WiSHFUL H2020 - GA No. 645274 D2.3

* %%
X% %

® |
* p K
/ European
N Commission
N

Wireless Software and Hardware platforms for

Flexible and Unified radio and network control

Project Deliverable D2.3

Results of first set of showcases

Contractual date of delivery: 31-12-2015

Actual date of delivery: 04-01-2016

Beneficiaries: IMINDS, TCD, CNIT, TUB, NCENTRIC, RUTGERS, SNU

Lead beneficiary: TCD

Authors: Nicholas Kaminski (TCD), Luiz DaSilva (TCD), Ingrid Moerman

(IMINDS), Peter Ruckebusch (IMINDS), Spilios Giannoulis (IMINDS),
Pieter Becue (IMINDS), Anatolij Zubow (TUB), Mikolaj Chwalisz
(TUB), Piotr Gawtowicz (TUB), llenia Tinnirello (CNIT), Pierluigi
Gallo (CNIT), Domenico Garlisi (CNIT), Robin Leblon (nCentric)

Reviewers: Mikolaj Chwalisz (TUB), Spilios Giannoulis (IMINDS)
Work package: WP2 — General requirements and showcases
Estimated person months: 8

Nature: R

Dissemination level: PU

Version: 35

Abstract:

This deliverable reports on the results of the first set of showcases that have been implemented.
This deliverable also includes the specifications of the second set of showcases to be implemented
by the end of Year 2.

Keywords:
showcases, proof-of-concept

WiSHFUL H2020 - GA No. 645274 D2.3

Executive Summary

This deliverable reports on the showcases implemented within the first year of the project to display
the functionality of the WiSHFUL platform. A brief overview of the accomplishments within each
showcase is provided alongside a description of the utility offered by the WiSHFUL platform and
exhibited within this showcase. As such, this document provides an initial catalogue of the
accomplishments of the project, by summarizing the tangible utilities provided. Along with
subsequent two work package deliverables, this document will provide a complete picture of the
capabilities and utility of the WiSHFUL project in a tangible manner by applying the functionality of
the project to problems currently relevant to the community in a user-friendly and consistent
manner. As such, the work outlined herein will provide the basis of upcoming scientific publications
and other dissemination material as a means of maximizing the impact of the project. Technical
detail regarding the implementation of support for each showcase is left to the appropriate technical
deliverables (D3.2, D4.2 and D6.2). Finally, this document also looks ahead to showcases envisioned
for implementation within the second year of the project.

V\/iSHFML H2020 - GA No. 645274

List of Acronyms and Abbreviations

AM
AODV
AP
API
BAN
CPU
CSME
DMT
DSL
DSR
DT
EM
EMS
EWMA
F4F
FBMC
Fed4FIRE
FRCP
FSM
GPIO
HAL
HTTPS
I/Q
IEEE
P

KPI
LTE
LTE-A
Lal
PRR
MA
MAC
MTC
NOC

Aggregate Manager

Ad hoc On-demand Distance Vector
Access Point

Application Programming Interface
Body Area Network

Central Processing Unit

Carrier Sense Multiple Access
Discrete MutiTone

Digital Subscriber Loop

Dynamic Source Routing

Delay Tolerant

ElectroMagnetic

Experiment Management Server

See Figure 8

Federation for FIRE (Future Internet Research Experimentation)

Filter Bank Multi-Carrier

Federation for FIRE (Future Internet Research Experimentation)

Federated Resource Control Protocol
Finite State Machine

General Purpose Input Output

Radio Abstraction Layer

HyperText Transfer Protocol Secure
In phase / Quadrature

Institute of Electrical and Electronics Engineers
Internet Protocol

Key Performance Indicator

Long Term Evolution

Long Term Evolution - Advanced

Link Quality Indication

Packet Reception Rate

See figure 8

Medium Access Control
Machine-Type Communications

Network Operations Center

D2.3

V\/iSHFML H2020 - GA No. 645274

OFDM
OLSR
OMF
OML
PLC
QoS
RAM
RF

RP
RSpec
RSSI
RT
SDR
SFA
SSH
TCP
TDM
TDMA
TSMP
TSCH
uc
UMTS
UPI
UPIR
UPIN
UPIHC
URL
USB
VPN
Wi-Fi
XFSM

Orthogonal Frequency Division Multiplexing
Optimised Link State Routing

OMF Measurement Library

Orbit Management Framework
Power Line Communication
Quality of Service

Random Access Memory

Radio Frequency

Radio Processor

Request Specification

Received Signal Strength Indication
RealTime

Software Defined Radio

Slice Federation Architecture
Secure SHell

Transmission Control Protocol
Time Division Multiplexing

Time Division Multiple Access
Time Synchronized Mesh Protocol
802.15.4e

Use Case

Universal Mobile Telecommunications System (UMTS)

Unified Programming Interface

Unified Programming Interface radio

Unified Programming Interface network

Unified Programming Interface hierarchical control
Uniform Resource Locator

Universal Serial Bus

Virtual Private Network

Wireless Fidelity

eXtended Finite State Machine

D2.3

WiSHFUL H2020 - GA No. 645274 D2.3

Table of contents

1 INtrodUCHION .. ———————— 7
2 Results of first set of Showcases.........cccocovvmmmiriiniini . 8
2.1 Efficient Airtime ManagemeNntcccveeuuiiiiiiiiiiiienniisiiiiiiimesmssisiiiitssssssssssstsssssssssssssssans 8
2.1.1 Hidden NOAE DEtCTIONeiiiiiiiiieiteeiet ettt st s s bee s b e e e e 8
2.1.2 HyBrid TDIMA-MACceeieeeiiee ettt ettt e e e st e e st e e s sabae e e e s beeessasteeesnbeeeesnsbaeesnasaeeessseeenn 10

2.2 Co-Existence of Heterogeneous technolOgiesccccceeeiiiiiiiinnniiiiiiiiiiiieniiienniiinnesssn, 14
2.2.1 SUBCASEL: TSCH iS PriMary USEI. ..cccuuiieeeeeeeeeiiititreeeeeeeeeittteeeeeeeeesestateeeseeeeeaaasseeseaaseesassssseesaaeann 15
2.2.2 SUbCasel: Wi-Fi IS Primary USEI.uuueeiiiiieeiiiiiiieee e e e eecitee e e e e e e e rttar e e e e e e e s eeaatteeeeeeeeesnnraaaeeaaaeeas 20

2.3 Load & interference-aware MAC adaptationcccceeiieiiiiiiinnnnniiciniiiiinennseniiisssssn. 25
2.3.1 Local and Global CoONTIOl LOGIC......ccuuiiieiieeeeeiiieeee ettt e e et e e e e e e e e e e e e e e e e nraaeeeaaaeean 27
2.3.2 Tuning of the contention WINAOWcooiiiiiiiiiee e et e e e e e st ra e e e e e e ean 29
2.3.3 Switching from CSMA TO TDIMAouuiiiiii ettt e e e e et e e e e e e e bbe e e e e e e eesnnrrareeaaaeean 31

2.4 Portable testbedeeeiveeiiiiiiiiiiiiiiiiiieie e 34
2.4.1 Portable teSthed SETUPuuuiiiiei et e e e e e e e e s et b e e e e e e e e e b raraaaaaeaan 34
2.4.2 WIiSHFUL MeSh BaCkbONEeiiiiiiiiiiiieeiteee ettt e 36

3 Definition of showcases to be implemented on Year 2..........ccceiiiiiririneeeeeee 39
3.1 Intelligent Download with WIFI tetheringcccceeeiiiiiiiiimmiiiiiniiiinieiinninennessseenneen. 39
R 0 R O 1= oV = OO PP PP PPPROP 39
3L1.2 GOQIS ettt et s bbbt e e bt st e e bt b e e e be e e b e e e bt e e nareenaeeas 39
3.1.3 BreaktNrOUGNSeeeeieeeee et e e e e e e e e e e e et b—r e e e e e e e s taraaaaaaaeaan 39
I |V =Y g Yoo o] o -V USSP PPPP 39
3.1.5 Use of WiSHFUL FUNCEIONAIITY .oeiieiiiiiiiieeeee ettt ettt e e e e e e e aaraeeeaaeeean 40

3.2 WIFI OffloadiNgcooiiiiiiimnnniiiiiiiiiiiienniiieniiiinienssesssesiisessansssssssssieessssssssssssssssssssssssssssssssssns 40
B.2.1 OVEIVIEW .eeiiiiiiiiiiitie sttt sttt e s bt e e s bt e e e ab et e e s bt e e s ab e e e e e b et e s aba e e e s b e e e s e nr e e e sana s 40
32,2 G0QIS ettt ettt e e bt e et b e e bt e s b e e e bt e bee s be e e nareenaeeas 40
3.2.3 BreaktNrOUGNSeeeiiiieee et e e e e e e e e e e e e e et b—r e e e e e e e e abraaaaaaaeaan 40
3.2.4 Use of WiSHFUL FUNCEIONAIITY .oeieieiiiiiiiiieee ettt ettt e e e et e e e e e e e e s aaraeeeaaaeean 41

3.3 Load and topology aware NetWOrKingccceeeueiiiiiiiiiiiinnniiiieniiiinimnmnniiieemsmssseees 41
IR T0 R O V=T oV 1= O PP P PO PP PPPROP 41
3.3.2 G0QIS ettt h e b e h e e bt s bt e e bt e s b e e e bt e e b e e e he e e nareenaeeas 42
3.3.3 BreaktNrOUGNSeeeeeiieee et e e e e e e e e e e e e et ——a e e e e e e e e arraaaaaaaaaan 42
3.3.4 Use of WiSHFUL fUNCHIONAIITY ..oeiiiiiiiiiiiiee ettt e e et e e e e e e ra e e e e e e e 42

3.4 MAC Adaptation in multi-hop network topologiescccccceeiiiiiiiiiirinniiiiiiniininisieenneen. 43
BL4. 1 OVEIVIEW .ottt sttt e e st e e s s b et e e s ba e e e s eab e e e s e b et e s aba e e e s aab e e e s e br e e e sana s 43

WiSHFUL H2020 - GA No. 645274 D2.3

3.4.2 BreaktNrOUGNSeveeieeecee et e e e e e et e e e e e e et bar e e e e e e e e atraaaaaaaaaan 43
3.4.3 Use of WiSHFUL Functionality and methodologyccccuuiiiiiiiiiccciiieeee et 43
L S 07 o 4 T3 [= 1o Y o 45
LI & = =] =Y o Lo = 46

WiSHFUL H2020 - GA No. 645274 D2.3

1 Introduction

This deliverable reports on the outcome of the initial showcases within the WiSHFUL project, as
planned in WP2 on General requirements and showcases. As such the material herein is aligned with
all work package objectives, but specifically targets the last one, particularly regarding the developing
of convincing means to promote WiSHFUL: “Definition of relevant and convincing showcases in view
of promoting the WiSHFUL capabilities.”

This document focuses on providing a catalogue for the results of the first set of WiSHFUL
showcases. The description given within this document highlights the currently relevant problem
addressed by each showcase and provides an overview of the utility of the WiSHFUL framework in
addressing this problem. Further, the document provides an indication of potential extensions or
continuations of the work completed so far. As presented, the material herein focuses on providing a
senses of the value of the WiSHFUL project to the broader community; technical details regarding
the implementation of each showcase is left to the appropriate technical deliverable(s) (D3.2, D4.2
and D6.2).

Finally this document introduces concepts for the showcases that will drive the development of the
WIiSHFUL framework within the second year of the project.

WiSHFUL H2020 - GA No. 645274 D2.3

2 Results of first set of Showcases

2.1 Efficient Airtime Management

A widely known problem experienced in IEEE 802.11 (Wi-Fi) networks is performance degradation
due to co-channel interference caused by hidden nodes. The impact can be mitigated by preventing
overlapping transmissions (in time) between co-located Access Points (APs) by efficient airtime
management through interference avoidance techniques.

In order to support this showcase the Wishful framework must provide the following functionality
(Figure 1):
* Detection of wireless links suffering from hidden node problem, i.e. performance degradation
due to packet collisions.
* Identification of packet flows using those wireless links being affected by hidden node
problem,
¢ Setting up hybrid TDMA MAC scheme in which two wireless links suffering from the hidden
node problem are getting exclusive time slots assigned.
* As we have to coordinate the medium access of a set of nodes, all wireless access needs to be
time synchronized.

Global Controller ~ = Control plane

Flow Set airtime
info access N

< Statistics ¥ ConfigManager ‘ \
1 :

—_— Data plane

Hidden
nodes

\
T T | Configure time
slotting &

Get information | ! 18 ¢
- about hidden nodes \ | assignairtime

|
! .
\ ! & active flows \ i access slots to
\ \ flows
\ g i
Internet \ | I
L] _— —
/////// y o i A |
/ ! : : i

Figure 1. lllustration of the Wishful controller architecture used for this showcase. Clearly visible is the
separation of control and data plane where the local agents execute control commands of the
global control program.

2.1.1 Hidden Node Detection

The first task to be solved for the efficient airtime management showcase is the detection of wireless
links which are suffering from performance degradation due to hidden terminals (Figure 2).
Specifically, only flows using links which are suffering from the hidden node problem should be
assigned to exclusive time slots. Hence, Wishful provides functionality which detects links which are
hidden by some other nodes.

WiSHFUL H2020 - GA No. 645274 D2.3

Figure 2. Example illustrating a hidden node scenario. As nodes A and B are outside their carrier sensing
range the packet transmissions from A and B would collide at node C.

a. Presentation of UPIs used

For hidden node detection Wishful provides the following UPI network functions which are used by
global controllers:

def getNodesInCarrierSensingRange (self, nodes, wifi intf, rfCh, detection th)

Given a set of nodes using the specific wireless interface (e.g. ath0Q), radio channel (e.g. 6) and
detection threshold (e.g. 0.9) this functions returns a boolean matrix indicating which nodes are
inside their carrier sensing range and which are outside.

def getNodesInCommunicationRange (self, nodes, wifi intf, rfCh, detection_ th)

Given a set of nodes using the specific wireless interface (e.g. ath0), radio channel (e.g. 6) and
detection threshold (e.g. 0.9) this functions returns a boolean matrix indicating which nodes are
inside their communication (reception) range and which are outside.

These two functions are used to detect links hidden by some node. As an illustrative example,
consider the case where A and B are outside of carrier sensing range and C is inside the reception
range of A and B. In this case packet transmission from A to C and B to C must use exclusive time
slots in order to prevent performance degradation due to packet collisions. The technical details of
this functionality is further discussed in deliverable D4.2.

b. Results

The used algorithm performs two steps. First, we use the UPI functionality to estimate which nodes
are in carrier sensing range and which are outside. The algorithm uses the following approach. It
compares the measured isolated broadcast transmit rate of each node with the one achieved by
transmitting concurrently with some other node in the network. If the latter is smaller we know that
the two nodes are in carrier sensing range. Second, we use the UPI functionality to estimate which
nodes are in communication range. The corresponding UPI function uses the following approach.
First it sets each wireless node in sniffing mode. Second, in each round a single transmitter is
transmitting raw 802.11 broadcast frames while the other nodes are capturing the received frames.
With the information which nodes are in carrier and reception range we are able to estimate which
links are suffering from hidden nodes and hence must be protected.

WiSHFUL H2020 - GA No. 645274 D2.3

c. Next Steps

The next step is the dissemination of this WiSHFUL functionality through scientific publication and
demonstration of the broader showcase.

2.1.2 Hybrid TDMA-MAC

Enterprise IEEE 802.11 networks need to provide high network performance to support a large
number of diverse clients like laptops, smartphones and tablets as well as capacity hungry and delay
sensitive novel applications like mobile HD video & cloud storage. Moreover, such devices and
applications require much better mobility support and higher QoS/QoE.

IEEE 802.11 uses a random access scheme called distributed coordination function (DCF) to access
and share the wireless medium. The advantage of DCF is its distributed and asynchronous nature
making it suitable for unplanned ad-hoc networks which have no infrastructure. The main
disadvantage is its inefficiency in congested networks. Moreover, it suffers from performance issues
due to hidden and exposed node problem which is a severe problem in high density enterprise
networks.

In contrast to DCF, in TDMA the channel access is scheduled in a synchronized and centralized
manner, and hence is able to provide the required high QoS/QoE requirements of enterprise
environments.

Wishful allows to build TDMA on top of today’s off-the-shelf Wi-Fi hardware by providing a flexible
and extensible software solution. Currently, we are focusing on the downlink whereas in the future
also the uplink will be considered. From the literature lots of protocols are known which would
benefit from such a feature.

Following the Software-defined networking (SDN) paradigm we separate the control plane from the
data plane and provide an API to allow local or global control programs to configure the channel
access function. In particular it allows to configure the TDMA downlink channel access by defining
the number and size of time slots in the TDMA superframe. Moreover, for each time slot a medium
access policy can be assigned which allows to restrict the medium access for particular stations
(identified by their MAC address) and traffic identification (e.g. VolP or video). The latter can be used
to program flow-level medium access. Finally, for each time slots we can configure whether carrier-
sensing is activated or not. The latter would results in the classical TDMA MAC. The data plane itself
resides in each AP and is controlled by the Wishful runtime system.

The control plane in our design is managed by either a global or local Wishful control program which
takes as input the channel access scheme specified by applications. Any application is self-
responsible to decide on how to map the per-flow QoS requirements on the channel access. An
example would be to measure which wireless links are suffering from hidden node problem and to
assign exclusive time slots for flows requiring high QoS.

The provided centralized coordination for channel access requires a tight time synchronization
among APs. In Wishful time synchronization is performed using the wired backhaul network and
hence is not harming the performance of the wireless network under test. The utilized Precise Time
Protocol (PTP) gives an accuracy in microsecond level.

The Wishful agent running on each AP locally is responsible for coordination of channel access as
configured by the local or global control program.

Wishful provides a hybrid TDMA MAC on commodity devices. So far a connector is provided for Linux
boxes using Atheros Wi-Fi chips supporting the Ath9k driver. Specifically, we provide a patch to the
Linux Compat Wireless. The implementation was tested with Intel x86 nodes.

10

WiSHFUL H2020 - GA No. 645274 D2.3

a. Presentation of UPIs used
The UPIs provided by Wishful to set-up and control a hybrid TDMA MAC are as follows:

def setActive (self, node, interface, mac_profile)
def setParameterLowerlayer (self, node, interface, param_key,param_value)
def setlnactive (self, node, interface, mac_profile)

The UPI functions allow the installation, reconfiguration at runtime and uninstallation of a hybrid
TDMA MAC. The mac_profile is an object-oriented representation of the hybrid MAC configuration
(Figure 3).

€ helpers.mac_layer.AbstractMAC

m _init__(self)
€ helpers.mac_layer.HybridTDMACSMAMac € helpers.mac_layer.AccessPolicy
m _init__(self, no_slots_in_superframe, slot_duration_ns) m _init__(self)
m getNumSlots(self) m disableAll(self)
m addAccessPolicy(self, slot_nr, ac) m allowAll(self)

m getAccessPolicy(self, slot_nr)

getSlotDuration(self)

3

addDestMacAndTosValues(self, dstH

3
3

getEntries(self)

m printConfiguration(self)

3

printCenfiguration(self)

Figure 3. UML class diagram showing the hybrid MAC relevant configuration.

The following example show how to set-up a new hybrid MAC instance:

create new MAC for each node

mac = HybridTDMACSMAMac (no_slots in superframe=7,slot duration ns=20e3)
assign access policy to slot 0

acBE = AccessPolicy ()

MAC address of the 1link destination
dstHWAddr = '12:12:12:12:12:12"
best effort

tosvVal = 0
acBE.addDestMacAndTosValues (dstHWAddr, tosVal)
slot nr = 0

mac.addAccessPolicy(slot nr, acBE)
assign time guard slot 1

acGuard = AccessPolicy()
acGuard.disableAll () # guard slot

slot nr =1
mac.addAccessPolicy(slot nr, acGuard)

UPI call

radioHelper. setActive (node, iface, mac)

11

WiSHFUL H2020 - GA No. 645274 D2.3

Finally, the Figure 4 illustrates the hybrid MAC being configured to assign exclusive time slots to two
wireless links which are hidden to each other. In order to account to time synchronization inaccuracy
guard slots are added.

superframe #1 superframe #2
| I |
| | | | | . | | | |
AP1 [Guard STA1 STA1 STA1 STA1 Guard I Idle I Idle I Idle I Idle
AP2 [Guard Idle Idle Idle Idle Guard I STA2 I STA2 I STA2 I STA2 t
| |

Figure 4. lllustration of exclusive slots allocation in TDMA.

b. Results

Figure 5 shows how the UPI functionality was implemented on a Linux system using an Atheros Wi-Fi
chip and the ATH9k wireless driver. When the locally running Wishful agent receives a command for
the setup of a hybrid MAC TDMA from the global controller (setActive () command), it starts the
HMAC daemon. The agent controls the (re)configuration of the HMAC daemon using a message
passing system (ZMQ). The task of the daemon is to pass slots configuration information to the
wireless network driver using the NETLINK protocol. Moreover, it is responsible to inform the
wireless driver about the beginning of each time slot. The patched wireless driver uses the slot
configuration information to control which network queues are active and which are frozen. Only
packets from active queues are allowed to be sent while the others are buffered.

Wishful global
controller

[O)

User-space
Wishful timing / HMAC
agent Slot config’| daemon
(Python) (zmQ)

NETLINK

PTP
agent

Ethernet driver WiFi driver
(HW timestamping) (queue control)
O — -

Wired
backhaul
(Ethernet)

Figure 5. Overview of the components on the wireless node in the Linux-Wi-Fi prototype.

12

WiSHFUL H2020 - GA No. 645274 D2.3

In order to evaluate the proposed efficient airtime management we ran experiments in the TWIST
802.11 testbed. We use Ubuntu 14.04, Intel i5s with a wired Ethernet NIC from Intel supporting HW
timestamping and an Atheros 802.11n wireless chip.

At the beginning of the experiment the global Wishful control program used the network function
UPIs in order to detect the wireless links which are suffering from the hidden node problem.
Afterwards the global control program directed the hybrid MAC on these nodes in such a way that
exclusive time slots were assigned.

In the following we present results for two selected wireless links which are suffering from the
hidden node problem. These two links were automatically discovered by our protocol and the proper
hybrid MAC was set-up. Figure 6 shows the |0 graph where the color indicates the two different links
(flows). We can clearly see that the provided hybrid TDMA scheme is able to isolate the two flows as
desired.

T T T T T
23805 24005 24205

Figure 6. 10 graph illustrating the number of packets sent over time. The color indicates a particular
flow.

The performance improvement compared to standard 802.11 DCF is show in Figure 7. On this
particular link the throughput could be increased by a factor of 5.2 and 2.8 respectively.

14

12

=
o

oo

W standard 802.11 DCF

® hybrid TDMA MAC

Throughput [Mbit/s]

Client 1 Client 2

Figure 7. TCP/IP performance.

13

WiSHFUL H2020 - GA No. 645274 D2.3

The described efficient airtime management was fully implemented. The source code is available in
the project Github repository under examples/showcasel/start_scl.py.

c. Next Steps
The following extensions to the hybrid TDMA MAC provided by Wishful are desirable:

* Make it OpenFlow like, i.e. identify flows using 5-tuple and define actions which specify how a
flow should access the wireless channel,

¢ So far the control program works proactively which might be not sufficient for some
applications using the hybrid TDMA MAC. Hence, an extension towards a reactive approach
might be desirable, i.e. agents inform the control program about newly arrived flows for which
no channel access was configured.

2.2 Co-Existence of Heterogeneous technologies

It is well-known that coexisting heterogeneous technologies, operating on the same wireless
channel, interfere with each-other. Examples of two such technologies are IEEE-802.11 (Wi-Fi) and
IEEE-802.15.4e (TSCH). In this showcase, an interference mitigation strategy is implemented on top
of the WiSHFUL UPIs. Two sub-cases are considered, based on which technology is the primary user
of the wireless medium, i.e. who gets priority for accessing the medium.

* TSCH as the primary user. Wi-Fi defers channel access when its transmission could collide with
TSCH traffic. This sub-case requires fine-grained synchronization between the Wi-Fi and TSCH
networks because the Wi-Fi nodes need to know exactly when a TSCH timeslot starts.
Moreover, also the TSCH slot allocation and hopping scheme needs to be known to the Wi-Fi
nodes in order to calculate when collisions could occur.

* Wi-Fi is the primary user. TSCH blacklist IEEE-802.15.4 channels that collide with the currently
used IEEE-802.11 channel (multiple IEEE-802.15.4 channels are affected by one IEEE-802.11
channel). This sub-case requires that the global control program, used by TSCH, is able to
retrieve the Wi-Fi channel(s) currently in use, calculate which channels need to be blacklisted
and distribute the new hopping sequence (without the blacklisted channels) to each of the
sensor nodes participating in the TSCH network.

Figure 8 illustrates both sub-cases. In sub-case 1, Wi-Fi delays channel access when it collides with a
TSCH timeslot. In sub-case 2, the TSCH channels that collide with the Wi-Fi channel are blacklisted.

Case 1: : Case 2:
Highly loaded sensor network 1 Highly loaded WiFi network
f 4 (TSCH . (CTSCH)

1

WI-Fi delays 1 TSCH blacklists,

channel access®, ! Wi-Fi channel

WI-F —TSCH)
channel -
1
1
1
1
(CTSCH) 1 TSCH)

1

> t

Figure 8. Co-existence scheme for TSCH (IEEE-802.15.4e) and Wi-Fi (IEEE-802.11) networks.

14

WiSHFUL H2020 - GA No. 645274 D2.3

Due to timing constraints, sub-case 1 could not be fully implemented using the currently defined and
public WiSHFUL UPI functions. The main problem is that delegation of control is required between
the global control program, controlling both TSCH and Wi-Fi networks in this showcase, and the local
control programs, controlling either a TSCH node or a Wi-Fi node. This is necessary because the
timing requirements for this sub-case are very strict, i.e. the Wi-Fi nodes need to exactly defer
transmission when the colliding TSCH slot starts (with slot duration of 10ms in the default setting).
For this purpose UPI_HC will be developed and used in Y2. In the current implementation however,
the building blocks are already provided for future development of this sub-case. Also preliminary
results are given illustrating how TSCH and Wi-Fi networks can be synchronized.

2.2.1 Subcasel: TSCH is primary user.

In the proposed scenario it is possible to distinguish between three systems that keep track of its
own time reference:

1. The IEEE802.15.4e TSCH based sensor network is a tightly synchronized wireless system
where a particular node adapts its clock based on the clock of its time parent. A TSCH node
does not have a direct notion of the absolute time reference.

2. Linux hosts keep own time reference in UNIX Epoch time and can synchronize it with other
nodes over NTP or over PTP where high timing accuracy is required.

3. The IEEE802.11 uses Time Synchronization Function (TSF) to allow synchronization between
devices in one BSS (Basic Service Set) e.g. AP puts own TSF counter value in the beacon
packets, and all stations synchronize to it.

In order to achieve the tight cooperation between Wi-Fi devices and sensor nodes, it is necessary to
synchronize both networks. Let’s assume a simplified problem with the focus on synchronization
between one sensor node (NXP JN5168 running TinyOS version of TSCH) and one Linux host machine
equipped with a Wi-Fi card. There are two main options to synchronize those two devices: (a) directly
using the wired connection; or (b) indirectly using an inter-technology beacon send over a wireless
link. Both of the solutions have advantages and disadvantages. The wired connection promises a
more accurate and easier solution but requires tight coupling between the devices. On the other
hand, the wireless solution is much more flexible in terms of hardware coupling but requires more
overhead in the detection of the signals sent by the different and in general incompatible
technologies. In the next sections we will analyse both wired and wireless approaches.

The required synchronization accuracy depends on the time slot duration of the IEEE802.15.4e
network. Although it is not fixed in the standard the typical value is 10 milliseconds. This means that
Wi-Fi should be able to cease own transmissions for the duration of the TSCH timeslot. The
inaccuracies of the synchronization can be adjusted with additional guard times, but it will
additionally limit the performance of Wi-Fi network.

There is still a problem of schedule alignment with the synchronized networks. It is necessary to be
able to calculate when the overlapping TSCH channel will be used. The straightforward solution is to
defer any Wi-Fi transmission, when a TSCH time slot is scheduled to be transmitted on an
overlapping Wi-Fi channel. A more advanced solution also takes the interference range of Wi-Fi into
account and only defers transmissions when the TSCH nodes are in interference range. The advanced
solution improves the Wi-Fi performance because the number of transmission deferrals is reduced,
without having an effect on the performance of the TSCH network. This problem is orthogonal and
will not be considered in Year 1.

15

WiSHFUL H2020 - GA No. 645274 D2.3

a. Presentation of UPIs used

The following code snippets illustrate how the UPIs can be used to implement the aforementioned
interactions. Currently only UPI_R/N functions are used remotely from a global control program. For
this purpose UPI_G is used via the UPI_G_Helper class, which remediates some of the burden for
calling UPI_R/N functions remotely from a global control program.

First, the global control program needs to retrieve a list of nodes, together with their specific role in
the network (i.e. PAN coordinator or end device in the TSCH network and access point or station in
the Wi-Fi network). It must first create an UPI_G_Helper and retrieve the available nodes, identifying
their role within their respective networks:

get reference to global UPI

global helper = GlobalHelper()

nodes under control
nodes = global helper.getNodes ('COEXISTANCE SHOWCASE'")

sta nodes = []
ap_node = Node ()
ed nodes = []

pc_node = Node()
for node in nodes:

if node.role == "PAN COORDINATOR':
ap_node = node

elif node.role == 'ACCESS POINT':
pc_node = node

elif node.role == 'END DEVICE':
ed nodes.append (node)

elif node.role == "'STATION':

sta nodes.append(node)

Then it must retrieve the allocated slots (e.g. slotframe), channel hopping sequence and slotframe
duration from the TSCH pan coordinator, and the channel used by the Wi-Fi access point. Note that,
in the current implementation, we assume that only one Wi-Fi channel is used.

tsch param keys = ['802154E SLOTFRAME','802154E HOPPINGSEQUENCE',
'802154E SUPERFRAMEDURATION' 1

tsch param key values = global helper.getParameterLowerLayer (pc_node,
'wpanO', tsch param keys)

wifi param keys = ['80211 CHANNEL']
wifi param key values = global helper.getParameterLowerLayer (ap node,
'wlanO', wifi param keys)

global helper.defineEvent (pc_node, 'wpanO', '802154 SUPERFRAME STARTED',
superframe started callback)

Then the actual interference avoidance is implemented. The current implementation requires that
the TSCH pan coordinator generates an event every time a slotframe starts, indicating the absolute
slot number (ASN) of the first slot in the slotframe. The global control program registers a callback
function that takes as arguments the start time of the slotframe and the ASN. When the event is
generated, the callback function calculates the collisions that will occur in the slotframe following
the currently active one. This allows scheduling the freezing of Wi-Fi traffic well in advance. The
example uses two functions to calculate (a) the time offsets and channels in the next slotframe in
which TSCH will be active; (b) the offsets at which Wi-Fi should freeze transmissions to avoid
collisions. Note that, in the current implementation, we assume that only one Wi-Fi channel is used.

16

WiSHFUL H2020 - GA No. 645274 D2.3

def slotframe started callback(slotframe start timestamp,
absolute slot number):
timestamp = convert to unix time(slotframe start timestamp)
slotframe = tsch param key values['802154FE SLOTEFRAME']
hopping sequence = tsch param key values['802154E HOPPINGSEQUENCE']
slotframe duration =
tsch param key values['802154E SLOTEFRAMEDURATION']
wifi channel = wifi param key values['80211 CHANNEL']
#returns a list with tuples [active slot offset,channel]
tsch offsets = calc offsets and channels for active slots(slotframe,
hopping sequence, absolute slot number+len(sloframe))
#returns a list with offsets on which the Wi-Fi should freeze
transmissions
wifi freeze offsets = calc freeze offsets(tsch offsets,wifi channel)
for offset in wifi freeze offsets:
#duration is 10 ms + 10 ms guard
param key values = {'80211 TXFREEZE': 20}
#schedule 5 ms before start of slot in following slotframe
exec_time = timestamp + slotframe duration + offset - 5
global helper.setParameterLowerLayer (ap _node,param_ key values,
exec_ time)
pass

define an event that calls the ‘slotframe started callback’ on start of
the slotframe

global helper.defineEvent (pc _node, 'wpan0O', '802154 SLOTFRAME STARTED',
slotframe started callback)

while True:
time.sleep(tsch param key values['802154E SLOTFRAMEDURATION'])

The code examples rely only on the scheduling functions of UPI_G, which is heavily influenced by the
level of internal synchronisation between the different local monitoring and configuration engines.
With the current synchronisation method it is hard to achieve reproducible results. Therefore, in Y2,
it is foreseen that UPI_HC will be used to enable communication between the different local control
programs and the global control program allowing a more fine grained operation.

b. Results

The most commonly used method for connecting sensor nodes to a host PC are USB and GPIO
(general purpose 10). USB is very popular because it provides an easy to use and flexible interface.
On the other hand GPIO allows connecting any device to the sensor node and gives full control to the
developer. Using GPIO however, is platform specific and renders issues when porting to different
platforms. By connecting the sensor node to the Linux host over a USB connection, and providing the
synchronization over such link, allows a portable and plug and play cross-technology synchronization
solution.

The biggest challenge with the USB solution is the limited predictability of the USB transmissions,
namely the delay and jitter are not defined and can actually change based on how the sensor node is
connected to the host. For instance, the delay will change if the sensor node is connected via a USB
hub. Moreover, the jitter on the delay increases when the USB port is also used for different
purposes.

The GPIO solution has the advantage of removing any additional protocol overhead, and thus
promising lowest jitter and delay values. On the other hand it is much more constrained than USB. It
requires from both sensor node and host PC to have external GPIO interfaces. For the sensor node

17

WiSHFUL H2020 - GA No. 645274 D2.3

this usually means that the evaluation/development board exposes the required pins. Also not all
host PCs, or in view of the full showcase also Wi-Fi routers, expose the required GPIO pins.

In order to test the applicability of wired synchronization solutions the BeagleBoneBlack (BBB) is
combined with the NXP JN5168 evaluation board. The synchronization solutions were tested using
both a USB and GPIO solution.

As can be seen in Figure 9, the NXP JN5168 carrier board was connected to BBB over USB and two
GPIO pins (providing simple LOW/HIGH signals in both directions).

Figure 9. BeagleBoneBlack and NXP JN5168 Interfacing

The first experiment analyses the total round trip delay GPIO ping test. Namely the BBB was setting
the output pin to HIGH state and measuring the time until the input pin (coming from sensor node)
was set to HIGH state. The 48h experiment shows that the average delay in such experiment is
879us. The histogram shown in Figure 10, lists the measured distribution of the round trip delays.

12000
10000
8000

6000

Histogram

4000

2000

0.0006 00008 0.0010 00012 00014 00016 0.0018 0.0020
Edge detection time [s]

Figure 10. Measured Distribution of Round Trip Delays.

The biggest delay in the process comes from the HIGH state signal detection on the BBB side,
compared to which the detection on sensor node is negligible. This is because the detection in the

18

WiSHFUL H2020 - GA No. 645274 D2.3

BBB is done from the Linux user space, and can be expected to be improved by developing a kernel
driver for clock signal detection from the sensor node.

In the second experiment the BBB collected in parallel timestamps each time the packet from sensor
node with current ASN number was received over USB and each time GPIO pin was set to HIGH state
by sensor node. In this scenario the sensor node was working according to the simple TSCH schedule
(only one slot active in the whole slot frame) and was sending current ASN over USB and setting the
output GPIO pin to HIGH every begging of slot frame. The slotframe was 1s long in this scenario.
From the scatter plot, shown in Figure 11, the difference in jitter coming from a GPIO based trigger
versus the USB one. On the sides there are the distributions of each particular value respectively.
From the top plot we can see that the GPIO jitter is still small and stable on the other hand the delays
between consecutive USB triggers varies in the range of 20ms, which is too much for our
requirements and thus cannot be used directly.

006
pearsonr = 0.066; p = 1.2e-236
004
°
o o

002 e ¢ o

D - .. ¢ *
o
- %o
£ 000 .
m o ”
73]
o ¢ o 2 .
o
-0.02 = s
o’
-0.04 £ °
-0.06
-0.020 -0.015 -0.010 -0.005 0000 0005 0010 0015 0020
GPIO jitter [s]

Figure 11. Scatter Plot of GPIO- vs USB-Trigger lJitter.

It is important to note that there was no other USB communication during the tests, implying that
the results are an optimistic estimation for real-life jitter. This is something that was also noticed
during evaluation of this showcase. A delay variance of 20 ms on the USB is too high for the
aforementioned global control program to work properly. Because the sensors are attached via USB
on the testbeds, no large-scale testing could be performed.

c. Next Steps
Due to the incompatibility of the PHY layers between IEEE802.11 and IEEE802.15.4 it is not possible
to directly capture packets. According to [1] it is however possible to detect beacons by means of

19

WiSHFUL H2020 - GA No. 645274 D2.3

spectrum sensing and statistical analysis of the RSSI data. The solution proposed in [1] works as long
as the frequency channel is shared between those technologies. Additionally the receiving device
must sense the spectrum constantly in order to properly analyse the data (to perform RSSI based
beacon detection).

The proposed solution will however not work directly as the TSCH employs channel hopping and
there is no fixed frequency for sending beacon packets. This makes it much more challenging to
detect beacons (each beacon would be send on different frequency) by the Wi-Fi node. Also, due to
the channel hopping property the sensor node cannot constantly monitor the Wi-Fi channel for its
beacons. For this reasons the wireless synchronization link hasn’t been investigated in detail yet and
will be studied in more detail in future.

2.2.2 Subcasel: Wi-Fi is primary user.

In this sub-showcase Wi-Fi is the primary user of the network. When a Wi-Fi stream is started on a
particular channel, the colliding IEEE-802.15.4e channels are blacklisted in the TSCH network. To
demonstrate this, a global control program was implemented that uses UPI_R functionality to (a)
configure the Wi-Fi network to operate on a particular 802.11 channel; and (b) adapt the hopping
scheme in the TSCH network in order to avoid 802.15.4 channels that collide with the 802.11
channel.

A single IEEE-802.11 channel spans 4 IEEE-802.15.4 channels. The implemented blacklisting strategy
avoids Wi-Fi interference by adding 5 to each blacklisted channel. If the updated channel is larger
than 26 (max), the number of channels (16) is subtracted.

new channel = channel+5 if channel+5 <= 26 else channel+5 - 16

Using this simple method, the length of the hopping sequence can remain the same. It can however
lead to internal collisions when using multiple slots in one slotframe. In such advanced TSCH
networks, the internal collisions should also be removed by also reconfiguring the slots. This will be
investigated in Year 2.

a. Presentation of UPIs used

The global control program that implements this showcase is quite straightforward. The initialisation
phase is similar to the previous subcase, and then the following three steps are taken:

1. First 90 seconds: start Iperf traffic on the TSCH end devices (iperf clients). The TSCH pan
coordinator forwards to iperf traffic to an iperf server running on its Linux host-pc.

2. Second 90 seconds: configure Wi-Fi network and generate traffic

a. Configured for high throughput by modifying the EDCA parameters and the IEEE-

802.11 channel.

b. Iperf traffic is started with the Wi-Fi station as client and the access point as server.
3. Third 90 seconds: blacklist Wi-Fi channels in TSCH network

a. Get the hopping scheme currently used by the TSCH nodes.

b. Calculate a new hopping scheme by using the strategy defined above.

c. Apply the new hopping scheme by reconfiguring the TSCH nodes.

The following code snippet illustrates how this is implemented:

1) start traffic on TSCH nodes

global helper.startIperfServer(pc_node, 'wpan0')

global helper.startIperfClient (ed nodes,'wpan0O',pc node.getIpAddress())
time.sleep(90)

2) Configure Wi-Fi nodes and start traffic

20

WiSHFUL H2020 - GA No. 645274 D2.3

a) configure

wme ac_vo_queuelD = 4 ; wme ac vo_aifs=2 ; wme ac_vo_ cwmin=2 ;
wme ac vo_ cwmax=3 ; wme ac_ vo_txop limit=47
global helper.setEdcaParameters([sta nodes , ap node], 'wlanO' ,

wme ac _vo_queuelD, wme ac vo aifs, wme ac vo cwmin, wme ac vo cwmax,

wme ac_vo_txop limit)

global helper.setRfChannel([sta nodes , ap node], 'wlanO' , 1)

b) start traffic

global helper.startIperfServer(ap node, 'wlan0')

global helper.startIperfClient(sta nodes, 'wlan0',ap node.getIpAddress())
time.sleep(90)

3) blacklist TSCH channels by modifying hopping sequence
a) get current hopping sequence
param keys = ['802154E HOPPINGSEQUENCE']
tsch param key values =
global helper.getParameterLowerLayer (pc_node, 'wpan(O', param keys)
tsch hopping sequence = tsch param key values['802154E HOPPINGSEQUENCE']
b) calculate new hopping sequence
blacklisted channels = [11,12,13,14]
good _channels = [16,17,18,19]
new_hopping sequence = []
index = 0
for channel in tsch hopping sequence:
if channel in blacklisted channels:
new channel = channel+5 if channel+5 <= 26 else channel+5 - 16
new_hopping sequence.append(new_channel)
else:
new hopping sequence.append(channel)
c) set new hopping sequence
tsch param key values['802154E HOPPINGSEQUENCE' = new hopping sequence
global helper.setParameterLowerLayer ([pc_node,
ed nodes], 'wpan0O',tsch param key values)
time.sleep(90)

b. Results

The sub-showcase was implemented and evaluated in a 9 node set-up on the IMINDS w-iLab.t
wireless testbed located in Zwijnaarde. The TSCH network is running on 7 sensor nodes. In the
testbed, each sensor node is connected to a Linux host pc. The local monitoring and configuration
engine (MCE) is executed on this PC, implying out-of-band control of the TSCH network. The local
MCE enables to fine-tune various parameters of the TSCH network.

There are also two Linux Wi-Fi nodes (one access point and one station) equipped with an Atheros
Wi-Fi chip and using the ATH9k wireless driver. Both nodes are configured in 802.11n mode on a
single channel via the UPIs. Also the EDCA parameters (aifs, cwmin, cwmax, txOP) are tweaked using
the UPIs, resulting in an average throughput of +- 90 Mb/sec. This throughput is sufficient to cause
serious interference on the TSCH network, as will be demonstrated in this section.

The results were collected by using a WiSpy for measuring the spectrum activity and by analysing the
iperf statistics during the test.

21

WiSHFUL H2020 - GA No. 645274 D2.3

In the first stage there is no Wi-Fi interference and all IEEE-802.15.4 channels can be used. The
spectrogram shown in Figure 12 demonstrate the hopping behaviour of the TSCH network (yellow
dots are TSCH packets. There was also, uncontrolled, external interference from other experiments.

wispy 1 24 ISM

13:51:36
13:51:40
13:51:44
13:51:49
13:51:52
13:51:56
13:52:01
13:52:04
13:52:09
13:52:12
13:52:17
13:52:20
13:52:25
13:52:29
13:52:33
13:52:37
13:52:41
13:52:46
13:52:49
13:52:54
P 13:52:57

13:53:02

13:53:05

‘200000 2410348 2420896 2431044 2441392 2451740 248088 247243
External
Yellowdots are TSCH packets Interference

Figure 12. The spectrogram shows the activity in the 2.4 ISM band when only TSCH network is active. Note
that also other experiments were conducted during this experiment. Hence there was external
interference.

In the next stage, also Wi-Fi traffic was started on the first IEEE-802.11 channel. This is clearly visible
on the left part of the spectrogram shown in Figure 13. As can be seen, the TSCH network also hops
to channels that collide with the Wi-Fi channel.

22

WiSHFUL H2020 - GA No. 645274 D2.3

wispy 1 24 ISM

14:45:45
14:46:51
14:46:54
14:46:58
14:47:03
14:47:06
14:47:11
14:47:15
14:47:18
14:47:24
14:47:27
14:47:32
14:47:35
14:47:40
14:47:44
14:47:47
14:47:52
14:47:56
14:48:01

400000 241048 2420696 2431044 244132 251740 248088 2472436 241K
Interference | TSCH packets in channels 11->14 collide with WiFi traffic
region

Figure 13. The spectrogram shows the activity in the 2.4 ISM band when both TSCH and Wi-Fi networks are
active.

In the last stage, the blacklisting techniques are applied and the Wi-Fi channel is avoided in the
channel hopping process of the TSCH network. The spectrogram shown in Figure 14 illustrates this.
Now, no TSCH traffic is detected on the Wi-Fi channel and more packets can be detected on the
other channels.

23

WiSHFUL H2020 - GA No. 645274 D2.3

wispy 1 24 ISM

U000 206 2DS6 201 N2 26140 UL U0 UK
Interference | Channels 11->14 are avoided by TSCH
region

Figure 14. The spectrogram shows the activity in the 2.4 ISM band when both TSCH and Wi-Fi networks are
active after blacklisting channels 11 through 14.

During these three stages also the iperf statistics (output iperf server) were logged. The left part of
Figure 15 shows the overall percentage of packet loss, the right part the average network throughput
in kbits/sec. In each graph the results are shown from left to right for: (a) a TSCH network operating
on all 16 channels; (b) a TSCH network operating on all 16 channels with Wi-Fi interference; (c) a
TSCH network with blacklisted channels 11->14; and (d) a TSCH network with blacklisted channels 11-
>14 and Wi-Fi interference.

24

WiSHFUL H2020 - GA No. 645274 D2.3

PACKETLOSS THROUGHPUT (kbits/sec)

100% 60

90%

80% 30

70% 10

60%

50% 30

40% +—

30% —— 20 +

20% — — 104

10% +— _— .

0% : : , ‘ 0 - ‘ ‘ ,

TSCH TSCHWIFI TSCHBL TSCHBLWIFI TSCH TSCHWIFI TSCHBL TSCHBLWIFI

Figure 15. iPerf server statistics, packet loss (%) and throughput (kbits/sec), obtained while receiving data
from 6 iPerf clients in the four different traffic scenarios (TSCH only, TSCH and Wi-Fi, TSCH with
blacklisted channels and Wi-Fi). There was also external interference on channel 20.

The results show that packet loss without blacklisting in case of interference is close to 90%. The
throughput drops below 10 Kbits/sec. With blacklisting the packet loss is below +- 30% and the
throughput increased to 50 Kbits/sec. Note that the results are suboptimal since other traffic was
also present during the experiment. In Y2 more advanced techniques will be applied that allow
dynamically detecting activity on TSCH channels and blacklisting accordingly.

c. Next Steps

The implementation of the global control program is can be easily extended to allow a more dynamic
behaviour. The following extensions can be considered:

* Use UPI_N to detect and steer Wi-Fi flows to particular channels.

* Use UPL_R to detect if the activity level on a Wi-Fi channel exceeds a certain threshold and
should be blacklisted in the TSCH network.

* Enable advanced TSCH networks with multiple slots in a slotframe by removing internal
collisions. This can be done by reconfiguring the allocated slots in each slotframe.

If local control programs are added, it would also be possible to detect traffic flows generated by
non-WiSHFUL nodes. This can be done by monitoring the packet loss on each IEEE-802.15.4 channel
used by TSCH. If the packet loss exceeds a certain threshold it should be blacklisted.

2.3 Load & interference-aware MAC adaptation

It is well known that contention-based access protocols work better than scheduled-based protocols
in case of intermittent and unpredictable traffic flows; moreover, the contention parameters can be
optimized as a function of the time-varying number of nodes which have traffic to transmit.
However, for most wireless technologies, the choice of contention-based or scheduled-based access
protocols, as well as the configuration of the contention parameters can only be configured statically,
and cannot be adapted to the varying network conditions.

In this showcase we want to demonstrate how the WISHFUL UPIs can be exploited for implementing
a technology-independent MAC adaptation logic able to: i) dynamically tune the contention
parameters of contention-based protocols as a function of the load and interference conditions
experienced in the network, and ii) switch to a time-division access protocol in case of severe

25

WiSHFUL H2020 - GA No. 645274 D2.3

congestion levels. The logic can work on WLAN or WPAN nodes, regardless of the PHY layer
capabilities and even on cognitive radio platforms, by exploiting the following main functionalities
supported by the WiSHFUL UPI:

* Sensing capabilities of wireless nodes;
* Local tuning of CSMA contention windows;
* Global coordination of MAC switching from CSMA to TDMA.

We demonstrate the utilization of both local control and global control logic. We consider a wireless
network with a time-varying number of active nodes under the same contention domain (where all
the nodes are in radio visibility), while a wired ethernet network is available as a control network
between the global monitoring and configuration engine (running the global control program), the
wireless stations and the access point. Each node runs a local optimization function that is loaded by
the global control program for tuning the contention window of a CSMA protocol as a function of the
network load.

802.11
Domain

WiSHFUL Control
Program

Figure 16. Network topology used in the showcase

As widely documented in literature, different optimization functions and load metrics can be
considered according to the desired performance metric. In particular, we used a tuning function,
called Moderated EDCA backoff (MEDCA), whose goal is the minimization of the delay jitters on the
channel access times. It is well known that these jitters depend on the exponential backoff
mechanism, which introduces short-term throughput unfairness among the stations, and significant
variabilities on the time between two consecutive channel accesses performed by the same station.
To avoid these phenomena, it is desirable to employ a fixed contention window. The moderated
EDCA scheme, currently proposed as a standard amendment, is able to automatically find a fixed
contention window equal to the average contention window value experienced under exponential
backoff. Since the throughput performance of each station depends on the channel access
probability, which in turns is only function of the average contention window, the moderated EDCA
scheme is able to minimize the delay jitters while guaranteeing compatibility with legacy EDCA
stations (i.e. the same average throughput).

When the number of stations overcomes a given threshold, the global control program disables the
local control program (responsible of the contention window tuning) and coordinates the on-the-fly
protocol switch from moderated EDCA to TDMA in all the nodes. The TDMA parameters, i.e. the
number of slots in the periodic frame and the slot allocated to each station, are evaluated on the
basis of the number of active flows, which is retrieved by means of global statistics available in the
controller.

26

WiSHFUL H2020 - GA No. 645274 D2.3

Summarizing, after the set-up of the wireless network and traffic dynamics performed by the
experiment controller, the showcase works by executing the following steps:

1) Activation of a Global Control Program;

2) Sending of the local control program from the global MCE to the local MCEs;

3) Collecting of channel-level local statistics on the number of backoff freezes performed by the
local MCEs (on nodes);

4) Collection of global statistics on the number of active flows;

5) Periodic tuning of the contention windows of CSMA radio programs, executed independently by
the MCEs running on each network node (phase 1);

6) Stopping of the local control programs and switching to TDMA radio programs, when the number
of actives flows overcomes a given threshold, under the orchestration of the global MCE;

7) Configuration of the TDMA parameters (i.e. frame length and slot allocations) on each node
(phase 2).

For running this experiment, we use two different python scripts: one script is responsible of
controlling the experiment, by activating the traffic flows on the wireless nodes dynamically
(start_sc3_experiment_controller.py), while the second script is the most relevant one and
implements the Global Control Program on top of the WiSHFUL global MCE (start_sc3.py). The two
control aspects (experiment control for simulating some network dynamics, wireless network control
for optimizing the system performance) are logically completely independent. This is the reason why
they have been implemented in different scripts; moreover, the experiment control can, in principle,
be performed in several different ways, including manual activation/deactivation of the traffic flows
on the wireless nodes or other frameworks for experiment control, such as OMF/OML.

The source code that implements the load and interference aware MAC adaptation is available in
Github repository of the Wishful project, in the directory examples/showcase3/start_sc.py. The same
directory contains the python script to start the experiment controller
(start_sc3_experiment_controller.py).

2.3.1 Local and Global Control Logic

Figure 17 shows the overall software architecture of control modules involved in this showcase. The
WIiSHFUL control framework provides some basic functionalities for developing different control
programs, such as the possibility to discover the nodes and their capabilities, to provide a global view
of the network topology, to send a local decision logic to be used by the local MCEs, and to gather
different flow-level and node-level statistics by exploiting the UPI interface available in each network
node.

The control program specific of this showcase includes: i) the definition of a function for tuning the
contention window of a CSMA radio program, ii) the definition of a decision rule for enforcing the
switching from TDMA to CSMA radio programs, and iii) the definition of a function for tuning the
frame size and the slot allocations of the TDMA radio programs.

Note that the function for tuning the contention window of the CSMA radio programs is defined in
the global control program (as indicated by the dashed lines in the figure), sent to the local MCEs
available in each network node, and executed locally. Conversely, the function for deciding about the
switching from CSMA to TDMA and for tuning the TDMA parameters is implemented in the global
control program and executed by the global MCE (although its execution may also involve the call of
local UPI functions). The figure shows the actions of the global MCE and the flows of global control
messages in the green arrows, the actions of the local MCE in the red arrows and the data flows in
the blue arrows.

27

WiSHFUL H2020 - GA No. 645274 D2.3

Control Program

1
I cWTUNING 1 TDMATUNING
Il FUNCTION) FUNCTION

DISCOVER GET Node GET Traffic
Nodes Capabilities Stats
Global MCE

CWTUNING RP
FUNCTION Switch

Y

STA1 MCE

STA2 MCE

STA3 CMCE

RP
Switch

CWTUNING
FUNCTION

CWTUNING RP
FUNCTION Switch

CWTUNING RP
FUNCTION Switch

CONTROL PLANE

DATA PLANE

Figure 17. Relations between global and local controllers in this showcase.

a. Presentation of UPIs used

On the basis of the previous description, it is possible to easily read the following code of the control
program, which is responsible of injecting the local control logic. The local logic is implemented in the
customLocalCtrlFunction(myargs) function, which performs the tuning of the contention window,
while mytestbed is the set of discovered nodes, and global_mgr is the WiSHFUL global MCE.

%activates the local controllers on each node

run_local controller (mytestbed)

CtrlFuncImpl = customLocalCtrlFunction
CtrlFuncargs = {'interface' : 'wlanO'}
now = get now full second()

[...]

mytestbed.global mgr.runAt (nodes, CtrlFuncImpl, CtrlFuncargs,
unix time as tuple(exec time), callback)

The global logic about the decision to switch to TDMA and about the protocol configurations is
implemented as follows, where get traffic() is the basic utility for getting the statistics on the
number of active flows and number_nodes_threshold is a program variable used by the experimenter
for a threshold check:

28

WiSHFUL H2020 - GA No. 645274 D2.3

traffic number = get traffic()
while traffic number <= number nodes_ threshold:
traffic number = get traffic()

time.sleep (1)

run_local controller (mytestbed, disable = 1)
node index = 0
superframe size len = 700 * len(mytestbed.wifinodes)

for node in mytestbed.nodes:

active TDMA radio program(node, log, mytestbed.global mgr,
nodes NIC info[node index])

tdma params={'TDMA SUPER FRAME SIZE' : superframe size len,
'TDMA NUMBER OF SYNC SLOT' : len (mytestbed.wifinodes),
'"TDMA ALLOCATED SLOT': node_ index}

set TDMA parameters(node, log,mytestbed.global mgr, tdma params)

node index += 1

b. Results

Through the use of the UPIs detailed above, the control logic employed within this showcase
achieves portability across platforms that support the WiSHFUL Framework, without relying on the
details of the underlying hardware.

2.3.2 Tuning of the contention window

As already discussed in the general description of the control framework, the tuning of the
contention window is performed independently and locally by each node, by executing the custom
function customLocalCtrIFunction(myargs). The showcase is focused on the minimization of the delay
jitters, while guaranteeing backward compatibility with legacy EDCA stations.

a. Presentation of UPIs used

The optimization strategy utilized herein is implemented in the following code, where count freezing
is the last measurement returned by the UPI_R monitor function, and last_count freezing is a
program variable used for detecting the periodic overflow of the counter.

#Measurement filtering
delta freezing = count freezing - last count freezing
if delta freezing < O
delta freezing = 65535 - last count freezing + count freezing
last count freezing = count freezing

ipt = ipt + a * (delta freezing - ipt)

29

WiSHFUL H2020 - GA No. 645274 D2.3

#targetcw according to the heuristic formula

determine the target CW for this IPT

targetcw = -1.3539 * ipt ** 2 + 7.6655 * ipt + 15.4545;
calculate new smoothed CW

cw f =cw £ + b * (targetcw - cw_f);

cw = round(cw_f);

After filtering the measurement, the new contention window is computed by using a heuristic
formula, which relates the average contention window of legacy EDCA stations to the number of
backoff freezes. It has been demonstrated that the convergence of this scheme to the average EDCA
window is guaranteed for any number of stations. The computed value is filtered to avoid sudden
modifications on the station access rates. Finally, the new contention window value is enforced by
using the UPI_R function responsible of configuring lower layer parameters.

#update CW value

UPI myargs = { 'interface' : 'wlanO', UPI RN.CSMA CW : cw,
UPI RN.CSMA CW MIN : cw, UPI RN.CSMA CW MAX : cw}

upiRNImpl.setParameterLowerLayer (UPI _myargs)

b. Results

To evaluate the capabilities of our contention window tuning, we activated 6 wireless nodes
contending under greedy traffic sources towards a common Access Point. We first considered a
legacy CSMA protocol with exponential backoff. Figure 18 shows the throughput performance
achieved by each station and some regular samples of the contention window employed by the
stations. Although the CSMA protocol in principle should provide an equal share of the network
throughput to each station, we can observe some short-term and long-term throughput variability
due to the exponential backoff mechanism (short-term) and to the location-dependent interference
conditions suffered by each station (long-term).

6 EDCA EDCA CW

1200

192.168.2.2 [DCF]
. : 192.168.2.5 [DCF]
160 - - 192.168.2.10 [DCF]
N 192.168.2.11 [DCF]
192.168.2.7 [DCF]
192.168.2.13 [DCF]

68.2. 2-DCF - mean = 22 690926
68.2.5-DCF - mean = 29.021219

1000 68.2.7-DCF - mean = 21.587354 :
68.2.10-DCF - mean = 29.015146

68.2.11-DCF - mean = 25.861526

68.2.13-DCF - mean = 29.241737

soot T T

» B I\;'j\x‘l;‘“‘,-‘_- ; 1 : ‘I“; : . “ . | Iv‘/-\l-é ’:vl ‘I‘ M T
s [N hark N& . “ “)

04 I L I L 1 L
0 10 20 30 40 50 60 0

time [s]

thr [bps]

Figure 18. Throughput performance and Contention Window samples of 6 wireless nodes executing CSMA
with exponential backoff.

30

WiSHFUL H2020 - GA No. 645274 D2.3

For three of the above nodes, we then loaded the local control logic implementing the moderated
EDCA backoff scheme. Figure 19 shows that the three stations achieve an average throughput
comparable to the one experienced when they were using exponential backoff, but with smaller
fluctuations. This is confirmed by the samples of the contention window values, that exhibit very
small variations (from 20 to about 25).

x 10° DCF VS MEDCA MEDCA CW

. 192.168.2.13 [DCF] — 2=MEDCA : mean = 21.718921
18l . : 192.168.2.7 [MEDCA] || ——— 5-MEDCA : mean = 22.112182
= —192.168.2.11 [DCF) 7-MEDCA : mean = 23.196424

4— 192.168.2.2 [MEDCA] 25 ETTTT T ’ |
DA i

|

16+ i — © —192.168.2.10 [DCF] ||
; 7 192168.25 [MEDCA] HF\(JM

= 450

i 1
o 5 10 15 20 25 30 35 40 45 50 o 5 10 15 20 25 30 35 40 45 50
time [s] time [s]

Figure 19. Throughput performance and Contention Window samples of 3 stations employing moderated
backoff in contention with 3 stations employing exponential backoff.

c. Next Steps

Our current approach to contention window tuning is based on the minimization of delay jitters in a
purely local fashion. This approach may be expanded in the future by exploring methods to take
advantage of information provided by peer nodes.

2.3.3 Switching from CSMA to TDMA

When the global control logic detects that the number of active traffic flows overcome a given
threshold, it disenables the local control functions and triggers a coordinate switch to the TDMA
radio program. Presentation of UPIs used

a. Presentation of UPIs used

Before switching, the controller verifies that a TDMA radio program is available on the wireless
nodes, by reading the node capabilities associated to the radio NIC:

for ii in range (len(current radio info.radio program list)):

if current radio info.radio program list[ii].radio prg name =
"TDMA"

#force the radio memory slot position in which the radio program is
stored, the WMP platform on broadcom card has only two memory slots to
store radio programs, addressed by position 1 and position 2

position = '2'
[..]

The TDMA radio program is activated by calling the UPI_R function setActive, which also injects the
radio program into the micro-instruction memory so the execution engine can run it.

31

WiSHFUL H2020 - GA No. 645274 D2.3

UPIfunc = UPI RN.setActive

UPIargs = {'position' : position, 'radio program name' : 'TDMA', 'path'
radio program pointer TDMA, 'interface' : 'wlanO' }
rvalue = global mgr.runAt (node, UPIfunc, UPIargs, exec_time)

Finally, the global controller configures the TDMA parameters of each station, by specifying a
different temporal slot for each one by means of the relevant UPI_R function (responsible of
configuring radio program parameters), which is called by the set TDMA_parameters utility function.

tdma params={'TDMA SUPER FRAME SIZE' : superframe size len,
'TDMA NUMBER OF SYNC SLOT' : len (mytestbed.wifinodes),

'"TDMA ALLOCATED SLOT': node_ index}

set TDMA parameters(node, log,mytestbed.global mgr, tdma params)

b. Results

As an high-level functional validation, we monitored the channel-level measurements collected by
three wireless nodes transmitting saturated traffic towards a common Access Point at regular
reporting periods (samples) for phase 1 (Figure 20) and at regular time for phase 2 (Figure 21) of the
experiment. For the Access Point and for the nodes executing the TDMA radio program, the counter
of the backoff freezes is constant, because the backoff process is not active.

16000 PLOT SC3 PHASE 1

16000

14000

12000 |

10000

8000

FREEZING_NUMBER

6000

4000

2000

0 _

sample

Figure 20. Number of freezes occurred during backoff procedures in phase 1 at regular report period

PLOT SC3 PHASE 2

15000
[+ 4
w
o
s
-
z|
gmmo
0
w
g

5000

0.0 02 04 0.6 08 10
time [us] 1e8

Figure 21. Number of freezes occurred during backoff procedures in phase 2 at microseconds time

32

WiSHFUL H2020 - GA No. 645274 D2.3

To illustrate the technology independency of this showcase, it was also executed on the RM-090
sensor nodes. The Contiki operating system is combined with the TAISC VM to enable on-the-fly
switching from CSMA to TDMA. In this case, both radio programs were pre-installed. Figure 22 shows
the measured packet loss and throughput. After 90 seconds the radio program is switched from
CSMA to TDMA. The results were obtained by letting 32 sensor nodes send iPerf traffic to a single
sensor node acting as a sink, forwarding the iPerf streams to an iPerf server on the linux host-PC. The
output of the iPerf server was used to generate the graphs. All nodes were in the same collision
domain.

50

T T T T
'packetloss.dat' using 1:2

40 -
& CSMA TDMA
w0 30 -
a -
o
=
L 20| i
v
©
a

10 -

0 1 1 1 1 \/ 1 1 Il 1 1

0 20 40 60 80 /\ 100 120 140 160 180 200
Time [s]
'G‘ 100 T T T T T T T
= . ‘throughput.dat' using 1:2
Qo - - /
e~ 80 |- - -
5
o
£ or CSMA TDMA T
>
S 40 |- .
£
%‘ 20 I \ X' After 90 seconds the MAC protocol is switched to TDMA |
5
=2 0 1 1 1 1 \/ 1 1 1 1 1
0 20 40 60 80 /\ 100 120 140 160 180 200
Time [s]

Figure 22. Switching from CSMA to TDMA on the RM-090 sensor node using TAISC inside Contiki OS. The
upper graph shows the overall percentage of packet loss, the lower graph illustrates the overall
throughput. The high spikes in both graphs are caused by the switch.

The overall packet loss and throughput is only slightly higher for TDMA w.r.t. to CSMA. Moreover, the
TDMA radio program requires +- 30 seconds to stabilize. This indicates that the TDMA radio program
as well as that the switching procedure are sub-optimal and can still improve. Note also that while
the overall performance of CSMA is stable, there is a huge difference between nodes due to the
back-off algorithm.

c. Next Steps

Currently protocol switching occurs according to a static threshold on the number of active traffic
flows. The approach presented here may be extended by considering a multivariate utility,
potentially based on delay, number of retransmissions, and number of freezes, to better model the
impact of congestion on user applications. A threshold could then be learned through a genetic
algorithm scheme which searches through various combinations of utility values for use as a
threshold.

33

WiSHFUL H2020 - GA No. 645274 D2.3

24 Portable testbed

The WISHFUL project offers access to several wireless testbeds, such as TWIST (TUB), w-ilLab.t
(IMINDS), IRIS (TCD), Orbit (Rutgers University) and a FIBRE Island at UFRJ. All of these testbeds are
installed in either office environments or other dedicated testbed environments. Because some
research requires doing measurement campaigns or actual testing in heterogeneous environments,
the WiSHFUL project also offers a portable testbed to the community.

2.4.1 Portable testbed setup

The architecture of the portable testbed is presented in Figure 23. As can be seen there are two
distinct wireless networks (blue and yellow) present in the testbed, namely BN (Backbone) network
and DUT (Device Under Test, or Experiment Node) network. These two networks will be configured
and controlled by the Experiment Management Servers. The blue arrows represent a highly reliable
wireless backbone that allows the user to place the nodes anywhere in the field without having the
practical disadvantages of using cables. It also allows interaction with the nodes during the
experiment. Section 2.4.2 describes the Backbone network in more detail.

As the Portable Testbed introduces an additional network to an experiment, it is implemented in
such a way that an experimenter is not overwhelmed with additional and complicated configuration
procedures. In D6.1, it is shown that Portable Testbed follows the “Plug and Play” approach and an
experimenter should be able to use the same Testbed and Experiment Management tools as on the
fixed testbeds. It has to be noted that an experimenter does not have the possibility to directly
control the behaviour of the Backbone network, but he is able change the channel that the Portable
Testbed uses. Moreover, logical L2 networks are provided to interconnect DUT nodes in order to
make them unaware whether they are connected to Portable Testbed or to a regular wired Ethernet
network. This approach also reduces the required configuration because an experimenter does not
have to configure any routing on his DUT nodes.

A more detailed description of the testbed setup can be found in D6.1 and D6.2.

-:_—::-—::.{ = --.; = o= -
@) L7 pur W&
ey (9)
‘ WiSHFUL Backbone
DUT
WiSHFUL Backbone N o
3“‘1,9” ('{i'//

\
\ WIiSHFUL Backbone "\

\ \
_A,,_f‘ Wireless backbone \
) S mesh network

Experiment
/
B

DUT
Experiment Management Servers _
A 7
4 =
‘ Backbone ‘ e 4 =
P L (\‘“e“\
WIiSHFUL Backbone WiSHFUL Backbone (o) [
) e Z L . 'y
! % Fxpe;n:-; ?&
T
DuT ou

Figure 23: Portable testbed overview

34

WiSHFUL H2020 - GA No. 645274 D2.3

a. Hardware & packaging

In order to provide flexible means of transport for the portable testbed, an easy to carry, robust and
spacious case is desired. It also needs protective material on the inside so the delicate electronics are
not damaged during transport. Plywood flight cases are used to secure the hardware in transport.

A primary flight case hosts the central switch and experiment management servers. The EMS is a
single, powerful embedded PC that hosts several VM’s for each of the testbed core services.

The DUT nodes are stacked in several secondary flight cases. These are made from aluminium and
robust plastic and are slightly lighter than the primary case. To fix the nodes inside the case, foam is
used: a base of hard foam is glued to the bottom of the case and is cut specifically to fit the DUTSs.

In the top of the briefcase, softer, more flexible polyurethane foam is used as its only function is to
push down softly on the nodes so they stay in place while transporting the cases.

DUT devices are COTS Intel NUC (Next Unit of Computing) devices of model D54250WYKH. These are
basically headless barebone PC’s. They consist mainly of an Intel Core i5 4250U processor, 4GB of
ram, a gigabit Ethernet port, several USB ports, a 320GB harddisk and two Wi-Fi cards: one 802.11n
(WPEA-121N/W) and one 802.11ac card (WLE900VX 7AA).

The nodes are by default equipped with an 802.15.4 sensor node and a Bluetooth USB dongle. The
USB connections of the node can be used to attach extra hardware (e.g. LTE dongles or other USB
compatible hardware).

The DUT features a default embedded Linux operating system to which the experimenter can gain
full (root) access. The experimenter has full control over the operating system and the software
packages that are installed on the DUT. The DUT can also be used as a proxy to access all USB
peripherals of the node, like sensor nodes. If the embedded PC provided by WiSHFUL does not satisfy
the experimenter’s needs, other hardware can be used as long as it can interface over Ethernet with
the backbone nodes.

A more detailed description of testbed hardware can be found in D6.2.

b. Experimentation tools

The portable testbed offers almost identical functionality to the experimenters as if they would run
their experiment on one of the fixed testbeds.

The experimenter is able to use one user account to access all WiSHFUL testbeds, including the
portable testbed. The same user account can be used to access all Fed4FIRE testbeds. This user
account is used to login with one tool (jFed) to design and setup an experiment. Again this tool can
be used to access multiple other testbeds inside the Fed4FIRE federation.

The wireless backbone enables the user to interact with the nodes during the experiment. This
interaction can be done by using SSH or making the DUT part of an OMF6 controlled experiment. The
BN (Backbone Network) also enables measurements being collected using the OML framework. The
(aggregated) live data can be sent over the wireless backbone towards an OML server, or can be
stored locally (cached) and dumped to a database server after the experiment.

Deployment of the portable testbed is as easy as plug-and-play, in order to lower the boundary for
experimenters. The duration of the deployment of the portable testbed can vary from several hours
to several weeks or even months. Depending on the duration of the deployment and the accessibility
of the environment in which the testbed is deployed, extra fail-safe mechanisms may be activated to
allow for better remote management of the portable testbed. Several ways to power the DUTs are
supported: AC power, Power-Over-Ethernet or 19V battery packs. Using Power-Over-Ethernet,
remote rebooting of the DUT nodes is supported. On the contrary, when using AC power or 19V
battery packs, this functionality (remote rebooting) is not yet supported.

35

WiSHFUL H2020 - GA No. 645274 D2.3

A more detailed description of experimentation tools can be found in D5.2.

c. Next Steps

An integrated battery solution providing flexibility over the positioning of the nodes will be designed.
An extra circuit board needs to be designed so that the BN node can instruct the DUT node to reboot
while in the field. A custom enclosure will be designed for this integrated solution, containing the
following components:

* DUT (with possible USB extensions)

* BN node

¢ Circuit board to enable the BN node to reboot the DUT node

e 19V Battery pack to power both BN and DUT node, or one battery pack for each node.

* Docking extensions with PLC to provide both Ethernet connection and recharging
functionality while the nodes are plugged into the flight case.

The flight case containing the DUT nodes will also be modified to support the integrated battery
powered nodes. More details can be found in D6.2.

The portable testbed will be used to demonstrate the showcases described above (2.1, 2.2, 2.3).
Some of the showcases that require tight time synchronization between all nodes are not yet
supported. However, a simplified version of each of the showcases can be enabled by the current
implementation of the portable testbed.

2.4.2 WIiSHFUL mesh backbone

The Backbone is a mesh routing network, which is used to connect TMS, EMS, SUT-NC and DUT
nodes. OLSR is used as routing protocol. To make it transparent and keep all mentioned nodes
unaware of being inter-connected through portable testbed, a dynamic logical L2 network over the
backbone network are created.

Thanks to provided default OS image with default configuration, the Portable Testbed is operational
"out-of-the-box". An experimenter has to connect pair-wise DUTs nodes with their peer BN node,
boot them all, and the Backbone network establishes full connectivity.

The operation of the BN network is harmonized by a dedicated BN Controller (BNC). We
implemented BNC using UPI functions defined in WiSHFUL project. An Intel NUC mini-PC with Intel i5
processor is used to run Backbone Controller application.

For BN nodes we have selected a hardware platform that is very robust and can cope with harsh,
outdoor conditions. Currently we rely on the Gateworks Laguna platform - model GW2388-4.

More details about Backbone network can be found in D6.1 and D6.2.

a. Presentation of UPIs used
* setChannel()
This function is used to instruct BN nodes to change channel, that they operate on. Channel is

selected during Channel Policy Agreement (CPA) procedure, which is performed before
experiment start. More details of CPA procedure can be found in D6.2.

* installEgressSheduler()
This function is used in order to setup Priority Queuing Discipline — NET layer prioritization — in
each BN node. First, we create description of configuration of QDisc, using developed python

36

WiSHFUL H2020 - GA No. 645274 D2.3

package — python-tc. Then, function installEgressSheduler() is used to install proper QDisc
according to passed configuration.

* setFlowTransmissionQueue()
To provide prorititzation in MAC layer, we exploit the fact that the EDCA classifies packet to
proper queue based on TOS value it its header. The UPI function setFlowTransmissionQueue()
is used to configure iptables rule to set proper TOS value in packet of particular flow, which is
defined with 5-tuple.

b. Results

In this document we present only performance comparison between a regular mesh backbone and a
backbone controlled by WiSHFUL UPI's. A detailed description of the implemented functionalities
supported by Portable Testbed is provided in D6.2.

In order to collect performance measurements, we simulated traffic in Backbone network using
three flows:

* F1 — generated using ping application, one ping-request is sent every 1 second; this flow
mimics Backbone Mesh Management Traffic (e.g. OLSR Hello Packets), which should be served
with highest priority; important performance parameters: packet loss, Round-Trip-Time (RTT)

* F2 — generated using iperf application with parameters: protocol — UDP, bandwidth — 1 Mbps;
this flow mimics WiSHFUL and Experiment Control Traffic, which should be served with high
priority; important performance parameters: packet loss, received throughput, jitter.

* F3 — generated using iperf application with parameters: protocol — TCP; this flow mimics
Measurement Collection Data Traffic, which should be served with best-effort manner;
important performance parameters: throughput.

During single test all mentioned flows were started at the same time, thus they compete for the
access to spectrum. We performed experiments within topology presented in Figure 23, it is simple
wireless mesh network with 3 nodes. All flows are started at Source BN node and directed to
Destination BN node. The network topology was configured in such way, that transmission between
Source and Destination BN nodes involved two wireless hops.

(p—7L—p—— 7)

N AN AN

Source BN Node Destination
BN node BN Node

Figure 23 Topology used for performance comparison

Duration of single test was 30 seconds and we repeated each test 25 times to get credible results.
Two cases were considered: i) with default configuration — i.e. without prioritization; and ii) with
prioritization in NET and MAC layer. In latter case, we used BNC, that configures is able to configure
prioritization in both layers using WiSHFUL UPI's - see Presentation of UPIs used.

In Table 1, Table 2 and

Table 3 we present performance comparison based of obtained results. As can be seen proper
prioritization in NET and MAC layers improves all performance parameters of each flow.

37

WiSHFUL H2020 - GA No. 645274 D2.3

Table 1: Performance comparison for Flow 1

Flow F1 Without prioritization in‘ll:llliit'li']apl:(itloll\'/ilt:: Tiac:/r;rs

Parameter Average Std. Average Std.
Packet loss [%] 24.82 10.27 5.45 4.62
RTT [ms] 1034.61 923.57 6.98 10.98

Table 2: Performance comparison for Flow 2

. e L. With prioritization
Flow F2 Without prioritization in NET and MAC layers
Parameter Average Std. Average Std.
Packet loss [%] 23.43 13.35 7.42 1.15
Throughput
0.67 0.33 0.92 0.02
[Mbps]
Jitter [ms] 165.65 152.83 5.77 4.86

Table 3: Performance comparison for Flow 3

. e L. With prioritization
Flow F3 Without prioritization in NET and MAC layers
Parameter Average Std. Average Std.
Throughput
2.75 1.23 2.98 0.39
[Mbps]
c. Next Steps

During year 2, we will work on following improvements and extensions of Portable Testbed:

* Automatic DUT node to BN node mapping discovery
¢ DUT Power-supply control

¢ Channel Policy Agreement improvement

* Channel Access optimization

A detailed description of the extensions and improvements is provided in D6.2.

38

WiSHFUL H2020 - GA No. 645274 D2.3

3 Definition of showcases to be implemented on Year 2

Example showcases envisioned for implementation with the second year of the project are described
in an early form here.

3.1 Intelligent Download with WIFI tethering

3.1.1 Overview

Recently, with rapid growth of number of smartphones and mobile devices equipped with various
wireless technology interfaces, tethering popularity gains more and more popularity. It is a very
convenient, ad-hoc and low-cost wireless Internet access technology. In most cases Wi-Fi tethering is
used, which allows sharing the Internet connection provided by 3G/4G technology with other devices
(eg. laptops) using Wi-Fi network.

However, in most cases, there is a limit on amount of data that cellular subscriber can download
every month. After exhaustion of available data transfer, user connection can slow down significantly
or in worse case, one can be charged for any extra data he/she downloaded. As long as user is aware
of all his/her network transmissions, there is no problem. Unfortunately, it can happen that
operating system and applications will perform upgrades and download a huge amount of data that
user may not even notice until he/she gets a bill from telecom company. Our idea is to recognize and
prevent any "unnecessary" traffic flows. By "unnecessary", we understand flows that require
downloading a huge amount of data and there is no problem to defer it to a later point in time.
Operating system updates (e.g. Windows/Linux) are perfect example here.

3.1.2 Goals

* Intelligently control use of Wi-Fi network;
* Filter download requests based on their context, including connectivity situation and content
priority.

3.1.3 Breakthroughs

Our basic idea is to filter out "unnecessary" traffic flows when being connected to a tethering AP
(Figure 25). Therefore, we can make use of IEEE 802.11u that defines Generic Advertisement Service.
GAS is a mechanism that delivers information to the STA from advertisement services. It allows
stations to obtain information about network services. Standard defines few advertisement protocols
that can be used with GAS: Access Network Query Protocol (ANQP), Media Independent Handover
(MIH), Emergency Alert System (EAS) as well as proprietary vendor specific protocols (which will be
most useful for us). What is important is that GAS mechanism allows the STA to know in advance the
AP capabilities, even before associating with it.

3.1.4 Methodology

With the help of GAS we are able to block the "unnecessary" flows already on Wi-Fi end-user
terminal (e.g. laptop). After reception of the specific IE from the tethering AP, the terminal should
translate it into local firewall filtering rules and apply them. One possible way to achieve that is use
of netlink interface and netfilter framework provided by Linux (used by iptables). Note, here both the
tethering AP as well as the Wi-Fi end-user terminal need to be WISHFUL-compliant. In a second
option which does not require the end-user terminal to be Wishful-compliant the blocking of

39

WiSHFUL H2020 - GA No. 645274 D2.3

"unnecessary" flows is performed in the tethering AP which is fully transparent to the end-user
terminal.

*—— Control plane
—_— Data plane

Tethering

A
SetIE/
) Set firewall
rule

P
trol
Set firewall A 802.11 AP
rule

3G/4G BS

Figure 25 Controlling Wi-Fi tethering operation.

3.1.5 Use of WiSHFUL Functionality

For the first option, the WiSHFUL network interface will provide a way to program the Information
Elements (IE) send in the beacon frames of the tethering AP. Moreover, on the end-user terminal
WIiSHFUL interfaces will offer functionality to read the received IEs, as well as to program the firewall,
i.e. reject all outgoing traffic to a specific remote host.

For the second option, WiSHFUL will allow the possibility to block "unnecessary" flows in the
tethering AP.

3.2 WIFI offloading

3.2.1 Overview

Although the capacity of cellular networks constantly increases thanks to technological
enhancements, the throughput they provide can turn out to be insufficient, because traffic demand
increases even faster. On the other hand, most of mobile devices are not only equipped with LTE
interface, but also Wi-Fi chip. It is therefore promising to offload traffic from mobile networks to Wi-
Fi and use them as an extension to the cellular network and telecom operators are becoming more
and more interested in it. The main reasons for this approach are the high data rates provided by Wi-
Fi networks.

3.2.2 Goals

* Enable offloading of cellular traffic through Wi-Fi networks;
* Empower network performance aware techniques for network selection.

3.2.3 Breakthroughs

Currently, mobile devices have simple and limited way to decide when to offload traffic to the WIFI
(Figure 26). It works very simple, i.e. when mobile terminal discover and connect to WIFI network, it
steer all its traffic to the WIFI. The main drawback of this solution is lack of QoS considerations that
can lead to situation when mobile will switch from high data rate cellular connection to low data rate
WIFI connection.

40

WiSHFUL H2020 - GA No. 645274 D2.3

In current networks, operators do not have influence for offloading decisions of mobile stations, but
the idea is so appealing, that some activity by several standardization forums was taken. They
propose operator-controlled WIFI, which are deployed and managed by an operator and/or its
partner. In 3GPP Release 12, some WLAN/3GPP inter-working aspects were standardized. They aim is
to provide network operator control mechanisms to steer traffic offloading in downlink and uplink
direction. With these solutions network can provide mobile station with parameters such as receive
power level threshold. When received power is higher than this threshold mobile can offload its
traffic to WLAN.

configure
association, get
flow info e
>

‘ == Control plane

— Data plane

cloud-based
controller

Figure 26 Controlling WIFI offloading.

3.2.4 Use of WiSHFUL Functionality

To support Wi-Fi offloading, several WiSHFUL functions are needed. First, the network operator will
use WIiSHFUL interfaces to define parameters (e.g. receive power thresholds) that will be send to
mobile stations which are used to make the decision to connect to a Wi-Fi network. Second, the
provider needs to decide which flows should be offloaded from cellular to Wi-Fi network. For
example, one can decide that all VolP traffic stays in cellular network, because it provides more
robust and reliable connection, and all flexible flows using TCP protocol (eg. file transferring, web
browsing) are offloaded to WLAN. This decision will be enacted through the WiSHFUL interfaces.

3.3 Load and topology aware networking

3.3.1 Overview

In dynamic wireless networks the application requirements vary over-time. Moreover, networks can
grow or shrink as a result of node mobility. Network protocols designed for such networks (e.g.
6LowPan and RPL for sensor networks and IEEE802.11e and OLSR for Wi-Fi networks) have built-in
support for allowing such dynamic behaviour. The standards, defining these protocols, allow fine-
tuning the protocol operation via configuration parameters, enabling to make trade-offs between
different performance metrics. The implementations of these protocols, however, do not provide a
unified interface for this purpose.

These showcases will demonstrate how the WiSHFUL UPIs can be used to (i) dynamically monitor the
network performance and topology; (ii) change network protocol configuration; or (iii) switch routing
modules. Two sub showcases will be implemented:

41

WiSHFUL H2020 - GA No. 645274 D2.3

Lowering frame loss in highly mobile networks: illustrates how dynamic reconfiguration of frame
aggregation and PHY rate adaptation parameters can lower the frame loss. Because node mobility
intensifies the time varying nature of wireless channel, the network stack requires to be re-configure
d according to the degree of the mobility. For this purpose the node mobility is monitored and based
on the level of mobility, the aggregation level and/or modulation and coding scheme (MCS) index are
reduced or increased in real-time. By lowering the aggregation level (e.g. number of frames) or MCS
index in case of higher node mobility, the chances on bit errors, due to mobility, can be reduced
during frame reception.

Selecting the optimal link estimation algorithm based on the network topology: demonstrates that
a global control program, controlling a sensor network, can increase the overall network performance
by dynamically activating the optimal link estimation algorithm. For this purpose the network
topology is monitored and, the optimal link estimator is activated in each scenario. In sparse
networks, simple link estimators (e.g. objective function 0, ETC) are preferred; in dense network
more complex link estimators (e.g. 4BIT, fuzzy LQE) can be applied.

3.3.2 Goals

* Dynamically control the frame aggregation level in Wi-Fi networks by estimating the level of
node mobility.

* On-the-fly selecting of the most optimal link estimator in sensor networks by monitoring the
node topology.

3.3.3 Breakthroughs

Currently, in most deployments, the network stack configuration is statically defined at deploy time
and requires a manual intervention to change. This showcase demonstrates how the WiSFHUL UPIs
enable to dynamically monitor the various metrics that define the network state (e.g. quality of
service, energy, and topology) in a unified manner. Moreover, the UPIs also allow reacting on the
observed metrics, and dynamically reconfigure the network protocols in order to improve the
network state.

3.3.4 Use of WiSHFUL functionality

The first sub-showcase is a perfect example of how local decisions made in a local control program
can improve the network performance. For this both UPI_R and UPI_N are required.

* UPL_R enables to estimate the level of node mobility by observing the link layer statistics
(packet loss, BER) and combining this with link layer measurements (signal quality, medium
activity).

* UPIL_N is used to reconfigure the frame aggregation parameters defined by IEEE-802.11e (e.g.
A-MSDU, A-MPDU).

* UPI_Nis used to adapt PHY rate (MCS index) according to the network state

The second sub-showcase requires global control program to monitor the network topology and
change the link estimation algorithm. UPI_G is used to execute UPI_R/N functions on a number of
nodes, or obtain particular information from nodes with specific roles in the network.

* UPL_R enables detecting asymmetric links in the network by collecting link statistics between
certain pairs of nodes. Moreover, also frame injection is supported for this purpose.

42

WiSHFUL H2020 - GA No. 645274 D2.3

¢ UPL_N allows maintaining the current network topology by monitoring the routing tables of a
certain group of nodes. Moreover, volatile links can be detected by analysing the variance in
topology due to routing decisions.

* UPL_N allows to (de)-activate link estimation algorithms such as ETX, 4BIT and fuzzy LQE in the
RPL routing protocol.

34 MAC Adaptation in multi-hop network topologies

3.4.1 Overview

Wi-Fi network performance can dramatically degrade in multi-hop connected topologies and in high-
density node scenarios. The main reasons for the degradation include the starvation and unfairness
phenomena of CSMA-based protocols due to a mismatch in the local views of the wireless medium
among the nodes, and due to the high level of contention when the network is congested. To
mitigate these problems, different approaches have been proposed, such as the adoption of rate
limiters deployed on each network node, the utilization of multi-hop reservations and the
exploitation of admission control mechanisms. The main goal of these approaches is to avoid
consuming the whole channel capacity in different network links, thus reducing the collision
probability and leaving resources for network management operations.

In this scenario, we demonstrate the prototyping of a solution for mitigating the performance
impairments of CSMA/CA protocols in multi-hop topologies, based on the dynamic adaptation of the
contention process experienced by nodes in the wireless network. A distributed protocol is used to
negotiate the channel airtime for a node as a function of the traffic requirements of its
neighbourhood, taking into account bandwidth reserved for the control operations. A mechanism is
provided for a node to tune its contention window as a function of this airtime.

3.4.2 Breakthroughs

Channel allocations in wireless networks can be viewed as a resource allocation problem where
transmitters correspond to demands and receivers to resources. The allocations can be performed in
a disturbed manner, by considering that the capacity unused by the receiver nodes can be
redistributed to the transmitter nodes as in an auction/bidder problem. When the distributed
allocations are performed, each node can achieve the desired allocation by opportunistically tuning
its contention window. The scheme involves the implementation of two different components: i) the
negotiation protocol, for evaluating the channel resources that can be allocated to each node; ii) the
tuning of the contention window for guaranteeing heterogeneous channel allocations as a function
of the channel views locally observed by each node. Both the components can be prototyped by
exploiting the WiSHFUL architecture and interfaces. Specifically, the negotiation protocol can be
implemented as a local control program running on each node, while the contention window tuning
can exploit the UPI_R interface (Figure 24).

Our goal is demonstrating the possibility to support advanced signalling schemes, which can inter-
operate with the application level (for getting the requirements) and low level MAC operations (for
tuning the contention window during run-time).

3.4.3 Use of WiSHFUL Functionality and methodology

For this showcase we use different type of Wi-Fi nodes available on WiSHFUL, both Broadcom and
Atheros Wi-Fi cards. We use the experiment controller to create a wireless mesh network with
different domain and we implement distributed allocation algorithm on local controller. The local

43

WiSHFUL

H2020 - GA No. 645274 D2.3

control program uses the UPI interface to get the number of transmission attempts and the air time
channel. After, the local control calculates the value of contention window and uses the UPI interface

to set the new value.

Control Program

CONTROL PLANE

DISCOVER GET Node GET Traffic
DATA PLANE

Nodes Capabilities Stats

Global MCE

STA2 MCE

STA1 MCE

ATLAS algorithm ATLAS algorithm

STA3 MCE
ATLAS algorithm

Figure 24 - 1.1.1 MAC Adaptation in multi-hop topologies

44

WiSHFUL H2020 - GA No. 645274 D2.3

4 Conclusion

This document has provided an initial entry in the catalogue of the utilities provided by the WiSHFUL
project, by summarizing the outcome of the first set of project showcases. Showcase description
contained within, highlights the impact of WiSHFUL on currently relevant problems. It was addressed
by discussing how WiSHFUL functionalities support the development of solutions within the space of
wireless communications. Moreover, the material of this document discusses extensions or
continuations of the work completed so far to further exploit the contributions of the project. This
document has focused on the utility and impact of WiSHFUL in the contained description of project
showcases, leaving technical details regarding the implementation of each showcase to the
appropriate technical deliverable(s) (D3.2, D4.2 and D6.2).

Finally this document has introduced new showcases for the second year of the WiSHFUL project.

45

WiSHFUL H2020 - GA No. 645274 D2.3

5 References

[1] S. M. Kim and T. He, “FreeBee: Cross-technology Communication,” ACM MobiCom, pp. 317-330, 2015.

46

