reception of a synchronization signal,
which in the figure is given by the reception of a beacon frame. The event is scheduled after a time
interval (called slot) from the reception of the beacon header. When the timer expires, in case the
transmission queue is not empty, the transceiver is activated by calling the action start_tx(queue). At
the end of the frame transmission, a timer is set for the next transmission event by considering the
difference between the protocol variable representing the inter-transmission period and the duration
of the transmitter activity busy_time. When no frame is available for transmission, the same timer is
set during the entire inter-transmission time.

18

WiSHFUL H2020 - GA No. 258301 D3.1

The rightmost part of Figure 7 shows a simple program with three protocol states, for accessing the
channel at random intervals. From the idle state, in case of enqueuing of a novel packet, a sensing
interval equal to a inter-frame time or to the inter-frame time plus a random backoff is set by calling
the start_ifs(prm) action according to the state of the medium (i.e. to the activity state of the
transceriver). At the expiration of the sensing interval, the transmitter is activated by calling the
start_tx(queue) action; at the end of the transmission, a transition to a novel sensing interval or to
the idle state is triggered and performed according to the state of the transmission queue.

TX_END
TIMER EXPIRED ~ TX_END) _—[read(queue)==0] ~—_
| start_timer(period-busy_time) T~
[read(queue)==0] reset(busy_time) ~ N
set_timer(period) — ™~ QUEUE OUT UP N
— . OUT | TX_END
IDLE [TXRX_ON==true] [read(queue)'=0] 4‘ 2
———— extract_bk(bk cw) extract_bk(bk, cw)
\ start_ifs(bk) start_ifs(bk) I
WAIT_SLOT ™ \ \ B
(- QUEUE_OUT_UP \ IFS_EXPIRED
\ / \T|MER_EXPIRED/ Habe-gri W)
_ — RN 1 2
RX_MAC_HEADER_END . iead(aveue)] S~ /
[get(RX_QUEUE type)=zbeacon] Start-tx(queu | SENSE i —

set_timer(slot)

Figure 7 — Examples of MAC programs: simplified TDMA and CSMA channel access operations.

2.3.4 WMP Implementation over a commercial WiFi card

The first WMP prototype was implemented on a Broadcom card based on the AirForce54G chipset.
The chipset is built around an 88 MHz processor with 64 registers supporting arithmetic, binary, logic
and flow control operations. The other main blocks include a transmission and reception engine
supporting 802.11b/g CCK and OFDM encodings and verifying the frame checksum; a set of internal
registers for storing hardware configuration settings; data memory for storing variables and
composing arbitrary frames and code memory.

Our implementation replaces the original card firmware with an assembly code implementing the
state machine execution engine, and mapping the previously described WMP programming interface
into actual signals, operations, and registers of the card. All the register configuration actions and
non-blocking actions summarized in Table 1 were natively supported by the chipset; the remaining
ones were developed and pre-installed as micro-code firmware procedures.

Moreover, the internal card registers automatically track the state of the hardware sub-systems (e.g.
the starting of a frame demodulation after a valid preamble, the arrival of a new frame, etc.). All the
WMP events can be revealed by monitoring the change of status of the relevant internal registers.
The only exceptions are given by the CH_UP and CH_DOWN events, which required monitoring two
registers.

2.3.5 WMP Implementation over a WARP v3 board

The WARP v3 provides a Xilinx Virtex-6 FPGA, two MAX2829 transceivers, and a complete 802.11
Reference Design that we used as a starting point for our implementation. The legacy 802.11
architecture includes some custom FPGA cores (dedicated to the implementation of the 802.11g
OFDM transceiver, the required timers, the carrier sense mechanism and the interface between the
transmission and reception blocks) and two MicroBlaze CPUs running the DCF MAC protocol (written
in C) according to the usual upper-MAC and lower-MAC decomposition. The architecture includes a
single transmission queue with 15 available slots for storing data frames that can be explicitly
addressed. A last slot of the queue is dedicated to the storage of an acknowledgment template.

For our implementation, we replaced the programs executed by the two CPUs with two different
programs: the high-level one, adding the WMP control interface to the upper MAC functionalities,

19

WiSHFUL H2020 - GA No. 258301 D3.1

and the low-level one implementing the MAC Engine and part of the WMP actions. Some other
actions have been added to the custom cores dealing with the interface towards the physical layer.
For example, the non-blocking start_ifs action, which manages the backoff countdown, has been
added to the transmission core.

For detecting the events, we kept the register-based solution already adopted in the 802.11
reference design, which works similarly to the Airforce54G chipset. Indeed, each WMP event
corresponds to a specific register whose status change signals the event occurrence to the low-level
CPU. Finally, we added some other blocks for supporting a dedicated BRAM to store FSMs, the
relevant controller, a mutex for regulating the BRAM accesses performed by the high-level and low-
level CPUs, and some software registers.

Note that, for this platform, thanks to the availability of programmable hardware sub-systems, the
core WMP API described in [10]Error! Reference source not found. can be extended for including
more advanced operations, such as tuning the transmission bandwidth or configuring the queuing
disciplines.

3 Mapping UPI_R Requirements into WiSHFUL programmable Radio
Architectures

The UPI_R interface is responsible of radio configuration. In D2.1 we discussed how this configuration
is related to the set-up of wireless links between the nodes, whose capacity is affected by
propagation and interference conditions, bandwidth allocations, and also medium access schemes.
More detailled, the radio configuration requires an explicit consideration of the following main
aspects:

i The spectrum allocation lists the operating channel, bandwidth, multiple bands or sub-
bands, etc., on each node.

ii. The transceiver configurations and link set-up, in terms of selection of transmission power,
antenna, transmission format and error protection schemes, as well as physical links enabled
for transmissions.

iii. The statistic collections include the spectrum occupancy, the channel busy intervals, the
receiver errors, the received power and interference levels, the energy consumption.

iv. The medium access logic defines the rules for timely controlling the access to the shared
medium, the acknowledgement policies, and the unicast/multicast delivery modes.

V. The radio virtualization creates multiple logical interfaces with different configurations on
top of the same hardware.

Before specifying the UPI_R interface, we analysed how the programmable radio architectures
offered by WiSHFUL support these general requirements. These architectures have been developed
on top of very heterogeneous hardware, in terms of computational resources and reconfiguration
capabilities. Each architecture has some intrinsic limits that have to be explicitly considered by
experimenters. These aspects are reported in tabular form (rows represent different use cases) for
Iris, TAISC and WMP. Different tables are used for spectrum allocation, wireless link set-up, radio
monitoring and virtualization functionality.

Table 2 illustrates an example of such a table. Each row maps the high-level UPI_R requirements on
a programmable radio architecture. The first three columns were copied from the requirements
defined in D2.1. The last column describes the level of support given by a specific radio architecture
(Iris, TAISC or WMP) for that requirement.

20

WiSHFUL

H2020 - GA No. 258301 D3.1

Table 2 Example table for mapping the UPI_R requirements into the current support given by the WiSHFUL

programmable radio architectures (Iris, TAISC or WMP).

UPI_R aspect (e.g. Spectrum allocation)

UC# | Actors UC name and short description Architecture x support level and
short description

3.1 Local Use Case Name Level of support (No, Low, Medium,

Controller High)

Physical layer Use Case short description. Description of current support level.
3.1 Iris

Table 3 Support for spectrum allocation use cases in Iris.
Spectrum allocation

UC# | Actors UC and short description Iris
3.1 Local Get spectral capabilities of the RF | Low

Controller hardware.

Physical layer The local controller must be able to | The frequency and bandwidth are set
obtain the spectral capabilities of | within the XML description of the
the RF hardware such as: | radio system and available to the core
supported bandwidth, supported | system. The fundamental hardware
frequency range(s), etc. limitation is defined by the USRP

daughterboard used.
3.2 Local Get supported channel | Low

Controller configurations.

Lower MAC The local controller must be able to | Same as 3.1
obtain the channel configurations
supported by the system, including
channel bonding, subcarrier
selection, etc.

33 Global Restrict spectrum usage No

Controller The global controller must be able | The core goal of flexibility and

Lower MAC to configure the spectrum that can | software nature of Iris make the
be used by a node. limitation of functionality difficult.

This may be possible but is currently
not supported.
34 Local Change RX and TX spectrum | High
Controller configurations.
Lower MAC / | The local controller must be able to | Reconfiguration of radio systems is a

Physical layer

control the spectrum used for | core goal for lIris.
sending and receiving data
choosing from the configurations
supported according to 3.1 and 3.2
and within the restrictions imposed
by 3.3.

21

WiSHFUL

H2020 - GA No. 258301

D3.1

Table 4 Support for wireless link set-up use cases in Iris.

Wireless link set-up

UC# | Actors UC and short description Iris
3.5 | Local Get supported link configurations High
Controller The local controller must be able to | All configurable parameters in Iris
Transceiver | obtain the supported link parameters | components are registered with the
of the transceiver such as TX power, | component manager.
RX gain, CS thresholds, etc.
3.6 | Local Get supported antenna configurations | Low
Controller The local controller must be able to | Antenna configuration depends
Antenna obtain the supported antenna | purely on the underlying hardware
configurations. configuration, which is unavailable to
Iris. However, in purely static settings
this may be known.
3.7 | Local Get supported baseband functionality | High
Controller - - -
The local controller must be able to | The Iris components that define this
Baseband obtain the supported configurations | functionality must be registered with
of the baseband (or equivalent) such | the component control.
as modulation scheme, coding
scheme, etc.
3.8 | Local Get MIMO capabilities Low
Controller The local controller must be able to | See 3.6
Physical determine the MIMO capabilities of
layer the whole RF system (diversity,
beamforming, etc.)
3.9 | Local Configure link parameters High
Controller The local controller must be able to | The supported parameters can be
Physical control and modify the parameters | configured through Iris controllers.
layer related to the different RF subsystems
as specified in 3.5 -3.8.
3.10 | Global Query and restrict link parameter | No
Controller boundaries
Local The global controller must be able to | See 3.3
Controller obtain the relevant link information

from the local controller and impose
restrictions on the used link
configurations

22

WiSHFUL

H2020 - GA No. 258301

D3.1

Table 5 Support for radio monitoring use cases in Iris.

Radio Monitoring

UC# | Actors UC and short description Iris
3.11 | Local Get raw RF measurements Medium
Controller - -
The local controller must be able to | Iris components typically operate on
Physical obtain raw RF measurements as | I/Q samples and these may be made
layer reported by the underlying hardware. | available.
Depending on the hardware these can
be 1/Q samples, RSSI values, LQI/LSI
estimates, channel occupation, noise
level, etc.
3.12 | Local Trigger spectrum scanning Medium
Controller - - .
The local controller must be able to | Iris may be easily reconfigured to
Physical trigger spectrum scanning and to get | scan the spectrum or spectrum
layer results (e.g. received PHY frames on | scanning functionality can be
each scanned channel). deployed in parallel to other
functions.
3.13 | Local Sniff and inject raw PHY frames Low
Controller ; — .
The local controller must be able to | Implementing a radio instance with
Lower MAC | get a copy of each received physical | this functionality should be possible.
layer frame. Moreover, it needs a way
to inject externally created PHY frames
into the wireless network device.
3.14 | Local Get channel measurements and tune Medium
Controller measurement parameters
Lower MAC | The local controller must be able to | Iris is well suited to implement

obtain MAC measurements such as
error statistics, channel occupancy,
etc., as well as control the parameters
of these measurements such as the
energy detection threshold.

monitoring and tuning with Iris
controllers.

23

WiSHFUL

H2020 - GA No. 258301

D3.1

Table 6 Support for medium access logic use cases in Iris.

Medium Access Logic

UC# Actors UC and short description Iris
3.15 Local Control framing Medium
Controller
Upper The local controller must be able to | Supported.
MAC control the segmentation and
aggregation of packets, as well as the
definition of customized header fields.
3.16 Local Handshake mechanism Medium
Controller The local controller must be able to | Handshake logic is programmable
Lower define the sequence of control | through the Iris controller.
MAC packets to be sent in each channel
access (e.g. 2-way or 4-way
handshake, 2-way handshake with
reverse link, etc.) and the control
information to be included in RTS/CTS
frames.
3.17 Local Carrier sense mechanism Medium
Controller The local controller must be able to | Adaptive control and MAC logic is
Lower modify the collision avoidance policy | supported by Iris.
MAC used by the MAC logic such as the
mechanism used (energy-based,
preamble-based, virtual, etc.) and the
classification method (binary, multi-
level).
3.18 Local Definition of access times No
Controller The local controller must be able to | The processing platform of Iris (GPP)
Lower modify the timing parameters of the | does not lend itself to tight timing
MAC MAC logic. This includes but is not | control. This may be possible
limited to: contention window | through using the FPGA available on
selection, back-off freezing, inter- | the USRP, although this method is
frame space, multi-node | not well developed.
synchronization, etc.
3.19 Local Definition of ACK policy High
Controller The local controller must be able to | ACK policies are defined in the Iris
Lower control the ACK policy used by the | controller and may be adapted.
MAC MAC logic. This includes artificial
dropping, accurate time-stamping,

handshaking, frame configuration, etc.

24

WiSHFUL

H2020 - GA No. 258301

D3.1

Table 7 Support for virtualization functionality use cases in Iris.

Virtualization functionality

UCH | Actors UC and short description Iris
3.20 | Global Definition of partitioning rules High
Controll
ontrofier The controller has to allocate the | Iris supports the definition of
Local hardware resources for each | multiple radio chains and their
Controller instantiated virtual interface. association to a hardware platform.
3.21 | Global Definition of access priorities High
Controll
ontrofier The controllers must be able to define | See 3.20.
Virtual the hardware access priority of the
Radio different virtualized interfaces.
Manager
3.22 | Local Conflict resolution Low
Controller The virtual radio manager should be | Iris supports some conflict
Virtual able to handle conflicts and notify the | identification functionality, but
Radio local controller when they arise. additional resolution abilities are
Manager necessary.
3.2 TAISC
Table 8 Support for spectrum allocation use cases in TAISC.
Spectrum allocation
UCH | Actors UC and short description TAISC CC2520
3.1 Local Get spectral capabilities of the RF | Low
Controller hardware
Physical layer The local controller must be able to | The management interface contains a
obtain the spectral capabilities of | function to list all the implemented
the RF hardware such as: | modules by the TAISC on the current
supported bandwidth, supported | platform. Based on the result (ex.
frequency range(s), etc. CC2520 module) the local controller
looks up the requested info.
3.2 Local Get supported channel | Low
Controller configurations
Lower MAC The local controller must be able to | Same as 3.1
obtain the channel configurations
supported by the system, including
channel bonding, subcarrier
selection, etc.
33 Global Restrict spectrum usage Low
Controller The global controller must be able | The restriction policy/decision is
Lower MAC to configure the spectrum that can | Upper MAC functionality. But the

be used by a node.

configuration happens over
and will be supported.

UPI_R

25

WiSHFUL

H2020 - GA No. 258301 D3.1
3.4 Local Change RX and TX spectrum | Possible
Controller configurations
Lower MAC /| The local controller must be able to | Supported but not always applicable
Physical layer control the spectrum used for | (TSCH has a strict scheme for RX/TX
sending and receiving data | slots).
choosing from the configurations
supported according to 3.1 and 3.2
and within the restrictions imposed
by 3.3.
Table 9 Support for wireless link set-up use cases in TAISC.
Wireless link set-up
UC# | Actors UC and short description TAISC CC2520
3.5 | Local Get supported link configurations Medium
Controller The local controller must be able to | We will be able to list the supported
Transceiver | obtain the supported link parameters | link parameters.
of the transceiver such as TX power,
RX gain, CS thresholds, etc.
3.6 | Local Get supported antenna configurations | Low
Controller The local controller must be able to | TAISC can implement an antenna
Antenna obtain the supported antenna | module. See 3.1: based on the result
configurations. we can retrieve this info on antenna
availability.
3.7 | Local Get supported baseband functionality | Low
Controller .
The local controller must be able to | See 3.1 (for CC2520 there is only one
Baseband obtain the supported configurations | MCS, for other radio chips they may
of the baseband (or equivalent) such | more basedband functionality).
as modulation scheme, coding
scheme, etc.
3.8 | Local Get MIMO capabilities Low
Controller The local controller must be able to | See 3.1 (not available for constrained
Physical determine the MIMO capabilities of | sensor platforms, could be interesting
layer the whole RF system (diversity, | for SDR platforms)
beamforming, etc.)
3.9 | Local Configure link parameters High
Controller The local controller must be able to | The supported parameters can be
Physical control and modify the parameters | configured. Number of paramters are
layer related to the different RF subsystems | limited for constrained sensor
as specified in 3.5 - 3.8. platforms (mainly TX power, CCA, RX
sensitivity).
3.10 | Global Query and restrict link parameter | Low
Controller boundaries
Local The global controller must be able to | The restriction policy/decision s

26

WiSHFUL

H2020 - GA No. 258301

D3.1

Controller obtain the relevant link information | Upper MAC functionality. But the
from the local controller and impose | configuration happens over UPI_R
restrictions on the used link | and will be supported.
configurations.

Table 10 Support for radio monitoring use cases in TAISC.
Radio Monitoring
UC# | Actors UC and short description TAISC CC2520
3.11 | Local Get raw RF measurements High

Controller
The local controller must be able to | Currently supported through the

Physical obtain raw RF measurements as | same interface via meta-data

layer reported by the underlying hardware. | attached to each regular data packet
Depending on the hardware these can | (via data plane). Chains can store
be 1/Q samples, RSSI values, LQI/LSI | RSSI measurements and pass them
estimates, channel occupation, or | on. For single measurements, the
noise level, etc. data can also be passed via

getParameter in the control interface
(via control plane).
3.12 | Local Trigger spectrum scanning High

Controller ; ; -

The local controller must be able to | A scanning chain can be activated

Physical trigger spectrum scanning and to get | (see above).

layer results (e.g. received PHY frames on
each scanned channel).

3.13 | Local Sniff and inject raw PHY frames High

Controller - - —
The local controller must be able to | Sniffing is supported, injection

Lower MAC | get a copy of each received physical | possible through chain support.
layer frame. Moreover it needs a way
to inject externally created PHY frames
into the wireless network device.

3.14 | Local Get channel measurements and tune Medium
Controller measurement parameters
Lower MAC | The local controller must be able to | Highly related to the MAC, which is

obtain MAC measurements such as
error statistics, channel occupancy,
etc., as well as control the parameters
of these measurements such as the
energy detection threshold.

implemented by the active chains.
Supported by TAISC.

27

WiSHFUL

H2020 - GA No. 258301

D3.1

Table 11 Support for medium access use cases in TAISC.

Medium Access Logic

UC# Actors UC and short description TAISC CC2520
3.15 Local Control framing Medium
Controller
Upper The local controller must be able to | Supported.
MAC control the segmentation and
aggregation of packets, as well as the
definition of customized header fields.
3.16 Local Handshake mechanism High
Controller The local controller must be able to | Handshake logic is programmed in a
Lower define the sequence of control | chain combined with its wrapper.
MAC packets to be sent in each channel
access (e.g. 2-way or 4-way
handshake, 2-way handshake with
reverse link, etc.) and the control
information to be included in RTS/CTS
frames.
3.17 Local Carrier sense mechanism High
Controller The local controller must be able to | TAISC has a strong focus on this kind
Lower modify the collision avoidance policy | of functionality. Fully supported and
MAC used by the MAC logic such as the | highly flexible by programming the
mechanism used (energy-based, | right sequence of instructions in one
preamble-based, virtual, etc.) and the | ore more chains.
classification method (binary, multi-
level).
3.18 Local Definition of access times High
Controller The local controller must be able to | Fully supported and highly flexible by
Lower modify the timing parameters of the | programming the right sequence of
MAC MAC logic. This includes but is not | instructions in one ore more chains.
limited to: contention window
selection, back-off freezing, inter-
frame space, multi-node
synchronization, etc.
3.19 Local Definition of ACK policy High
Controller The local controller must be able to | Fully supported and highly flexible by
Lower control the ACK policy used by the | programming the right sequence of
MAC MAC logic. This includes artificial | instructions in one ore more chains.
dropping, accurate time-stamping,

handshaking, frame configuration, etc.

28

WiSHFUL

H2020 - GA No. 258301

D3.1

Table 12 Support for virtualization functionality use cases in TAISC.

Virtualization functionality

UC# | Actors UC and short description TAISC CC2520
3.20 | Global Definition of partitioning rules No
Controll
ontrofier The controller has to allocate the | Not yet supported. Only one chain
Local hardware resources for each | can be active at the time. Time
Controller instantiated virtual interface. based switching between protocols
is supported.
3.21 | Global Definition of access priorities No
Controller The controllers must be able to define | Not yet supported, see 3.20.
Virtual the hardware access priority of the
Radio different virtualized interfaces.
Manager
3.22 | Local Conflict resolution No
Controller The virtual radio manager should be | Not yet supported
Virtual able to handle conflicts and notify the
Radio local controller when they arise.
Manager
3.3 Wireless MAC Processor

For WMP an extra column is added to the tables because two implementations exist, one for the
Broadcom NIC and one for the WARP board.

Table 13 Support for spectrum allocation use cases in WMP.

Spectrum allocation

UCH | Actors uc and short | WMP Broadcom WMP WARP
description
3.1 Local Get spectral capabilities | High High

Controller of the RF hardware.

Physical layer | The local controller | Supported through OS | Supported through
must be able to obtain | command (iw/iwlist) custom-made control
the spectral capabilities interface.
of the RF hardware such
as: supported
bandwidth, supported
frequency range(s), etc.

3.2 Local Get supported channel | High High

Controller configurations

Lower MAC The local controller | Supported through OS | Supported through
must be able to obtain | command (iw/iwlist). custom-made control
the channel interface.
configurations
supported by the
system, including

29

WiSHFUL

H2020 - GA No. 258301 D3.1
channel bonding,
subcarrier selection,
etc.
33 Global Restrict spectrum usage | Possible Possible
Controller The global controller | Through driver-level | Through custom-made
Lower MAC must be able to | configurations of | control interface.
configure the spectrum | regulatory domains.
that can be used by a
node
3.4 Local Change RX and TX | Medium Medium
Controller spectrum configurations
Lower MAC /| The local controller | Central frequency can | Central frequency can
Physical layer must be able to control | be controlled through | be controlled through
the spectrum used for | OS command or | custom-made control
sending and receiving | Engine action; | interface or Engine
data choosing from the | bandwidth is fixed to | action; bandwidth scale
configurations 20 MHz. supported by
supported according to reprogramming the
3.1 and 3.2 and within FPGA (static tuning).
the restrictions imposed
by 3.3.
Table 14 Support for wireless link set-up use cases in WMP.
Wireless link set-up
UCH | Actors UC and short description WMP Broadcom WMP WARP
3.5 | Local Get supported link | Low Medium
Controller configurations
Transceiver The local controller must | TX power can be read | TX power can be read
be able to obtain the | through OS command; | through custom-made
supported link parameters | AGC can be read in | control interface; other
of the transceiver such as | HAL registers; CS | readings possible but
TX power, RX gain, CS | thresholds cannot be | notimplemented yet.
thresholds, etc. read.
3.6 | Local Get supported antenna | Low Medium
Controller configurations
Antenna
The local controller must | Current selected | Current selected

be able to obtain the
supported antenna
configurations.

antenna can be read
through OS command
(only two antennas in
diversity mode
supported).

antenna can be read
through custom-made
control interface; more
complex antenna
systems can be added,
but the control
interface has to be
extended.

30

WiSHFWL

H2020 - GA No. 258301 D3.1
3.7 | Local Get supported baseband | High High
Controller functionality
Baseband
The local controller must | Supported through OS | Supported through
be able to obtain the | command (iw/iwlist). custom-made control
supported configurations interface.
of the baseband (or
equivalent) such as
modulation scheme,
coding scheme, etc.
3.8 | Local Get MIMO capabilities No No
Controller
Physical ; -
laver The local controller must | MIMO is not | MIMO is not currently
y be able to determine the | supported in the | supported in the WARP
MIMO capabilities of the | Broadcom card. prototype (possible in
whole RF system (diversity, future extensions).
beamforming, etc.)
3.9 | Local Configure link parameters | Medium Medium
Controller The local controller must | Transmission antenna | Transmission antenna
Physical be able to control and | and modulation | and modulation
layer modify the parameters | scheme can be | scheme can be
related to the different RF | specified in OS | specified in custom-
subsystems as specified in | commands and Engine | made control interface
3.5-3.8. actions; TX power only | commands and Engine
in OS command. actions; TX power only
in control interface
command.
3.10 | Global Query and restrict link | Possible Possible
Controller parameter boundaries
Local The global controller must | Not yet supported.
Controller be able to obtain the
relevant link information
from the local controller
and impose restrictions on
the used link
configurations.
Table 15 Support for radio monitoring use cases in WMP.
Radio Monitoring
UCH | Actors UC and short WMP Broadcom WMP WARP
description
3.11 | Local Get raw RF Medium High
Controller measurements
Physical -
layer The local controller | Through driver-level | Through custom-made

must be able to obtain | commands, it is | control

interface, it is

31

WiSHFUL

H2020 - GA No. 258301

D3.1

raw RF measurements
as reported by the
underlying hardware.
Depending on the
hardware these can be

possible to read RSSI
values; low-level
channel traces
(idle/busy timings) can
be programmed inside

possible to read RSSI, 1/Q

samples;
channel traces (idle/bu
timings)

programmed

low-level

sy

can be
inside the

I/Q samples, RSSI | the Engine and read | Engine and read through
values, LQI/LSI | through the custom- | the custom-made control
estimates, channel | made control interface. | interface; more memory
occupation, noise available for traces.
level, etc.
3.12 | Local Trigger spectrum Low Low
Controller scanning
:;h:/:cal The local controller | Supported through OS | Supported through
y must be able to trigger | command (iw/iwlist), | custom-made control
spectrum scanning and | but limited statistics. interface, but limited
to get results (e.g. statistics.
received PHY frames
on each scanned
channel).
3.13 | Local Sniff and inject raw | Medium Medium
Controller PHY frames
Lower MAC The local controller | Sniffing can be | Sniffing can be supported
must be able to get a | supported through OS | through custom-made
copy of each received | commands (iwconfig) | control interface and/or
physical layer frame. | and/or MAC Engine | MAC Engine actions.
Moreover, it needs a | actions. .
o Frame forging can be
way to inject externally .
Frame forging can be | supported by means of
created PHY frames . .
. . supported by means of | MAC Engine actions.
into the wireless . .
. MAC Engine actions.
network device.
3.14 | Local Get channel Medium Low
Controller measurements and
Lower MAC tune measurement

parameters

The local controller | Receiver errors can be Limited statistics on
must be able to obtain | logged by programming | receiver errors currently
MAC measurements | the MAC Engine and available.

such as error statistics, | can be read by the

channel occupancy, | custom-made control

etc., as well as control
the parameters of
these measurements
such as the energy
detection threshold.

interface.

32

WiSHFUL

H2020 - GA No. 258301 D3.1
Table 16 Support for medium access logic use cases in WMP.
Medium Access Logic
UC# Actors uc and short | WMP Broadcom WMP WARP
description
3.15 Local Control framing Medium Medium

Controller

Upper - -

MAC The local controller | Customized headers | Customized headers
must be able to | supported by MAC | supported by MAC Engine
control the | Engine API (write/read | API (write/read actions).
segmentation and | actions).
aggregation of Aggregation possible at
packets, as well as the .
definition of the driver level (not

. currently supported).
customized header
fields.
3.16 Local Handshake High High

Controller | mechanism

Lower The local controller | Handshake mechanisms | Handshake ~ mechanisms

MAC must be able to define | are programmed in the | are programmed in the
the sequence of | XFSM logic by | XFSM logic by combining
control packets to be | combining the | the elementary MAC
sent in each channel | elementary MAC Engine | Engine API.
access (e.g. 2-way or | APIL.
4-way handshake, 2-
way handshake with
reverse link, etc.) and
the control
information to be
included in RTS/CTS
frames.

3.17 Local Carrier sense | Low Medium

Controller | mechanism

Lower -

MAC The local controller | Feasible only at the | Currently, only at the MAC
must be able to | MAC level (e.g. virtual | level (e.g. virtual carrier
modify the collision | carrier sense) by | sense) by programming a
avoidance policy used | programming a specific | specific XFSM; more
by the MAC logic such | XFSM. classification methods of
as the mechanism channel state possible, but
used (energy-based, not yet implemented.
preamble-based,
virtual...) and the
classification method
(binary, multi-level).

3.18 Local Definition of access | High High

Controller | times

33

WiSHFUL

H2020 - GA No. 258301

D3.1

Lower The local controller | Fully supported by | Fully supported by
MAC must be able to | programming the MAC | programming the MAC
modify the timing | logic and parameters | logic and parameters used
parameters of the | used by the XFSM. by the XFSM.
MAC logic. This
includes but is not
limited to: contention
window selection,
back-off freezing,
inter-frame space,
multi-node
synchronization, etc.
3.19 Local Definition of ACK | Medium Medium
Controller | policy
Lower The local controller | Fully supported by | Fully supported by
MAC must be able to | programming the MAC | programming the MAC
control the ACK policy | logic and parameters | logic and parameters used
used by the MAC logic. | used by the XFSM, if the | by the XFSM, if the ack
This includes artificial | ack preparation time is | preparation time is
dropping, accurate | compatible with the | compatible with the
time-stamping, protocol timings. protocol timings.
handshaking, frame
configuration, etc.
Table 17 Support for Virtualization functionality use cases in WMP.
Virtualization functionality
UCH | Actors uc and short | WMP Broadcom WMP WARP
description
3.20 | Global Definition of | Low Medium
Controller partitioning rules
Local X -
Controller The controller has to | Only time-based | Currently only time-based
allocate the hardware | switching between two | with a local controller, but
resources for each | different protocols are | up to 16 protocols can be
instantiated virtual | supported; rules are | loaded simultaneously; in
interface. defined in a custom- | principle, more complex
made controller. rules are possible by
instantiating multiple
engines.
3.21 Definition of access | No Possible
Global priorities
Controller
. The controllers must | Only one protocol is | In case of multiple engines,
V'”E‘a' be able to define the | active at a given time. priorities can be defined in
Radio
hardware access the custom-made control
Manager L .
priority of the interface.
different virtualized

34

WASHFUL H2020 - GA No. 258301 D3.1

interfaces.
3.22 | Local Conflict resolution No Possible
Controller - - - -
The virtual radio In case of multiple engines,
Virtual manager should be virtualization conflicts arise
Radio able to handle an event named
Manager conflicts and notify the “virtualization_conflict”.
local controller when
they arise.

4 Abstracting Radio Architectures

From the analysis of Iris, TAISC and WMP, it is interesting to observe that there is a valuable common
set of functionalities (implemented in different ways) and approaches that can be abstracted for the
definition of UPI_R. More detailled, all discussed architectures rely on primitive components, called
data processing blocks, i.e. commands or actions, which depend on the hardware capabilities and
cannot be programmed. They abstract the hardware systems in a set of configuration parameters,
which may change the hardware operating conditions (e.g. the transmission channel). The
architectures signal events indicating the occurrence of specific hardware operations (e.g. the
reception of a new packet). Moreover, the architectures define an execution environment (called
PHY engine, Stack engine, MAC engine, or TAISC engine) able to run radio programs defined in a
high-level programming language. In case of lIris, such a language describes the links between
primitive components in an acyclic graph with the sequential processing operations required by the
PHY, while in case of TAISC and WMP the program has a more complex logic, which requires the
definition of a control flow specified in a chain or in a state machine. A set of radio programs
implementing very similar operations (e.g. CSMA and TDMA access protocols) have been defined for
all the architectures by using the architecture-specific programming languages. Both for Iris and
WMP, some local controllers can reconfigure the hardware parameters or the radio program
according to the logic defined in the control program.

Radio
Network Stack prom. g
Ctrl C
=g T===== ¢ --------- $ - prgm
RADIO COMPUTER | buffer |
MAC scheme
Radio selection
control Adapt parameters
Radio I Execution —— =
mgmnt. " Hhe Manager data . s
I
' ctrl R
¢ mng
RADIO/ HW PLATFORMS UPLR = = =

@ © e €& SDR RFsuitch

Figure 8 Generic architecture for programmable radio platforms: radio programs are loaded into the
execution engine, while the radio controller manages program configuration and switching.

35

WiSHFUL H2020 - GA No. 258301 D3.1

Figure 8 shows the generalization of the WiSHFUL radio programmable architectures (built on top of
different hardware platforms) in terms of Radio Programs, Execution Engine, Radio Manager, Radio
Controller and Control Program. The Radio Programs specify the logic for driving the hardware
platforms and implementing lower-MAC protocols, modulation/demodulation schemes or other
processing operations on the hardware platform (e.g. spectrum scanning schemes, interference
estimation schemes, localization schemes). The Execution Engine provides the environment for
running the Radio Programs, while the Radio Manager is responsible of injecting, compiling and
activating different radio programs in the execution environment. Finally, the Radio Controller
configures or reconfigures the Radio Programs and the hardware platform during the initialization of
the radio or during the radio activity, according to the rules specified in the Control Program.

The radio programs loaded on the platform and the hardware systems expose a set of configuration
parameters, which represent the platform capabilities. Moreover, the hardware platform is able to
expose some low-level signals and internal states to the Radio Controller to be used as monitor
measurements for estimating the network conditions and trigger radio adaptations. The Control
Program configures the platform capabilities (e.g. transmission power, channel, radio program to be
activated, etc.) and the program-dependent capabilities (e.g. slot size, contention window, etc.) in a
list of parameters and relevant values, which may change as a function of the monitored
measurements.

5 Unified Radio Control Interface

According to the general architecture for programmable radio platforms, presented in the previous
section, the UPI_R interface is responsible of three main actions:

i Loading and activating the selected radio programs on the execution environments.
ii. Monitoring the node and network conditions by aggregating the platform signals and
internal states into measurements and logical contexts.
iii. Configuring the hardware platform and the radio programs according to the available
capabilities and to the logic defined in the control program.

To support these actions, the UPI_R interface exposes some commands, that enable the
configuration of the radio platforms, and catches some signals raised by radio platforms, that enable
the estimation of the network operating contexts and the definition of the adaptation mechanisms
implemented by the controllers.

5.1 Radio Capabilities

The UPI_R interface is able to monitor and configure the radio behavior thanks to the abstraction of
the hardware platform and radio programs in terms of Radio Capabilities. We define three different
types of radio capabilities: configurable Parameters, low-level Measurements and hardware Events.
The configurable parameters specify the configuration of the hardware platform and the initialization
of the global variables of the loaded radio program. The low-level measurements are provided by the
platform in some internal registers that track the received signal strength, the receiver errors, etc.
The hardware events are asynchronous signals, which can be directly exposed to the controller or
aggregated in a sequence of events whose occurrence can be signaled to the controller.

The list of radio capabilities is intrinsically extensible because they depend on software and hardware
releases, which are continuously updated. However, we define a core set of basic capabilities, which
are represented by a pre-defined list of identifiers. Each platform can obviously support the whole
list of capabilities or a subset of such a list, depending on the hardware flexibility and on the loaded
radio programs.

Parameters correspond to the configuration registers of the hardware platform and to the variables
used in the radio programs. For each parameter, a range of valid values can also be specified. Table

36

WiSHFUL

H2020 - GA No. 258301

D3.1

18 summarizes the list of core parameters, with an identifier, the architectural element dealing with
such a parameter (the hardware platform or the radio program) and a short description.

Table 18 — List of UPI_R core parameters

CATEGORY | ID NAME ARCHITECTURE DESCRIPTION
COMPONENT

Parameter 1 | IEEE802.11_channel Platform IEEE 802.11 PHY channel

Parameter 2 | IEEE802.11_MCS Platform IEEE 802.11 Modulation and
Coding Scheme (MCS) index value

Parameter 3 | IEEE802.11_CCA Platform IEEE 802.11 Clear channel
assessment (CCA) threshold

Parameter 4 | IEEE802.15.4_channel Platform IEEE 802.15.4 PHY channel

Parameter 5| IEEE802.15.4_CCA Platform IEEE 802.15.4 Clear channel
assessment (CCA) threshold

Parameter 6 | TxPower Platform Transmission power in dBm

Parameter 7 | TxAntenna Platform Antenna number selected for
transmission

Parameter 8 | RxAntenna Platform Antenna number selected for
reception

Parameter 9 | TDMA_SuperFrameSize TDMA RP Duration of periodic frames used
for slot allocations

Parameter 10 | TDMA_NumberOfSyncSlots TDMA RP Number of slots included in a
frame

Parameter 11 | TDMA_AllocatedSlot TDMA RP Assigned slot

Parameter 12 | TDMA_MAC_PRIORITY_CLASS | TDMA RP QUEUE class service associated
with TDMA radio program

Parameter 13 | CSMA_BackoffValue CSMA RP CSMA backoff value

Parameter 14 | CSMA_CW CSMA RP CSMA current value of the
Contention Window

Parameter 15 | CSMA_CWmin CSMA RP CSMA minimum value of the
Contention Window

Parameter 16 | CSMA_CWmax CSMA RP CSMA maximum value of the
Contention Window

Parameter 17 | CSMA_timeslot CSMA RP CSMA duration of the backoff slot

Parameter 18 | CSMA_MAC_PRIORITY_CLASS | CSMA RP QUEUE class service associated

with CSMA radio program

The low-level measurements are continuously monitored by the hardware platform and by the radio
programs. The measurement capabilities can be used to get information and statistics about the
state of the physical links or the internal state of the node. In addition, the list of measurements is
extensible, although a core list of measurements is provided in Table 19 with the relevant identifier
and description.

37

WiSHFUL

H2020 - GA No. 258301 D3.1

Table 19 — List of UPI_R core measurements

CATEGORY ID NAME DESCRIPTION
1
Measurements IEEE802.11 RSS| Received Signal Strength Indlcatlc‘)n (RSSI); it
- refers to the last received frame in dBm.
2 . _ _ . .
Measurements IEEE802.11_SNR Signal-to-noise ratio (SNR) of the last
- received frame in dB.
3 Time interval in which the transceiver has
Measurements IEEE802.11_busytime been active (including reception,
transmission and carrier sense).
Measurements 4 IEEE802.11_TxActivity Time |.nterval |r.1 which the tcranscewer has
been involved in transmission.
Measurements 5 | IEEE802.15.4_LQl Link Quality Indicator (LQl)
Measurements 6 | FER Frame Erasure Rate (FER)
Measurements | 7 | geg Bit Error Rate (BER)
Measurements 8 goodPreamble Number of ‘preambles correctly synchronized
by the receiver.
Measurements 9 badPreamble Nurnber of receiver errors in synchronizing a
valid preamble.
10 i . i
Measurements IEEES02.11_goodPLCP Number of yalld 802.11 PLCP synchronized
by the receiver.
Measurements | -1 | IEEE802.11_badPLCP Number of wrong 802.11 PLCP errors
triggered by the receiver.
Measurements 12 IEEE802.11_goodCRC Number of success of 802.11 CRC checks.
13
Measurements IEEE802.11_badCRC Number of failures of 802.11 CRC checks.
14 Number of receiver errors due to the
Measurements IEEE802.11_toolongFrame detection of 802.11 frames exceeding the
maximum possible size.
15 Number of receiver errors due to the
Measurements IEEE802.11_tooShortFrame | detection of 802.11 frames shorter than the
minimum size.
Measurements 16 | Active Identifier of the active radio program.

The events signal the occurrence of a state change that may involve the hardware platform or the
logical state of the active radio program. Table 20 shows the core list of envisioned events, with the
relevant identifier and description.

Table 20 — UPIL_R core list of events.

NAME

DESCRIPTION

CATEGORY | ID
Event 1
Event 2
Event 3

ChannelUp

ChannelDown

QueueOutUp

Triggered when the wireless channel switches
from idle to busy

Triggered when the wireless channel switches
from busy to idle

Triggered when the frame is injected into the

38

WiSHFUL

H2020 - GA No. 258301

D3.1

physical queue of the platform from the upper
MAC

Event 4 RxEnd Triggered when that receiver operation is
finished

Event 5 IEEE802.11_RxPLCPEnd Triggered at the end of PLCP reception

Event 6 RxPreambleEnd Triggered at the end of preamble reception

Event 7 RxMACHeaderEnd Triggered at the end of MAC header reception

Event 8 RxErrorBadCRC Triggered at the occurrence of a receiver error
due a CRC failure

Event 9 RxErrorBadPLCP Triggered at the occurrence of a receiver error
due a PLCP check failure

Event 10 | RxErrorQueueOverflow Triggered at the occurrence of a receiver error
due to the overflow of the reception queue

Event 11 | TxErrorQueueUnderflow Triggered at the occurrence of a transmission
error due to the underflow of the transmission
queue

Event 12 | EndTimer Triggered at the occurrence of a timer
expiration

Event 13 | IFSExpired Triggered at the end of inter frame spaces in
which the medium has to be sensed as idle

Event 14 | CSMA_BackoffExpired Triggered at the expiration of the backoff
countdown

Event 15 | TDMA_SlotStart Triggered at the beginning of a TDMA slot

Event 16 | TDMA_SlotEnd Triggered at the end of a TDMA slot

Event 17 | TDMA_FrameStart Triggered at the beginning of a TDMA frame

Event 18 | TDMA_FrameEnd Triggered at the end of a TDMA frame

5.2 UPI_R Data and Functions

In this section, we detail the first specification of the UPI_R interface by using a C-style pseudo-code.
The definition is given by generic abstract functions, whose platform-specific implementation is
provided by the adaptation modules defined for the Iris, TAISC and WMP platforms.

5.2.1 UPI_R Data Structures

The information elements used by the UPI_R interface are organized into data structures, which
provide information on the platform type and radio capabilities (event_t, monitor_t, param_t) of
each interface (NIC_t) on the available radio programs (radio_prg_t), and on the traffic queues
(queue_t) available for transmissions over the radio interface.

/* structure representing each radio interface

it contains an identifier and the platform type (Iris, TAISC, WMP)
L7

struct NIC_t{NIC_id; platform;}

/* structures representing events, monitored measurements and

parameters in terms of couples identifiers/values */

39

WIiSHFYL H2020 - GA No. 258301 D3.1

struct event_t{ event_id; event_value; }
struct monitor_t{ monitor_id; monitor_value; }

struct param_t{ param_id; param_value; }

/* structure coding a radio program in with an identifier,
the platform type for which it has been compiled and the pointer
to the compiled program */
struct radio_prg_t{
radio_prg_id;
platform;

<radio_program_pointer>;

/* structure representing a traffic queue with an identifier,
the traffic type and the radio program managing the frame
transmissions for the queue */

struct queue_t{ queue_id; queue_name; radio_prg_t; }

/*structures for listing elementary information types:
event_t, monitor_t, param_t, radio_prg_t, NIC, queue */
event_list{ list event_t; }

monitor_list{ list monitor_t; }

param_list{ list param_t; }

radio_prg_list{ list radio_prg_t; }

NIC_list{ list NIC_t; }

queue_list{ list queue_t; }

/* structure representing the radio capabilities of a given
nhetwork card NIC_t in terms of event, measurement and
parameter lists */
struct radio_info_t{

NIC_t;

event_list;

monitor_list;

param_list;

40

Y
WiSHFYL H2020 - GA No. 258301 D3.1

5.2.2 UPL_R Functions

For defining abstract functions to be mapped into platform-specific implementations, we use the C-
like formal definition based on function pointers. Input data and output data of UPI_R functions are
based on the data structures defined in the previous section or on other primitive data.

The complete list of functions identified in the first iteration of UPI_R specification is given by the
following list, which will be described by grouping the functions into control, management and data
plane functions.

struct upi_r{
NIC_list (*getNICs)();
radio_info_t (*getNICInfo)(NIC_t);
error_t (*setMonitor)(NIC_t, monitor_list);
monitor_list (*getMonitor)(NIC_t);
error_t (*defineEvent)(NIC_t, “name”, <handler>, optional);
error_t (*setParameter)(NIC_t, param_list);
param_list (*getParameter)(NIC_t, param_list);
error_t (*inject)(NIC_t, radio_prg_list, boolean_list);
radio_prg_list (*getInjected)(NIC_t);
errot_t (*setActive)(NIC_t, radio_prg_t);
radio_prg (*getActive)(NIC_t);
queue_list (*getQueue)(NIC_t);
error_t (*connect)(NIC_t, queue_t, radio_prg_t);
error_t (*disconnect)(NIC_t, queue_t);
} UPI_R;

a. UPI_R CONTROL FUNCTIONS

Control functions deal with the monitoring and configuration of the radio interfaces during their
operation.

The function getRadioInfo() for capability discovery is mostly used at bootstrap, but also after
the loading of a novel radio program. It returns the list of events, monitor measurements and
configuration parameters supported by the node according to the employed radio architecture (Iris,
TAISC, WMP) and radio programs. The returned data are structured in three lists of <type,value>
couples, which enumerate the supported events, measurements, parameters and their current
values.

/* get supported parameters, events and measurements for the platform
under use. The platforms in Wishful have heterogeneous
capabilities. */

radio_info_t (*getRadioInfo)(NIC_t);

41

/
WiSHFYL H2020 - GA No. 258301 D3.1

A second important set of control functions allow to gather low-level radio information and statistics
to be used for estimating the network conditions (interference, propagation conditions, contention
levels, etc.). For efficiency reasons, the measurements that the controller is willing to monitor can be
configured as a sub-set of the whole measurement list by means of the setMonitor(NIC_t,
monitor_list) function. The entire list of values of the monitored measurements can be read by
calling the getMonitor(NIC_t) function, while single measurements can be tracked by calling the
function getMonitor(NIC_t, monitor_id). While the measurements are notified by explicitly calling
the getMonitor functions, asynchronous events can also be tracked by opportunistically defining the
conditions for triggering an interrupt signal, and the program handler for reacting to such an
interrupt. The triggering conditions may correspond to the occurrence of an event supported by the
platform, to a sequence of multiple elementary events or to the overcoming of a threshold for the
counter of elementary events. The function responsible of event definitions is the defineEvent
function.

/* set a subset of monitor capabilities. If the value field 1is
different from zero, the monitor is (re)set to the specified value.
If the value is null, turns off the monitor. */

error_t (*setMonitor)(NIC_t, monitor_list);

// get the list of monitors currently running
monitor_list (*getMonitor)(NIC_t);

// get a single measurement of the monitored parameter monitor_id
monitor_t (*getMonitor)(NIC_t, monitor_id);

/* associate a function, pointed by <handler>, that must be executed
* when the aggregated event “name” is triggered.
* The triggering condition is reached when the counter of
* the event identified by event_id is equal to the threshold value
*/
error_t (*defineEvent)(NIC_t, “name”, <handler>, event_id,
threshold);

/* The triggering condition is reached when a sequence of events
coded in the event_list is sequentially verified. */

error_t (*defineEvent)(NIC_t, “name”, <handler>, event_list);

Finally, the last set of control functions permit to configure the platform in use by setting the values
of a list of configurable parameters through the function getParameter(NIC_t, param_list) and by
reading their current values through the function setParameter(NIC_t, param_list).

// (re)set the value(s) of the specified parameter list
error_t (*setParameter)(NIC_t, param_list);

// get the value(s) of the specified parameter list
param_list (*getParameter)(NIC_t, param_list);

42

WiSHFUL H2020 - GA No. 258301 D3.1

b. UPI_R MANAGEMENT FUNCTIONS

Management functions permit to handle radio programs. A radio program has to be previously
loaded on the wireless node to be available. For sending the radio program code on the desired
testbed nodes, it is necessary to perform some network-level operations, addressed by using a
specific set of UPI_M functions. Section 7 in D4.1 describes the UPI_M interface. Once a radio
program has been successfully loaded on the wireless node, it can be in the following states: loaded,
injected and active.

UPI_R.setActive(radio_prg_t,false);

UPI_R.inject(radio_prg_list, true_list)
UPI_N.loadRadioProgram

UPI_N.unloadRadioProgram

Figure 9 - Management lifecycle for radio programs

Figure 9 illustrates the management lifecycle of WiSHFUL radio program. The lifecycle of a radio
program over a WiSHFUL node includes several management states in the set {Unloaded, Loaded,
Injected, Active}. These have to be considered in relation to the wireless node, therefore the same
radio program can have different management state on different nodes (e.g. the same TDMA radio
program can be in the Injected state on a node and in the Active state on another node).

When the experimenter defines his own radio program or wants to use a radio program available in a
repository, the program has to be transferred to the wireless node. When the radio program is
moved from the repository to the wireless node, it changes to the Loaded state. A loaded radio
program is stored locally but it resides in a general-purpose memory area (depending on the
architecture it may be the hard disk, a CF or SD card, etc). By calling the inject UPI_R function, the
radio program is copied in the internal microinstruction memory of the programmable radio platform
(where it can be executed by the Engine). Several radio programs can be Injected into the radio
platform simultaneously, but their execution is started only after the call of the UPI_R setActive
function, which switches the program state to Active.

The generalization of the WiSHFUL programmable radio architectures is currently based on a single
Engine without multi-threading capabilities. The local controller can implement code switching by
calling the setActive function with the desired radio program in different time intervals or after the
occurrence of a given event. Note that the Iris platform can support multiple engines able to run
multiple programs in parallel. The WMP and TAISC platforms support the execution of multiple
programs when the Engine is programmed.

The following commands are defined for managing the radio programs:

// injects the radio programs as specified in the // boolean_list
error_t (*inject)(NIC_t, radio_prg_list, boolean_list);

// Returns the radio programs which are injected on the interface
radio_prg_list (*getInjected)(NIC_t);

43

A
WiSHFYL H2020 - GA No. 258301 D3.1

// Activates a radio program. If another program is already running,
// switches between the two radio programs.
errot_t (*setActive)(NIC_t, radio_prg_t);

// returns the radio program that is currently running
radio_prg (*getActive)(NIC_t);

c. UPI_R DATA-PLANE FUNCTIONS

In each programmable radio platform supported in WiSHFUL, packets can be marked using packet
attributes, meta-data or packet header fields such as Type of Service (TOS). The architecture does
not impose any constraint in terms of which layer of the protocol stack can mark a packet. In Contiki,
the packet attributes can be read and updated by any protocol in the stack and are (normally) added
by the application. In TinyOS using IDRA and OpenWSN, the meta-data can also be updated by any
protocol while in Linux systems the marking is typically done by netfilter or Linux Traffic Control (tc).

For configuring the radio data plane, we envision the possibility to specify different MAC protocols
for different traffic flows, in order to allocate different channel resources to different traffic types
and prioritize some applications. To this purpose, it is required to differentiate the channel access
operations performed for transmitting frames belonging to different traffic flows.

There are two options for implementing this feature:

e Using multiple queues. Each queue holds packets of a specific traffic flow (e.g. type of
service). A different MAC program is simultaneously executed for each traffic queue and a
priority is assigned to each queue in case of internal conflicts among multiple MAC programs.
The queuing policies and the assignment of different MAC programs to each queue is
decided by the local/global control program. This approach implies some level of memory
overhead. To realize this functionality, the following functions need to be supported by
UPI_R:

// get list of available queues
queue_list (*getQueue)(NIC_t);

// associate queue with the corresponding radio program
error_t (*connect)(NIC_t, queue_t, radio_prg_t);

// remove association to queue
error_t (*disconnect)(NIC_t, queue_t);

* Using filtered de-queuing. A single physical queue is implemented, but the de-queuing of
frames is not necessarily performed according to a FIFO discipline. Multiple MAC programs
are defined for different traffic flows. Each packet in the queue has some meta-data that
indicates the type of service, which in turns addresses the MAC program dealing with the
transmission of the frame. When a MAC program de-queues a packet, it asks for a packet
with a specific type of service. The local/global control program decides which type of service
is assigned to which MAC. This approach implies some additional complexity and hence
processing overhead in the queuing system. Again, priorities have to be assigned to different
programs for managing conflicts, as shown in the following example:

44

WiSHFUL H2020 - GA No. 258301 D3.1

//define param to set class priority
param_t param;

parma.id = TDMA_MAC_PRIORITY_CLASS;
param.value = “CLASS 1”;

//assign priority class
param_list parameters;
parameters[1]= param;
UPI_R.setParameter(nic, param);

In short, it is thus a trade-off between processing and memory overhead.

Data-plane configuration functions for multiple queues are enabled for radio programmable
architectures able to run simultaneously two or more MAC programs. This allows an advanced form
of card virtualization because from the perspective of the higher layers (e.g. NET) it looks like there
are two or more execution engines that can be independently configured. In this sense, we can make
an analogy between a hypervisor that virtualizes computing resources and our “MAC hypervisor”
approach that virtualizes network resources.

5.3 Adaptation modules

The UPI_R interface provides a set of functions that can be exploited by the local or global controllers
to retrieve information from the programmable radio architectures and controlling their behavior,
without knowing the internal details of the platform. This enables the definition of control programs
that can drive heterogeneous WiSHFUL platforms, if they support the same required capabilities.

The adaptation modules, whose initial design is documented in this section, perform the mapping of
the UPI_R generic functions into platform-dependent implementations.

5.3.1 UPIL_R adaptation for Iris

Iris, as a software platform, supports a high degree of flexibility, which eases the addition of WiSHFUL
functionality. As shown in Figure 10, the majority of the functionality required to support the
WISHFUL UPIs fits naturally into the Iris controller as this entity already supports the radio
monitoring and reconfiguration of Iris.

The software natural of Iris imposes several challenges as well. Since the platform is inherently built
to be extended as needed by users, the functionality provided by Iris is not consistent. The radio
itself depends entirely on the components employed by a particular user and are typically highly
customized to the user’s purposes. Some core functionality is consistently maintained, for example,
the architecture of Iris and entry points for WiSHFUL do not change, but the radio operation regularly
changes drastically. Therefore, the integration of WiSHFUL functionalities to Iris will center more on
the definition of mechanisms to allow users to expose parameters through the WiSHFUL APIs, which
occurs during the configuration of the radio platform.

45

WiSHFUL

H2020 - GA No. 258301 D3.1
Local Global
Intelligence Intelligence
UPIV_\ /PIG

Configuration

Iris

AN

[

XML

Parser

Radio Instance

Controller

l\

N\,
PHY Engine /’ N,

b

F|Ie OFDM Signal USRP
Reader Modulator Scaler TX

Component
Manager

Figure 10 UPI_R adaptation for Iris

5.3.2 UPI_R adaptation for TAISC

Figure 11 illustrates the mapping of the WIiSHFUL control and management plane extensions,
proposed in Figure 8, on the TAISC architecture. The adaptation layer required for configuring,
monitoring and managing TAISC chains implements two repositories:

* A parameter repository used for control purposes.

©)
©)

Setting and/or getting configuration parameters
Subscribing to monitoring events and/or receiving event updates.

* A chain repository used for management purposes.

©)
©)

Adding, activating, switching and/or removing chains.
Keeping track of the chain states (e.g. idle, active, running, etc.).

Using repositories introduces minimal the memory overhead, which is a crucial requirement for the
constrained devices that are currently targeted by TAISC. It is possible to map all functions currently
defined in UPI_R and to add all parameters and events defined in Table 18, Table 19 and Table 20
respectively. Each entry in the repositories (chain, configuration parameter and monitoring event)
requires an UID and contains the ROM/RAM addresses that correspond to the chains and chain
variables used in TAISC.

The local intelligence or control program uses the UPI_R interface to configure and monitor the
TAISC. The adaption layer translates (if necessary) and forwards, based on information stored in the
parameter repository, these requests to the TAISC Control Plane (narrow waist) interface described
in the TAISC architecture (2.2.2). Similarly, the global intelligence or control program uses the UPI_G
interface to configure, monitor and maintain chains on a group of nodes.

46

WiSHFUL H2020 - GA No. 258301 D3.1

intelligence higher layers

UPI_G IData

Adaptation Layer TAISC

—~ -

global

parameter
_repository _

Control
UPI_R >
local «—> Mgt

intelligence RAM LU ROM

—~ ~

“oan |
_repository _

Figure 11 UPI_R adaptation for TAISC

5.3.3 UPL_R adaptation for WMP

For the initial design of this adaptation module, we refer to the WMP prototype available for the
Broadcom commercial card (being the current WARP prototype equipped with a simplified network
stack). For the Broadcom prototype, the WMP control and management interface is implemented in
the MACIlet manager, while the interface to the upper MAC and higher-layers is implemented in the
driver running on the host. The implementation of UPI_R functions can be performed by mainly
working on these software modules (MAClet manager and driver), while some modifications can be
also performed in the Engine implementations for supporting a broader set of monitored
measurements.

Figure 12 shows an overview of the interactions between the software module implementing the
adaptation module, the WMP architecture, and the local and global controllers: the intelligence
implemented in the control programs is based on the call of generic UPI_R functions, which are
mapped into WMP-specific functions defined in the adaptation module. These functions, in turns,
interact with the MAClet manager and driver functions, as well as with the WMP shared memory and
transceiver registers.

Global Intelligence

1
I
l 1
I Shared
I
I
1
1

] Memory € MACEngine

1 a Radio
qd Radio
qd Radio
Component

[€>| Driver

VY

1 1 4

Local Intelligence
UPI_R Interface
Adapt. Module

6 a MAClet

manager

\ 4

Transceiver PHY

WMP platform

Figure 12 — Adaptation module high-level design for the WMP Broadcom prototype.

47

WiSHFUL

H2020 - GA No. 258301

D3.1

Table 21 lists an initial mapping of the UPI_R functions into functions provided by the MAClet
manager module, the driver module or both the software modules. Basically, all the functions related
to the radio program activation and platform configuration are mapped to MAClet manager
functions (e.g. setActive and setRunning), while the monitoring functions are mapped to both the

MACIet manager and the driver.

Table 21 - How UPL_R interfaces are mapped in WMP platform elements from adaptation module

UPL_R interface

UPI_R INTERFACE MAPPING

MACIet
Driver

manager
(*getNICs) X
(*getNICInfo) X X
(*setMonitor) X X
(*getMonitor) X X
(*defineEvent) X X
(*setParameter) X
(*getParameter) X
(*inject) X
(*getInjected) X
(*setActive) X
(*getActive) X
(*getQueue) X
(*connect) X
(*disconnect) X

As far as concerns the radio capabilities, the WMP Broadcom prototype supports only a subset of

them related to the hardware capabilities of a standard 802.11b/g PHY.

48

WiSHFUL H2020 - GA No. 258301 D3.1

Table 22 summarizes the supported radio capabilities, by also specifying which architecture element
(PHY register, MAC Engine variable or Driver variable) is involved and which software module can
configure the different parameters or detect the measurements/events. Note that for the receiver
errors both the PHY registers and the MAC Engine variables are involved: the switching of the PHY
registers indicate the occurrence of the errors, while the MAC Engine variables count the number of
occurrences.

49

WiSHFWL

Table 22 -Where the WMP platform capabilites are located and as they are available

H2020 - GA No. 258301

D3.1

Name

Located

Available by

PHY
register

MAC
Engine
variable

Driver
Variable

MACIet
manager

Driver

IEEE802.11_channel
IEEE802.11_MCS
IEEE802.11_CCA
Txpower

TXantenna

RXantenna
TDMA_SuperFrameSize
TDMA_NumberOfSyncSlots
TDMA_AllocatedSlot
CSMA_BackoffValue
CSMA_CW
CSMA_CWmin
CSMA_CWmax

CSMA _timeslot
IEEE802.11_RSSI
IEEE802.11_SNR
IEEE802.11_busytime
IEEE802.11_TXactivity
FER

BER
IEEE802.11_goodPCLP
IEEE802.11_badPLCP
IEEE802.11_goodCRC
IEEE802.11_badCRC
IEEE802.11_toolongframe
IEEE802.11_tooshortframe
active-function
ChannelUp
ChannelDown
QueueOutUp

RxEnd

X
X

xX X X X

X X X X X X X X X X X

X X X X X X X X

X X X X X X X

X

X X X X X X X X X X X X X X X X

X X X X X X X X X X X

X X X X X X

50

WiSHFUL H2020 - GA No. 258301 D3.1

CSMA_BackoffExpired
TDMA_SlotStart
TDMA_SlotEnd
TDMA_FrameStart

IEEE802.11_RxPLCPEnd X X
RxPreambleEnd X X
RxMACHeaderEnd X X
RxErrorBadCRC X X
RxErrorBadPLCP X X
RxErrorQueueOverflow X X
TxErrorQueueUnderflow X X
EndTimer X X
IFSExpired X X
X X
X X
X X
X X
X X

TDMA_FrameEnd

For making the measurements and the program variables available to the Driver or the MAClet
manager, the MAC Engine copies their values in a shared memory which can be accessed by both the
firmware and the host processes. For efficiency reasons, rather than copying the whole set of
parameters, the Engine can write in the shared memory only the measurements and events selected
by experimenters by using the UPI_R setMonitor function.

Similarly, for providing interrupt signals to the adaptation module and to UPI_R at the occurrence of
events, the MAC Engine can be programmed for considering only the events or the aggregation of
events (e.g. a number of occurrences overcoming a given threshold) defined by experimenters. Most
of the WMP events are signaled by flipping bits in PHY registers, while the counting of event
occurrences can be stored in program registers. Interrupt singnals can be associated to the switching
of these registers to particular values.

An alternative solution to pass events and measurements between the MAC Engine and the upper
elements (Driver and MAClet Manager) will be explored during the implementation phase. Instead of
writings and readings in the shared memory, which is collision prone in case of frequent access
operations, the MAC Engine can periodically collect statistics and send them to the higher layers by
means of signaling frames or piggybacked data added to the reception queue. The use of frame-
based communication, opportunely identified with tags, will increase the system flexibility and
reduce the number of readings/writings and possible collisions on memory access.

6 Example of UPI_R utilization

6.1 Adapting CSMA contention window

6.1.1 Example Description

This example refers to one of the showcases discussed in D2.2: a given number of radio nodes,
employing a contention-based access protocol, coexist in the same environment and an increasing
number of greedy traffic flows is activated sequentially. Regardless of the PHY technology (e.g. a low-

51

A
WiSHFYL H2020 - GA No. 258301 D3.1

rate PHY, such as the one supported by TAISC, or an high-rate PHY, such as the one supported by
802.11g/n PHY), as the number of greedy traffic flows gets higher, the aggregated performance of
the network degrade because of the increased level of congestion. Indeed, it is well known that
CSMA performance can be optimized by tuning the contention window as a function of the number
of contending nodes (or equivalently on the collision probability experienced in the network). While
standard-based contention protocols use exponential backoff mechanisms with fixed minimum and
maximum contention windows, WiSHFUL radio platforms allow to tune the CSMA contention window
as a function of an estimate of the network load conditions.

6.1.2 Requirements for UPI_R
For supporting the dynamic adaptation of the CSMA contention window, it is required to:

- Retrieve information about the fact that the Radio Program currently active is a CSMA
protocol, with tunable contention windows, by calling the UPI_R function responsible of
capability discovery;

- Aggregate the low-level measurements of the platform for estimating the network
congestion level, by monitoring the number of ACK timeouts and the total number of
transmitted frames;

- Configure the Radio Program parameter corresponding to the CSMA contention window as a
function of the estimated congestion level.

6.1.3 Control Program Pseudo-Code

The first operation is the identification of the radio capabilities of the NIC on node:
/*¥ Check NIC capabilities */
nic_list UPI_R.getNICs();
radio_info UPI_R.getNICInfo(nic_list[1]);
radio_prg UPI_R.getRunning(nic_list[1]);
print info (i.e. radio_prg_id, platform, NIC_t, etc.)

From the output, the local intelligence retrieves the description of the capabilities of this NIC, on the
radio program currently active, on the platform type, etc. In this example, the NIC capabilities are
stored in xml, such as the following:

<?xml version="1.0" encoding="UTF-8"7>
<wishful>

<capability id="7">
<category>parameter</category >
<name>TXantenna</description>
<radio_program>ALL(PHY)</radio_program >
<description>Antenna selected for transmission</description>
</capability>

<capability id="17">

<category>measurement</category >

<name>TX_frames</ name >

<description>Number of transmitted frames</description>
</capability>

<capability id="3">

<category>event</category >

<name> QUEUE-OUT-UP </ name >

<description> Triggered when the frame is injected into the HW platform
physical queue from the upper MAC </description>

52

/
WiSHFYL H2020 - GA No. 258301 D3.1

</capability>

</ wishful >

Now the local controller monitors periodically the number of ACK timeouts and the total number of
transitted frames as a measure to detect congestion. If the ratio between the two is higher than 5%,
it enlarges the congestion window value, while if this ratio is lower than 0.5%, it reduces it.

/¥ Monitoring of parameters */

//initialize parameters to be periodically checked
ack_timeout=0;
tx_frames=0;
CW=CWmin;
monitor_list check_monitors={ monitor_t{ ACK_timeout; 0;},
monitor_t{ TX_frames; 0;3}%};
//every 10s check timeout/transmitted ratio
while true {
sleep 10s;
check_monitors=UPI_R.getMonitor(nic, check_monitors);
ack_timeout = check_ monitors[1].value;
tx_frames = check_ monitors[2].value;
ifCack_timeout/tx_frames>=0.05)
CW=CCW*2>CWmax)? CW*2 : CWmax;
else ifCack_timeout/tx_frames<=0.005)
CW=CCW/2<CWmin)? CW/2 : CWmin;
UPI_R.setParameter(nic, { param_t{ CSMA_CW; CW; 13})D;

6.2 from CSMA to TDMA

6.2.1 Example Description

Also this example refers to the showcases discussed in D2.2: an high number of radio nodes,
employing a contention-based access protocol, coexist in the same environment with greedy traffic
flows and high collision rates. Being the traffic scenario predictable (the flows are greedy and the
number of contending nodes is fixed), the network efficiency can be improved by adopting a TDMA
access scheme rather that a contention-based protocol. This is possible on WiSHFUL radio platforms
by exploiting the UPI_R interface and the TDMA Radio Program (available for all the platforms Iris,
TAISC and WMP). For this purpose, the platform-dependent TDMA Radio Program must be loaded on
each node, the program must be configured with an equal super frame size (number of slots), a
different slot for each node needs to be allocated and a common temporal signal to all the nodes for
synchronizing the start of TDMA frames must be provided.

6.2.2 Requirements for UPI_R
To support switching the Radio Program from CSMA to TDMA, it is required to:

* Retrieve information about the fact that the Radio Program currently active on the nodes is a
CSMA protocol, and that the TDMA Radio Program is loaded or available on the WiSHFUL
repository.

53

/
WiSHFYL H2020 - GA No. 258301 D3.1

* Retrieve information about the TDMA configuration parameters, which include the frame
size, the slot to be allocated and the start of a new frame;

* Exploit low-level measurements to estimate the number of nodes in the network by
monitoring the different MAC addresses of transmitted frames or the collision probability
experienced by each node;

* Configure the TDMA Radio Program parameters corresponding to the TDMA frame size and
allocated slot on each node;

¢ Activate the TDMA Radio Program on each node and ensures that the start of the TDMA
frame is synchronized among all the network nodes.

6.2.3 Control Program Pseudo-Code

A simplified pseudo-code example of the UPI_R calls implementing the CSMA/TDMA switching is
illustrated below.

The first operation is the identification of the radio capabilities of each node:

/*¥ Check NIC capabilities */

nic_list UPI_R.getNICs();

radio_info UPI_R.getNICInfo(nic_list[1]);

print radio_info (i.e. NIC_t; event_list; monitor_list;
param_list;)

The condition for informing the global controller about the need to switch to TDMA can be based on
several observations. In our example, we assume that it depends on the observation of high
contention levels in terms of high values of the contention window:

/* Local monitoring of parameters */

//initialize parameters to be periodically checked
CW=CW_MIN;
param_list check_params={ param_t{ CSMA_CW; null; }};
//every @0.5s check if congested (i.e. if CW>=128)
while true {

sleep 0.5s;

check_params=UPI_R.getParameter(nic, check_params);

CW = check_params[1].value;

if(CW>=128)

send alert to global controller;

}

The controller is then responsible for verifying that a TDMA Radio Program is active on each node. If
this is not the case, such a program must be loaded by using the UPI_R management functions.

Once loaded, the TDMA radio program can be configured with the desired frame size and with a
different slot allocated to each node. Finally, since the program natively provides the frame

synchronization function among multiple nodes, it is possible to activate the program and make it
running on each node.

/¥ Switching do TDMA */

// TDMA parameters: 10ms SuperFrame, 2 slots, 1 allocated to
the nic

54

WiSHFUL H2020 - GA No. 258301 D3.1

param_list tdma_params={ param_t{ TDMA_SuperFrameSize;
10000%, param_t {TDMA_NumberOfSyncSlots; 2%,
param_t{ TDMA_AllocatedSlot; 1} };
UPI_R.setParameter(nic, tdma_params);

//run TDMA radio program (must be previously activated)
UPI_R.setRunning(nic, tdma_pgm);

7 Conclusion

In this deliverable, starting from the presentation of the programmable radio architectures and
prototypes available in WiSHFUL (namely, the Iris, TAISC and WMP architectures), we have described
the first UPI_R specification. The UPI_R interface has been conceived for offering a unified interface
to experimenters willing to work on heterogeneous radio platforms and for enabling the definition
of platform-independent adaptation logics of the MAC/PHY stack. An initial design of the adaptation
modules required for mapping the UPI_R interface into platform-specific function calls and an
analysis of the capabilities supported by each platform are also presented in this document.

From a methodological point of view, the UPI_R interface has been specified by abstracting the Iris,
TAISC and WMP architectures into a general radio architecture, whose behavior is characterized by
the platform radio capabilities and loaded radio program. The radio capabilities have been
conveniently abstracted into a set of configurable parameters, detectable events and monitored
measurements. The radio programs specify the logic for driving the hardware platforms and
implementing lower-MAC protocols, modulation/demodulation schemes or other processing
operations on the hardware platform (e.g. spectrum scanning schemes, interference estimation
schemes and localization schemes). Radio capabilities and radio programs represent the main data
structures used for the definition of UPI_R functions.

For validating the thoroughness of the UPI_R specifications, we considered several use cases dealing
with MAC/PHY reconfigurations, by mainly referring to the D2.2 showcases. Two specific examples
have been discussed at the end of the document, in terms of general UPI_R requirements and
specific UPI_R calls that can be exploited for their implementation. In the first example, a CSMA radio
program is adapted to the network congestion state by tuning the contention window as a function
of the number of competing nodes. A different adaptation, based on the switching from a radio
program to another, where the MAC scheme is changed from CSMA to TDMA in case of greedy traffic
flows and high contention levels. Although these preliminary validations have shown that the current
UPI_R specification allows dealing with the considered adaptation problems, we expect that some
minor refinements could be necessary during the implementation phase (that will last for the next six
months of the project).

8 References

[1] The GNURadio Software Radio, http://gnuradio.org/trac

[2] WARP, http://warp.rice.edu/trac

[3] USRP. The universal software radio peripheral, http://www.ettus.com

[4] K. Tan,J.Zhang, J. Fang, H. Liu, Y. Ye, S. Wang, Y. Zhang, H. Wu, W. Wang, G. M. Voelker, “Sora:
High Performance Software Radio Using General Purpose Multi-core Processors”, NSDI 2009.

[5] M. C. Ng, K. E. Fleming, M. Vutukuru, S. Gross, Arvind, H. Balakrishnan, “Airblue: A System for
Cross-Layer Wireless Protocol Development”, ACM/IEEE Symp. on Architectures for Networking
and Communications Systems (ANCS) 2010.

55

WiSHFUL H2020 - GA No. 258301 D3.1

[6] S. Heath, “Mircoproecssor Architectures, Second Edition: RISC, CISC and DSP”, ISBN-13: 978-
0750623032

[71 “rm090”, http://www.rmoni.com/en/products/hardware/rm090
[8] “proflex01”, http://www.lsr.com/embedded-wireless-modules/zigbee-module/proflex01-r2
[9] “TSCH or 802.15.4e”, https://tools.ietf.org/html/draft-ietf-6tisch-tsch-06

[10] I. Tinnirello, G. Bianchi, P. Gallo, D. Garlisi, F. Giuliano, F. Gringoli, “Wireless MAC Processors:
Programming MAC Protocols on Commodity Hardware” IEEE INFOCOM, March 2012.

[11] G. Bianchi, P. Gallo, D. Garlisi, F. Giuliano, F. Gringoli, I. Tinnirello, “MAClets: Active MAC
Protocols over Hard-Coded Devices” ACM CoNEXT'12, pp. 229-240, 2012.

56

