
	 H2020	-	GA	No.	645274	 D10.2	

 1	

Wireless Software and Hardware platforms for
Flexible and Unified radio and network controL

Project	Deliverable	D10.2	

Results	of	first	set	of	showcases	using	basic	intelligence	
Contractual	date	of	delivery:	 31-12-2016	

Actual	date	of	delivery:	 23-12-206	

Beneficiaries:	 IMEC,	TCD,	CNIT,	TUB,	NCENTRIC,	RUTGERS	

Lead	beneficiary:	 CNIT	

Authors:	 Ilenia	Tinnirello	(CNIT),	Domenico	Garlisi	(CNIT)	,	Pierluigi	Gallo	
(CNIT),	Merima	Kulin	(IMEC),	Spilios	Giannoulis	(IMEC),	Ingrid	
Moerman	(IMEC),	Francisco	Paisana	(TCD),	Ivan	Seskar	(RUTGERS),	
Changmok	Yang	(SNU),	Sunghyun	Choi	(SNU),	Piotr	
Gawłowicz(TUB),	Mikołaj	Chwalisz	(TUB)

Reviewers:	 Anatolij	Zubow	(TUB),	Maicon	Kist	(TCD)	

Work	package:	 WP10	–	General	Requirements	and	Showcases	

Estimated	person	months:	 25	

Nature:	 R	

Dissemination	level:		 PU	

Version:	 1.0	

Abstract:	
This	 publication	 deliverable	 reports	 on	 the	 results	 of	 the	 intelligent	 showcases	 that	 have	 been	
implemented	and	on	the	intelligence	modules	that	have	been	developed	in	the	showcases.	 It	also	
includes	a	brief	presentation	of	 the	WiSHFUL	 framework	 for	building	 intelligence.	This	deliverable	
reports	on	activities	in	WP10.		

Keywords:	
Showcases,	Proof-of-concept,	intelligence	framework	
	

	

	 H2020	-	GA	No.	645274	 D10.2	

 2	

Executive Summary
This	 documents	 reports	 on	 the	 showcases	 implemented	within	 the	 second	 year	 of	 the	 project	 to	
display	the	functionalities	of	the	WiSHFUL	intelligence	framework.	The	framework	has	been	designed	
for	 facilitating	 experimenters	 in	 the	 definition	 of	 intelligent	 control	 programs,	 by	 means	 of	
elementary	data	processing	blocks,	learning	algorithms,	and	adaptation	procedures,	and	by	means	of	
a	graphical	 interface	 for	 linking	 components	and	building	 intelligence	control	programs.	 Intelligent	
control	 programs	 do	 not	 implement	 simple	 intuitive	 algorithms	 or	 static	 rules	 defined	 by	
experimenter	 for	 adapting	 radio	 and	 network	 settings,	 but	 rather	 implement	 advanced	 reasoning	
algorithms	 that	 capture	 the	 wireless	 network	 behaviour	 and	 learn	 the	 best	 strategy	 for	 taking	
decisions	on	radio	and	network	configurations	in	a	certain	network	context	for	optimally	supporting	
wireless	applications.	

Four	 showcases,	 dealing	 with	 completely	 different	 network	 problems,	 have	 been	 designed	 by	
following	 two	different	 approaches	 for	building	 the	 intelligence	 control	 program:	off-line	 learning,	
which	means	collecting	data	from	different	experiments	and	processing	these	data	off-line	in	order	
to	design	a	data-driven	model	to	be	used	for	optimizing	a	desired	network	metric;	on-line	learning,	
where	data	becomes	available	during	the	experiment	execution	and	is	used	to	update	the	model,	e.g.	
the	predictor	model,	for	future	steps.	As	far	as	concerns	off-line	learning,	two	different	data-driven	
models	 have	 been	 developed	 for	 sensor	 networks	 running	 different	MAC	 protocols	 and	 for	WiFi	
networks	 with	 high-density	 of	 access	 points.	 The	 models	 are	 then	 used	 for	 facilitating	 the	
identification	 of	 optimal	 MAC	 protocols	 under	 dynamic	 network	 conditions.	 MAC	 protocol	
optimizations	 have	 been	 also	 considered	 for	 on-line	 learning.	 In	 particular,	 a	 learning	 engine	 has	
been	developed	for	ranking	different	elementary	MAC	protocols	as	a	function	of	the	network	traffic	
and	measurements	of	channel	state	(from	slotted	ALOHA	in	case	of	 low	traffic,	to	TDMA	in	case	of	
greedy	 traffic),	and	 for	act	 consequently	by	enforcing	 the	protocol	with	 the	highest	 rank.	A	 similar	
approach	 has	 been	 proposed	 for	 cognitive	 networks,	 in	 which	 the	 secondary	 users	 select	 the	
operating	channel	by	learning	the	primary	user	behaviours	and	by	ranking	accordingly	the	channels	
as	a	function	of	the	expected	time	interval	in	which	the	channel	will	not	be	used	by	primary	users.		

A	brief	overview	of	the	accomplishments	within	each	showcase	is	provided	alongside	a	description	of	
the	utility	offered	by	the	WiSHFUL	intelligence.	As	such,	this	document	provides	an	initial	catalogue	
of	 the	 WiSHFUL	 intelligence	 general	 capabilities	 and	 software	 modules	 developed	 so	 far	 in	 the	
WiSHFUL	intelligence	repository.		

	 	

	 H2020	-	GA	No.	645274	 D10.2	

 3	

List of Acronyms and Abbreviations
AM	 Aggregate	Manager	

AODV	 Ad	hoc	On-demand	Distance	Vector	

AP	 Access	Point	

API	 Application	Programming	Interface	

BAN	 Body	Area	Network	

BSS	 Basic	Service	Set	

CDF	 Cumulative	distribution	function	

CPU	 Central	Processing	Unit	

CSMA	 Carrier	Sense	Multiple	Access	

CTS	 Clear	to	Send	

DMT	 Discrete	MutiTone	

DSL	 Digital	Subscriber	Loop	

DSR	 Dynamic	Source	Routing	

DT	 Delay	Tolerant	

EM	 ElectroMagnetic	

EMS	 Experiment	Management	Server	

EWMA	 See	Figure	8	

F4F	 Federation	for	FIRE	(Future	Internet	Research	Experimentation)	

FBMC	 Filter	Bank	Multi-Carrier	

Fed4FIRE	 Federation	for	FIRE	(Future	Internet	Research	Experimentation)	

FNR	 False	Negative	Rate	

FRCP	 Federated	Resource	Control	Protocol	

FSM	 Finite	State	Machine	

GPIO	 General	Purpose	Input	Output	

HAL	 Radio	Abstraction	Layer	

HTTPS	 HyperText	Transfer	Protocol	Secure	

I/Q	 In	phase	/	Quadrature	

IEEE	 Institute	of	Electrical	and	Electronics	Engineers	

IP	 Internet	Protocol	

KPI	 Key	Performance	Indicator	

LTE	 Long	Term	Evolution	

LTE-A	 Long	Term	Evolution	–	Advanced	

LQI	 Link	Quality	Indication	

	 H2020	-	GA	No.	645274	 D10.2	

 4	

OBSSs	 Overlapping	BSSs	

PRR	 Packet	Reception	Rate	

MAC	 Medium	Access	Control	

MTC	 Machine-Type	Communications	

NOC	 Network	Operations	Centre	

OFDM	 Orthogonal	Frequency	Division	Multiplexing	

OLSR	 Optimised	Link	State	Routing	

OMF	 OMF	Measurement	Library	

OML	 Orbit	Management	Framework	

OODA	 Observe,	Orient,	Decide	and	Act	

PLC	 Power	Line	Communication	

QoS	 Quality	of	Service	

RAM	 Random	Access	Memory	

RF	 Radio	Frequency	

ROC	 Receiver	Operating	Characteristic	

RP	 Radio	Processor	

RSpec	 Request	Specification		

RSSI	 Received	Signal	Strength	Indication	

RT	 Real-Time	

RTS	 Request	to	send	

SDR	 Software	Defined	Radio	

SFA	 Slice	Federation	Architecture	

SNR	 Signal	to	Noise	Ratio	

SSH	 Secure	Shell	

STA	 Station	

TCP	 Transmission	Control	Protocol	

TDM	 Time	Division	Multiplexing	

TDMA	 Time	Division	Multiple	Access	

TPR	 True	Positive	Rate	

TSMP	 Time	Synchronized	Mesh	Protocol	

TSCH	 IEEE	802.15.4e	

TSF	 Timing	Synchronization	Function	

UC	 Use	Case	

UDP	 User	Datagram	Protocol	

UMTS	 Universal	Mobile	Telecommunications	System	(UMTS)	

UPI	 Unified	Programming	Interface	

	 H2020	-	GA	No.	645274	 D10.2	

 5	

UPIR	 Unified	Programming	Interface	radio	

UPIN	 Unified	Programming	Interface	network	

UPIHC	 Unified	Programming	Interface	hierarchical	control	

URL	 Uniform	Resource	Locator	

USB	 Universal	Serial	Bus	

USRP	 Universal	Software	Radio	Peripheral	

VPN	 Virtual	Private	Network	

WiFi	 Wireless	Fidelity	

XFSM	 eXtended	Finite	State	Machine	

	

	

	 H2020	-	GA	No.	645274	 D10.2	

 6	

Table of contents

1	 Introduction .. 8	

2	 General overview of the WiSHFUL Intelligence ... 9	
2.1	Conceptual	intelligence	framework	...	9	
2.2	 Intelligence	approaches	and	components	developed	in	Y2	..	10	
2.3	 Implementation	of	the	framework	for	building	intelligence	..	11	

3	 Intelligence showcases based on off-line modelling 16	
3.1	Cognitive	MAC	protocol	selection	...	16	
3.1.1	General	overview	...	16	
3.1.2	WiSHFUL	functionalities	and	showcase	phases	...	20	
3.1.3	New	intelligence	modules	..	21	
3.1.4	Results	...	21	
3.2	MAC	optimizations	in	high-density	scenarios	(HIDE)	..	23	
3.2.1	General	overview	...	23	
3.2.2	WiSHFUL	functionalities	and	showcase	phases	...	30	
3.2.3	New	intelligence	modules	..	30	
3.2.4	Results	...	30	
3.2.5	Next	steps	..	33	

4	 Intelligence showcases based on on-line learning 34	
4.1	Distributed	intelligent	selection	of	MAC	protocol:	Meta-MAC	...	34	
4.1.1	General	overview	of	Meta-MAC	...	34	
4.1.2	WiSHFUL	functionalities	and	showcase	phases	...	35	
4.1.3	Intelligence	composition	module:	meta-MAC	logic	...	39	
4.1.4	Results	...	42	
4.1.5	Next	Steps	..	44	
4.2	Monitoring,	Reasoning	and	Decision	using	Markov	Chains	..	44	
4.2.1	General	Overview	...	44	
4.2.2	Markov	chain	transition	matrix	estimation	...	46	
4.2.3	Generation	of	SUs’	channel	access	commands	..	47	
4.2.4	General	Demonstration	Details	..	47	
4.2.5	Next	Steps	..	48	

5	 Conclusions .. 49	

	 H2020	-	GA	No.	645274	 D10.2	

 7	

6	 References .. 50	

	 	

	 H2020	-	GA	No.	645274	 D10.2	

 8	

1 Introduction	
In	 this	 document	 we	 describe	 four	 experiments	 that	 have	 been	 designed	 for	 showcasing	 the	
WiSHFUL	 intelligence,	 as	 defined	 in	D10.1.	 Indeed,	 the	 original	WiSHFUL	 software	 architecture	 for	
radio	and	network	control	has	been	extended	 for	 supporting	an	 intelligence	 framework	devised	 to	
facilitate	 the	building	of	 solutions	able	 to	optimize	network	performance	 in	different	 contexts.	For	
facilitating	 this	duty,	 the	WiSHFUL	 intelligence	 framework	provides	a	graphical	 interface	 for	 linking	
specialized	 software	 components	 and	 algorithms,	 as	well	 as	 components	 for:	 i)	 collecting,	 filtering	
and	 aggregating	 data	 during	 experiments,	 in	 order	 to	 identify	 some	 relevant	 features	 that	 can	 be	
related	 to	 performance	 metrics	 of	 interest,	 ii)	 supporting	 learning,	 inference	 or	 other	 reasoning	
algorithms,	 in	 order	 to	 map	 data	 observations	 into	 actions	 as	 a	 function	 of	 the	 application	
requirements;	 iii)	 performing	 coordinated	 actions	 on	 single	 or	 multiple	 network	 nodes,	 which	
aggregate	elementary	UPI_R	and	UPI_N	functions	into	more	complex	adaptation	procedures	(e.g.	by	
synchronizing	 two	 overlapping	 Access	 Points	 with	 a	 common	 temporal	 reference	 such	 as	 the	
timestamp	provided	by	one	of	the	two	nodes.).	

During	Y2,	we	envisioned	two	main	methodological	approaches	for	designing	network	intelligence:	i)	
building	off-line	a	network	model	or	classifier	devised	to	estimate	a	specific	performance	figure,	by	
working	on	data	collected	under	different	operating	scenarios,	or	on	protocol	models	and	simulation	
results	 (off-line	 learning),	 ii)	designing	 an	 on-line	 learning	 engine,	 able	 to	 update	 in	 run-time	 the	
prediction	 model	 as	 a	 function	 of	 the	 observed	 data	 observed	 and	 act	 consequently	 (on-line	
learning).		

The	document	is	organized	as	follows.	In	Section	2,	we	present	the	general	overview	of	the	WiSHFUL	
intelligence	 architecture,	 the	 basic	 data	 collection,	 intelligence	 engine	 and	 action	 components	
developed	within	Y2	activities,	and	the	graphical	framework,	e.g.	the	Node	RED	that	can	be	used	for	
connecting	 the	 basic	 components,	 managing	 the	 data	 flows	 and	 building	 the	 learning	 models.	 In	
Section	3	and	Section	4	we	present,	respectively,	the	showcases	based	on	off-line	learning	or	on-line	
learning.	 For	 each	 showcase,	 we	 describe	 the	 network	 problem	 addressed	 by	 the	 WiSHFUL	
intelligence	 and	 provide	 an	 overview	 of	 the	 WiSHFUL	 functionalities	 used	 for	 addressing	 this	
problem.	Moreover,	the	document	provides	an	indication	of	potential	extensions	or	continuations	of	
the	work	 completed	 so	 far.	 As	 presented,	 the	material	 provided	 in	 this	 document	 is	 organized	 for	
demonstrating	 the	 potentialities	 of	 the	 WiSHFUL	 framework	 to	 the	 broader	 community	 of	
experimenters	for	building	intelligent	adaptations	in	real	network	contexts.		

	 	

	 H2020	-	GA	No.	645274	 D10.2	

 9	

2 General	overview	of	the	WiSHFUL	Intelligence	

2.1 Conceptual	intelligence	framework	
The	connection	between	the	WiSHFUL	software	architecture	for	radio	and	network	control	and	the	
intelligence	framework	is	made	by	the	Unified	Programming	Interfaces.	The	generic	functional	view	
can	hence	be	mapped	to	the	conceptual	framework	for	enabling	intelligence	shown	in	Figure	1.	
	
	

	

Figure	1:	Conceptual	framework	for	enabling	intelligence	

As	the	UPIs	are	unified	abstractions	that	span	several	wireless	technology	platforms,	the	components	
of	 the	 intelligence	 framework	 are	 generic.	 The	 Data	 Collection	 Component	 is	 a	 generic	 software	
module	that	interacts	with	the	WiSHFUL	UPIs,	UPI_R,	UPI_N	and	UPI_G	to	retrieve	data	about	radio	
and	network	state	(i.e.	channel	occupancy,	LQI,	RSSI,	PRR,	topology,	etc.),	and	with	the	Application	to	
retrieve	information	about	the	application	requirements	(e.g.	max	delay,	peak	throughput,	max	PER).	
The	 Data	 Collection	 Component	 also	 implements	 aggregation	 functionality.	 The	 Intelligence	
Composition	Module	 offers	 support	 for	 composing	 and	 configuring	 several	 algorithms	 available	 in	
the	 WiSHFUL	 Intelligence	 Repository	 into	 a	 self-contained	 intelligence	 engine	 that	 uses	 the	 data	
provided	by	 the	Data	Collection	Component	 and	 triggers	network	 and	 radio	 configuration	 through	
the	Action	Component.	The	Action	Component	uses	the	WiSHFUL	UPIs	to	adjust	the	configuration	of	
radio	 and	 network.	 The	 radio	 and	 network	 configuration	 should	 be	 viewed	 as	 the	 output	 of	 the	
intelligence	process.	Such	a	configuration	can	deal	with	individual	parameters	(e.g.	center	frequency,	
backoff	delay,	etc.),	radio	processing	elements	(e.g.	filter	swapping),	a	waveform	(e.g.	a	modulation	
and	coding	scheme)	or	a	protocol	(e.g.	new	MAC	scheme).		

The	framework	allows	to	support	the	usual	Observe,	Orient,	Decide	and	Act	loop	(OODA	loop):	the	
data	 collection	 component	 is	 responsible	 of	 gathering	 data	 observations	 and	 aggregating	 and	
filtering	 the	data	 for	extracting	 the	 features	used	 in	 the	orient	phase;	 the	 intelligence	composition	
component	 is	 responsible	 of	 taking	 decisions	 on	 the	 basis	 of	 the	 previous	 observation	 and	 orient	
phase;	the	action	component	is	responsible	of	implementing	an	adaptation	decision	by	reconfiguring	
the	wireless	nodes.		

The	WiSHFUL	 intelligence	 framework	 offers	 a	 common	 set	 of	 tools	 that	 enable	 the	 realization	 of	
intelligent	approaches	using	the	algorithms	from	the	repository.	Together	with	the	UPIs	the	WiSHFUL	
software	 architecture	 of	 the	 intelligence	 framework	 enables	 reasoning	 about	 the	 current	 network	
state	and	applying	actions	to	change	the	configuration	of	radio	and	network.		

Intelligence)Composi/on)
Component)

Data)Collec/on)
Component)

Ac/on)
Component)

WiSHFUL)Intelligence)Repository)
(data)aggrega/on)algorithms,)intelligent)algorithms)))
&)generic)and)showcaseBspecific)ac/on)modules))

WiSHFUL)UPIs)

Aggre%
ga'on*

Data*
Collec'on*

Data*
Analysis* Ac'on*

Applica/on))
API)

	 H2020	-	GA	No.	645274	 D10.2	

 10	

2.2 Intelligence	approaches	and	components	developed	in	Y2		
We	envisioned	two	main	methodological	approaches	for	designing	network	 intelligence:	 i)	building	
off-line	a	network	model	or	classifier	devised	to	estimate	a	specific	performance	figure,	by	working	
on	data	collected	under	different	operating	scenarios,	or	protocol	models	and	simulation	results,	 ii)	
designing	an	on-line	learning	engine,	able	to	update	dynamically	a	prediction	model	as	a	function	of	
run-time	 observations	 and	 act	 consequently.	 The	 two	 approaches	 and	 their	 relationship	 with	 the	
generic	WiSHFUL	UPI	are	summarized	in	the	following	Figure	2.		

	

	
Figure	2	–	High-level	representation	of	off-line	(top)	and	on-line	(bottom)	learning	approaches	for	defining	

network	intelligence.	

network	
model ?

trigger	
action

Application	
Requirements

try different
parameters

[x1,	x2,	..	xM] metric
Yes

No

ob
se
rv
at
io
ns

WiSHFUL UPI

tune
[xM+1,..xN]

[xM+1,..xN]	

off-line	training	
and	modeling

Run-time	
Learning	Engine

Application	
Requirements

[x1,	x2,	..	xN]

WiSHFUL UPI

Try Action

ob
se
rv
at
io
ns

action
ranking

actions
cactionsactions

historycurrent
state

	 H2020	-	GA	No.	645274	 D10.2	

 11	

According	 to	 the	 first	 approach,	 preliminary	 experiments	 are	 planned	 for	 validating	
analytical/simulation	 models,	 or	 for	 training	 a	 data-driven	 model	 by	 means	 of	 machine-learning	
techniques.	 Experiment	 planning	 is	 devised	 to	 cover	 the	most	 representative	 operating	 conditions	
envisioned	in	the	network	problem	under	study,	and	to	capture	cross-correlations	among	the	most	
relevant	model	 inputs	(i.e.	the	network	operation	conditions	and	configurable	parameters)	and	the	
model	output	(i.e.	the	performance	metric	to	be	estimated).	When	the	model	is	ready,	it	can	be	used	
for	estimating	 the	desired	performance	metric	as	a	 function	of	 run-time	observations	of	network	
state	 and	 configurable	 protocol	 parameters,	 in	 order	 to	 find	 dynamically	 the	 optimal	
configurations	for	these	parameters.		

According	to	the	second	approach,	the	network	intelligence	works	by	updating	a	prediction	model	
in	 run-time	 for	 estimating	 the	 effect	 of	 a	 given	 action	 on	 the	 basis	 of	 historical	 network	
observations.	 Multiple	 prediction	 models	 can	 be	 used	 in	 parallel	 for	 comparing	 the	 expected	
benefits	 of	 different	 actions,	 among	 a	 set	 of	 available	 ones.	 The	most	 important	 design	 aspects	
involve	 the	 identification	 of	 the	 learning	 scheme	 for	 updating	 the	 model	 and	 selecting	 the	 best	
actions	 (which	 may	 also	 correspond	 to	 the	 configuration	 of	 a	 given	 parameter).	 Network	
optimization	is	then	achieved,	step-by-step,	as	a	sequence	of	action	decisions.		

Obviously,	 more	 complex	 structures,	 such	 as	 the	 parallel	 utilization	 of	 multiple	 network	 models	
(trained	off-line),	and	even	mixed	approaches	can	be	also	considered.	During	Y2,	we	worked	on	both	
off-line	and	on-line	approaches	with	four	different	showcases,	which	led	to	the	initial	population	of	
the	WiSHFUL	 intelligence	 repository.	 Indeed,	 although	 the	models	 and	 the	 decision	 engines	 have	
been	 used	 for	 solving	 specific	 network	 problems,	 they	 can	 be	 potentially	 re-used	 in	 completely	
different	contexts.	In	particular,	we	developed:	

• a	WSN	 performance	 model:	 this	 data-driven	 model	 is	 devised	 to	 estimate	 performance	 of	
WSNs	 under	 different	 MAC	 protocols,	 as	 a	 function	 of	 node	 density	 and	 interference	
conditions;	

• a	WiFi	 performance	 model	 for	 multi-cell	 scenarios:	 	 this	 data-driven	 model	 is	 devised	 to	
classify	interference	conditions	experienced	in	different	cells	as	hard,	soft	or	zero	interference	
and	identify	blocked	cells;		

• a	Meta-MAC	engine,	for	dynamically	learning	about	the	best	medium	access	decision	among	a	
set	of	elementary	protocol	components,	in	WiFi	fully-connected	networks	under	varying	traffic	
conditions;	

• a	channel-hopping	decision	engine,	for	inferring	about	the	channel	that	will	remain	available	
for	 longer	 time	 intervals	 in	 cognitive	 networks,	 in	 case	of	 predictable	 behaviours	 of	 primary	
users.	

	

2.3 Implementation	of	the	framework	for	building	intelligence		
As	described	in	section	2.1	and	2.2,	a	set	of	algorithms	and	modules	have	to	interact	with	each	other	
through	the	WiSHFUL	intelligence	framework.	A	specified	interface	is	required,	so	each	module	can	
cooperate	with	another,	i.e.	the	input	of	one	module	should	be	able	to	understand	the	output	of	an	
algorithm.	 The	 linking	 of	 modules	 and	 algorithms	 should	 in	 turn	 also	 be	 checked	 for	 minimal	
consistency	and	compatibility.	

Comparison	of	different	suitable	frameworks	
There	are	already	several	drag	and	drop	graphical	user	interfaces	available	that	are	open	source	and	
might	suit	the	needs	of	the	intelligence	framework.	

A	comparison	is	given	in	the	Table	1.	Comparing	several	key	points	such	as:	

	 H2020	-	GA	No.	645274	 D10.2	

 12	

• Drag	and	drop	features	are	one	of	the	key	points	that	the	system	should	have.	The	ability	to	
take	a	(few)	component,	drop	it	(them)	on	a	sandbox	dashboard	and	interconnect	them	as	the	
user	sees	fit.	

• Configurable	 components:	 the	 depth	 of	 configurability	 of	 components	 introduced	 into	 the	
framework.	

• Component	 interaction	 describes	 the	way	 in	which	 the	 components	 communicate	with	 one	
another.	Here	was	 investigated	 if	 there	 is	a	 standardized	protocol	 for	 this	communication	 to	
take	place,	which	is	important	if	third	parties	develop	new	components.	

• Web	UI:	is	the	application	only	client-side	application	or	is	the	UI	available	via	a	browser?	The	
latter	is	preferred,	as	it	offers	more	portability	to	different	platforms.	

• Socket	 interaction:	 describes	 the	 possibility	 for	 inter-process	 communication	 (by	 means	 of		
TCP/IP	sockets).	

• Python	support:	does	the	framework	support	(user)code	written	in	Python?	
• Next,	 the	 programming	 language	 for	 developing	 new	 components	 to	 extend	 the	 framework	

was	investigated.	
• Subsequently	it	would	be	very	convenient	if	the	framework	could	call	external	scripts,	located	

on	local	machine	of	the	user.	This	enables	interaction	with	complex	algorithms,	reasoning	and	
statistics	platforms	(e.g.	MATLAB).	

• It	is	also	important,	for	future	development,	that	a	wide	user	base	and	component-repository	
is	available.	

• Lastly,	the	system	should	be	open	source.	

	

Functionality	/	
Framework	 Node-RED	 LimeDS	 jsPlumb	 ThreeNodes	

Application	domain	 IoT	

Integration	with	
internal	or	

external	data	
services	

Library	to	link	
HTML	

structures	

Visualizing	
geometric	

shapes	/	basic	
programming	

Drag	&	drop	 	 	 	 	
Configurable	
components	 	 	 	 Not	easy	

Component	interaction	
(standardized?)	 	 	 User	Defined	 Not	modifiable	

Web	UI	 	 Java	engine	 	 	
Sockets	interaction	 	

No,	only	http	
webservices	 	 	

Python	support	 Indirect	 	 	 	
Programming	language	 JavaScript	 JavaScript	 JavaScript	 non	

configurable	

Call	external	scripts	 with	params,	
capturing	outputs	 ?	

Not	Easily	
(implement	
yourself)	 	

Repository	 http://flows.node
red.org/	 	 	 	

Open	Source	 	 Not open source	 	 	

Table	1:	Comparing	intelligence	framework	candidates	

	

Based	 on	 Table	 1,	 a	 choice	was	made.	 The	 choice	was	Node-RED,	 a	 tool	 designed	 by	 IBM	 to	wire	
different	components	in	the	context	of	Internet	of	Things	(IoT).	

	 H2020	-	GA	No.	645274	 D10.2	

 13	

Drag	&	drop	
The	 Node-RED	 UI	 is	 intuitive	 and	 features	 a	 toolbox	 with	 possible	 components	 on	 the	 left.	 By	
dragging	them	to	the	board	and	connecting	those	with	others,	complex	interactions	and	ultimately	a	
flow	can	be	created.	

Configurable	components	
The	pre-existing	nodes	are	open-source	and	can	be	modified.	

Interaction	among	internal	Node-RED	components	
Node-RED	uses	JSON	as	an	intermittent	protocol	to	communicate	with	different	nodes.	Messages	are	
serialized	in	JSON	and	exchanged	between	components/nodes.	

It	 would	 thus	 be	 possible	 to	 create	 a	 database	 block,	 configure	 it,	 and	 feed	 information	 to	 an	
intelligence	block,	resulting	in	changing	a	parameter	via	an	action	block.	

Interaction	with	external	components	
As	compared	in	Table	1,	Node-RED	can	interact	with	external	components	by	executing	scripts.	This	
can	be	implemented	in	two	ways:	

1. Running	external	scripts	/	binaries	using	an	exec-node	
2. Running	external	scripts	/	binaries	using	a	daemon-node	(plugin)	

With	the	key	difference	of	Unix	STDIN	/	STDOUT	pipes	remain	open	in	option	2.	

Option	1	is	also	blocking,	it	will	wait	for	the	binary	to	execute	completely	and	return	to	Node-RED,	or	
using	a	timeout	which	will	kill	the	external	component.	

Passing	arguments	to	external	scripts	can	be	tricky	and	 is	 limited.	For	simple	text-based	arguments	
this	is	pretty	straightforward,	but	when	complex	JSON-messages	have	to	be	passed,	it	would	be	best	
to	open	a	socket	or	pipe.	

In	Wishful	context	it	would	be	very	convenient	if	UPI	functions	could	be	called	directly	from	a	Node-
RED	component,	 interacting	with	a	Global	Controller	that	is	compatible	with	Node-RED	information	
stream.	

Creating	components	
Several	 nodes	 already	 pre-exist	 in	 Node-RED	 (either	 native	 or	 via	 the	 extensive	 repository	 at	
http://flows.nodered.org/):	

	
Figure	3:	Pre-existing	Node-RED	nodes	

One	can	use	several	methods	to	open	sockets,	connect	to	databases,	and	access	the	filesystem	for	
files.	 These	 nodes	 are	 all	 open	 source	 and	 some	 can	 be	 downloaded	 through	 the	 Node-RED	
repository.	

	 H2020	-	GA	No.	645274	 D10.2	

 14	

	
Figure	4:	Sub-Flows	

	

As	 shown	 in	 Figure	4,	 a	user	 can	group	 several	nodes	 into	a	 Sub-Flow.	 Sub-Flows	 can	also	 contain	
other	Sub-Flows.	This	makes	it	easy	to	preserve	an	overview	of	a	complex	system.	

Using	only	basic	components	it	is	already	possible	to	start	and	stop	WiSHFUL	Global	Control	Program:	

	
The	blue	nodes	trigger	the	function	nodes	that	generate	the	configuration	files	for	the	Global	Control	
program.	If	the	program	is	running,	all	information	is	displayed	in	the	Node-RED	log-window.	

In	order	to	modify	certain	parameters,	the	Global	Control	Program	script	should	be	adapted	slightly	
to	accept	communication	from	Node-RED.	A	handler	was	added	that	opens	a	socket	and	accepts	
JSON-data,	which	then	translates	to	a	UPI-call.	The	Node-RED	component	that	supports	this	
communication	is	a	newly	implemented	UPI_Exec-node	(of	which	the	user	interface	is	displayed	in	
Figure	5).	
	

	
Figure	5:	UPI-Exec	node	

	 H2020	-	GA	No.	645274	 D10.2	

 15	

This	node	can	execute	a	set	and	get_parameter	UPI-function.	The	result	of	the	node	is	JSON,	which	
will	be	accepted	and	interpreted	by	the	Global	Control	program,	which	in	turn	executes	the	
appropriate	UPI	call	and	returns	its	response	to	the	Node-RED	context	and	specifically	to	the	
UPI_Exec-node	component	(success	or	fail)	that	initiated	the	procedure.	

	
A	small	demo	flow	demonstrates	the	use	of	the	node	(Figure	6).	It	sets	the	channel	of	the	physical	
layer	of	a	sensor	node	to	a	specific	value.		
	

	
Figure	6:	Modifying	the	PHY-channel	using	UPI_Exec	nodes	

	
In	 order	 to	 fully	 integrate	 the	 intelligence	 algorithms,	 it	 was	 necessary	 to	 create	 custom	 nodes.	
Several	 dummy	 nodes	 were	 implemented,	 a	 toolbox-screenshot	 is	 provided	 in	 Figure	 6.	 Future	
implementation	work	will	allow	them	to	properly	communicating	with	each	other.	

	

	
Figure	7:	Dummy	modules	

The	Node-RED	framework	will	need	to	be	extended	further	with	custom	nodes	to	make	interaction	
with	(1)	data,	(2)	intelligence	and	(3)	action	components	possible,	as	already	described	in	2.1.	

	 	

request
{
 "execute_upi_function":{
 "upi_type":"radio",
 "upi_func":"set_parameters",
 "node_list":[
 1,
 2
],
 "args":{

"IEEE802154_phyCurrentChannel":12
 }
 }
}

response
{
 "1":{
 "IEEE802154_phyCurrentChannel":12
 },
 "2":{
 "IEEE802154_phyCurrentChannel":12
 }
}

	 H2020	-	GA	No.	645274	 D10.2	

 16	

3 Intelligence	showcases	based	on	off-line	modelling		

3.1 Cognitive	MAC	protocol	selection	

Motivation	and	problem	statement	

Wireless	 sensor	 networks	 (WSN)	 have	 experienced	 explosive	 growth	 due	 to	 the	 promising	 and	
innovative	application	scenarios	arising	in	the	context	of	the	Internet	of	Things	(IoT).	The	availability	
of	 inexpensive	 low-power	 sensor	 devices	 has	 led	 to	 an	 unprecedented	 surge	 in	 the	 number	 of	
connected	devices.	 These	devices	 generate	 traffic	 from	heterogeneous	 radios	 that	 follow	different	
medium	access	protocols	and	communication	standards.	A	 few	examples	 in	 the	2.4GHz	unlicensed	
band	 include	 IEEE	 802.15.4,	 Bluetooth,	 WiFi,	 RFIDs,	 while	 in	 the	 sub-1GHz	 LoRA,	 SigFox,	 IEEE	
802.11ah,	 etc.,	 each	 suitable	 for	 a	 specific	 application	 domain.	 Such	 diversity	 of	 wireless	
devices/technologies,	 applications	 and	 services	 will	 pose	 several	 communication	 challenges,	
particularly,	 co-existence,	 cross-technology	 interference,	 spectrum	 scarcity	 and	 uncertainty	 in	
communication	quality.	

	To	tackle	this	problem,	more	sophisticated	medium	access	(MAC)	protocols	are	needed.	Traditional	
wireless	MAC	 protocols	 are	 typically	 designed	 to	 optimally	 perform	 for	 low-power	 operation	 (e.g.	
ZigBee,	Bluetooth	low	energy),	 low	latency	(e.g.	wireless	HART),	high	throughput	(e.g.	WiFi)	or	high	
reliability	 (e.g.	 TSCH).	 We	 argue	 that	 rather	 than	 developing	 optimized	 solutions	 for	 specific	 IoT	
application	 domains,	 a	 more	 suitable	 approach	 may	 be	 a	 cognitive	 MAC	 layer	 that	 is	 able	 to	
dynamically	 choose	 the	most	 appropriate	MAC	 protocol	 and	 configuration	 parameters	 in	 order	 to	
adapt	 to	observed	network	conditions	and	maintain	 the	communication	quality	with	 regard	 to	 the	
application	requirements.		

The	idea	of	cognitive	communication	originates	from	the	cognitive	radio	(CR)	community,	however,	
to	this	end	their	efforts	have	been	focused	on	prototypes	for	powerful	radios	such	as	SDR	platforms	
[1].	In	this	work,	we	present	a	system	design	and	first	step	implementation	towards	a	cognitive	MAC	
layer	 for	 constrained	 devices.	 We	 argue	 that	 the	 key	 component	 for	 an	 cognitive	 MAC	 layer	 is	
predictable	 performance.	 From	 a	 networking	 perspective,	 the	 most	 relevant	 aspect	 of	 reliable	
wireless	 communication	 quality	 is	 the	 packet	 delivery	 performance	 [2].	 	 In	 particular,	 for	 energy-
constrained	 devices	 such	 as	 in	 battery-powered	wireless	 sensor	 networks	 (WSN),	 one	 of	 the	main	
goals	is	to	reduce	the	number	of	radio	transmissions	and	to	simultaneously	increase	packet	delivery.	
Packet	reception	rate	and	throughput	are	 important	as	they	directly	relate	to	energy	consumption.	
Efficient	 performance	 estimation	 in	 wireless	 networks	 is	 crucial	 as	 it	 can	 reduce	 the	 energy	
consumption	by	alleviating	situations	with	failing	transmissions.	

Therefore,	we	 use	machine	 learning	 techniques	 to	model	 the	 packet	 delivery	 as	 a	 function	 of	 the	
collected	 measurements	 (number	 of	 neighbours,	 packet	 inter-arrival	 times,	 number	 of	 received	
packets,	number	of	observed	collisions)	[3].	Although	an	essential	part	for	our	cognitive	MAC	layer,	
the	 created	 machine	 learning	 model	 can	 act	 as	 a	 standalone	 reusable	 performance	 prediction	
component	that	can	be	integrated	into	other	systems	where	performance	prediction	is	necessary.	

	

3.1.1 General	overview		
Accurate	MAC	 layer	 performance	 estimation	 in	 low-power	wireless	 networks	 is	 a	 challenging	 task	
due	to	the	notoriously	dynamic	and	unpredictable	wireless	environment.	In	order	to	study	the	packet	
error	 rate	 experienced	 with	 a	 given	 MAC	 protocol	 we	 used	 machine	 learning	 as	 an	 effective	
technique	for	real-time	characterization	of	the	communication	performance	as	observed	by	the	MAC	
layer	 [3].	 Our	 approach	 is	 data-driven	 and	 consists	 of	 three	 steps:	 extensive	 experiments	 for	 data	
collection,	 offline	 modelling	 and	 trace-driven	 performance	 evaluation	 [4].	 The	 following	 sections	
explain	the	process	of	deriving	the	machine	learning	model.	

	 H2020	-	GA	No.	645274	 D10.2	

 17	

In	order	 to	study	 the	MAC	 layer	performance,	extensive	experiments	have	been	performed	on	the	
wilab2	testbed	facility	in	Ghent.	

We	used	up	to	30	RM090	nodes	with	an	IEEE	802.15.4	radio	organized	in	a	star-like	network	topology	
as	 shown	 on	 Figure	 8.	 All	 nodes	 run	 a	 CSMA/CA	 MAC	 protocol	 that	 is	 developed	 in	 the	 TAISC	
framework	 [5].	 They	 have	 been	 configured	 to	 periodically	 generate	 a	 100B	 message	 to	 a	 single	
receiver	 located	 in	 the	centre	of	 the	 topology.	The	 transmission	power	 is	 set	 to	 the	maximum,	 i.e.	
5dBm,	 to	ensure	 that	all	nodes	are	 in	communication	 range.	To	 incorporate	all	 factors	 that	 impact	
the	MAC	 performance	 we	 setup	 several	 experiments	 varying	 the	 number	 of	 sending	 nodes	 (2-30	
nodes),	and	the	application	traffic	load	(1	pckt/2s,	1	pckt/s,	2	pckts/s,	4	pckts/s,	8	pckts/s,	16	pckts/s	
and	64	pckts/s).	 In	order	to	study	the	MAC-level	performance	under	high	 interference,	we	used	an	
USRP	B210	to	generate	controllable	interference	patterns	by	transmitting	a	modulated	carrier	for	2	
ms,	followed	by	an	8	ms	idle	period	(repeating	this	over	time).	

	
Figure	8	Experiment	setup	

	

The	setup	consists	of	up	to	28	wireless	nodes.	The	basic	experiment	consists	of	a	variable	number	of	
sender	nodes	and	one	receiving	node,	i.e.	sink	node.		To	facilitate	the	experimental	control	and	data	
collection	from	the	nodes	a	WiSHFUL	UPI	global	control	program	has	been	implemented.	The	global	
control	program	sets	up	the	MAC	and	application	level	parameters	(e.g.	MAC	protocol,	packet	size…)	
on	all	nodes	and	controls	the	duration	for	monitoring	the	measurements.	During	the	experiment	the	
density	 and	 network	 load	 has	 been	 controlled	 by	 configuring	 opportunistically	 the	wireless	 nodes	
involved	into	the	experiment,	while	interference	has	been	introduced	by	the	synthetic	interferer	as	
explained	in	previous	section.	The	sink	node	collects	statistics	for	each	received	packet	and	forwards	
them	to	the	global	controller	for	storage	(using	the	event-based	monitoring	WiSHFUL	functionality).		

	

Data	collection	

To	simplify	experiment	control	and	data	collection	we	created	a	global	control	program	on	the	global	
controller	 using	 the	Unified	 Programming	 Interfaces	 (UPIs)	 developed	by	 the	WiSHFUL	project	 [6].	
We	 used	 the	 UPIs	 to	 collect	 measurements	 from	 wireless	 nodes,	 configure	 radio	 and	 network	
parameters	and	on-the-fly	adapt	node	configuration	on	nodes	that	run	a	WiSHFUL	agent	program.	

	 H2020	-	GA	No.	645274	 D10.2	

 18	

The	global	 control	 program	sets	up	 the	MAC	and	application	 level	parameters	 (e.g.	MAC	protocol,	
packet	size…)	on	all	nodes	and	controls	the	monitoring	duration.	During	the	experiment	the	density	
and	application	 load	has	been	controlled,	while	 interference	has	been	 introduced	by	 the	 synthetic	
interferer.	

We	 run	several	experiments	with	 the	aforementioned	setups	and	measured	several	aspects	of	 the	
MAC-level	 performance,	while	 the	 system	was	 operating	 (∼18h).	We	 captured	 raw	data	with	 per-
packet	 statistics	 using	 events	 available	 for	 the	 IEEE	 802.15.4	 connector	 module.	 The	 raw	 data	
consists	 of:	 Sender	 ID,	 802.15.4	 Sequencing	 Number,	 Topology	 (Node	 density),	 Interference	
Indication,	Traffic	Load,	packet	loss.	

	

Feature	space	design	

We	 extracted	 the	 most	 relevant	 features	 for	 predicting	 the	 MAC	 performance	 from	 consecutive	
observation	intervals	of	the	raw	data.	Those	are:	number	of	detected	nodes	(d),	inter-packet-interval	
(IPI),	number	of	received	packets	(rP)	and	the	number	of	erroneous	packets/frames	(errP).	Then	we	
formed	the	following	feature	vectors:	

𝑥(!) = [𝑑, 𝐼𝑃𝐼, 𝑟𝑃, 𝑒𝑟𝑟𝑃]!,

and	the	corresponding	communication	reliability	in	terms	of	packet	loss	rate,	

𝑦(!) = 𝑝𝑙𝑟.

The	 density,	 𝑑,	 is	 a	 good	 indicator	 about	 the	 number	 of	 contending	 nodes	 and	 potential	 intra-
technology	 interference.	 The 𝐼𝑃𝐼	 is	 a	 good	 feature	 for	 reasoning	 about	 the	 current	 application	
demand	 and	 traffic	 load.	 Finally,	 last	 two	 features,	 𝑟𝑃	 and	 𝑒𝑟𝑟𝑃,	 are	 representative	 for	 inferring	
about	the	interference	level	and	congestion	in	the	network.	

	

Offline	machine	learning		

Pairs	 of	 (𝑥(!),	𝑦(!))	 were	 used	 to	 train	 three	machine	 learning	 algorithms:	 regression	 trees,	 linear	
regression	and	neural	networks.	

Linear regression

Linear	 regression	 is	 a	 technique	 for	 modelling	 the	 relationship	 between	 the	 input	 (x)	 and	 output	
variable	(y)	so	that	the	output	is	a	linear	combination	of	the	input	variables	(dependent	variable).	

y(x)=θ0 +θ1x1 +!+θnxn =θ0 +

i=1

n

∑θi xi 	

We	used	the	linear	regression	implementation	available	in	Weka	[7].	

Regression trees

A	 regression	 tree	 is	 a	 tree-based	 learning	 algorithm	 that	 is	 used	 to	 predict	 a	 variable	 that	 takes	
continuous	or	ordered	values.	Regression	trees	is	a	supervised	learning	algorithm	that	creates	a	tree-
like	graph	or	model	 that	 represents	 the	possible	outcomes	or	 consequences	of	using	 certain	 input	
values.	The	tree	consists	of	one	root	node,	internal	nodes	called	decision	nodes,	which	test	its	input	
against	 a	 learned	 expression,	 and	 leaf	 nodes	 which	 correspond	 to	 a	 final	 class	 or	 decision.	 The	
learning	tree	can	be	used	to	derive	simple	decision	rules	that	can	be	used	for	decision	problems	by	
starting	at	the	root	node	and	moving	through	the	tree	until	a	leaf	node	is	reached	where	a	prediction	
outcome	is	assigned.	
	

	 H2020	-	GA	No.	645274	 D10.2	

 19	

We	used	the	M5P	regression	tree	algorithm	implementation	available	in	Weka.	

Neural	networks	

Neural	Networks	(NN)	or	artificial	neural	networks	(ANN)	is	a	supervised	learning	algorithm	inspired	
on	the	working	of	the	brain,	that	is	typically	used	to	derive	complex,	non-linear	decision	boundaries	
for	building	a	classification	model,	but	are	also	suitable	for	training	regression	models	when	the	goal	
is	 to	 predict	 real-valued	 outputs.	 Neural	 networks	 are	 known	 for	 their	 ability	 to	 identify	 complex	
trends	and	detect	complex	non-linear	relationships	among	the	 input	variables	at	the	cost	of	higher	
computational	burden.	A	neural	network	model	consists	of	one	input,	a	number	of	hidden	layers	and	
one	output	layer.	The	input	layer	corresponds	to	the	input	data	variables.	Each	hidden	layer	consists	
of	 a	 number	 of	 processing	 elements	 called	 neurons	 that	 process	 its	 inputs	 (the	 data	 from	 the	
previous	layer)	using	an	activation	or	transfer	function	that	translates	the	input	signals	to	an	output	
signal.	

We	used	the	multilayer	perceptron	implementation	available	in	Weka	to	train	the	neural	network.	

The	algorithms	were	 trained	over	several	observation	 intervals,	and	validated	with	a	10-fold	cross-
validation	algorithm	[4].	We	used	the	root	mean	squared	error	(RMSE):	

𝑅𝑀𝑆𝐸 =
1
𝑁

(𝑦! − 𝑦!)!
!

!!!

where,	𝑦! 	are	the	real	outcome,	while	𝑦! 	the	estimations,	and	the	correlation	coefficient:	

	𝜌!! =
!"#(!,!)
!!!!

	

as	performance	metrics	 to	 assess	 the	performance	of	 the	algorithms.	 Figure	9	 illustrates	 the	high-
level	processes	for	building	the	machine	learning	models.	

	
Figure	9	Offline	machine	learning	training	process	

	 H2020	-	GA	No.	645274	 D10.2	

 20	

3.1.2 WiSHFUL	functionalities	and	showcase	phases	
Figure	10	presents	 the	conceptual	 system	architecture	 to	accomplish	a	cognitive	 loop	 for	cognitive	
MAC	selection	[3].	There	are	two	main	components,	the:	

• Sensor	 network	 -	 a	 set	 of	 wireless	 nodes	 that	 generate	 information	 and	 are	 capable	 of	
reconfiguring	its	transmission	parameters	at	runtime.	

• Global	 controller	 -	 the	 central	 entity	 that	 collects	 and	 uses	 information	 from	 the	wireless	
nodes	 to	 predict	 the	 MAC-level	 performance.	 Based	 on	 the	 predictions,	 it	 dynamically	
decides	how	to	configure	the	MAC	layer	so	as	to	improve	the	overall	network	performance	
(e.g.	 to	 cope	 with	 cross-technology	 interference	 it	 may	 decide	 to	 configure	 a	 more	
interference	robust	MAC	protocol,	e.g.	TSCH).	Finally,	it	disseminates	the	new	configuration	
to	the	nodes.		

	

	
Figure	10	Cognitive	MAC	architecture	

	

At	the	heart	of	the	global	controller	is	a	machine	learning	(ML)	model	that	learns	the	environmental	
properties	 and	 uses	 the	 knowledge	 to	 predict	 the	 future	 MAC	 performance.	 These	 performance	
predictions	are	compared	with	the	application	requirements	to	decide	which	MAC	protocol	would	be	
the	most	appropriate	to	use.		

For	instance,	a	CSMA/CA	MAC	protocol	can	achieve	low	latency	in	low	data	rate	applications,	while	in	
high-data	 rate	 applications	 and	under	high	 interference	 it	might	 significantly	underperform	due	 to	
too	 unsuccessful	 channel	 contentions.	 On	 the	 other	 hand,	 a	 time-slotted	 channel	 hopping	 (TSCH)	

	 H2020	-	GA	No.	645274	 D10.2	

 21	

MAC	can	deliver	high	throughput	in	high	data-rate	applications	even	under	interfering	transmission	
from	other	technologies	by	avoiding	channel	contentions	and	changing	the	central	frequency	of	the	
operating	channel.	However,	the	channel	hopping	mechanism	that	is	performed	in	each	subsequent	
time	slot	may	downgrade	the	performance	in	another	dimension.	

	

Next	steps:	

The	 current	 results	 presents	 a	machine	 learning	 based	MAC	 performance	 predictor,	which	 can	 be	
used	 to	 design	 a	 new	 intelligent	MAC	 layer	 that	 can	 detect	 a	 poorly	 behaving	MAC	 protocol	 (e.g.	
CSMA)	 by	 predicting	 its	 performance	 in	 the	 future	 (e.g.	 switch	 from	 a	 CSMA/CA	 to	 an	 alternative	
more	 robust	 MAC	 like	 TSCH).	 This	 is	 the	 basis	 for	 our	 future	 work,	 to	 implement	 the	 model	 in	
production.	

	

3.1.3 New	intelligence	modules	
The	 proposed	 intelligent	 algorithm	 for	MAC	 performance	 estimation	 can	 be	 used	 as	 a	 standalone	
module	and	integral	part	of	a	smart	WSN.	However,	the	final	goal	of	this	showcase	is	to	demonstrate	
that	it	can	be	used	for	intelligent	MAC	selection.	

	

Figure	11		Conceptual	neural networks performance predictor

The	intelligence	module	is	a	trained	neural	network	(Figure	11)	MAC	performance	predictor	and	can	
be	 easily	 exported	 from	 standard	machine	 learning	 toolboxes/libraries	 (e.g.	Weka	 [8],	 scikit-learn	
[9]).	

	

3.1.4 Results	
As	the	distribution	of	the	process	that	has	generated	the	data	sample	is	a	priori	unknown,	we	tested	
both	 linear	 and	 non-linear	 regression	 algorithms.	 Figure	 12	 and	 Figure	 13	 present	 the	 validation	
performance	 scores	 in	 terms	 of	 correlation	 coefficient	 and	 root	mean	 squared	 error	 (RMSE).	 The	
performance	was	evaluated	with	regard	to	the	feature	extraction	time	window.	

Features	

MAC	
performance	

	

	 H2020	-	GA	No.	645274	 D10.2	

 22	

	

Figure	12	Prediction	performance	for	linear	regression,	regression	trees	and	neural	networks	(correlation	
coefficient)	

	

Figure 12	 and	 Figure	 13	 show	 that	 a	 neural	 network	 with	 10	 hidden	 layers	 (HL),	 2000	 training	
iterations,	and	a	 learning	rate	of	a	=	0:1,	captured	best	the	underlying	distribution	of	the	data.	We	
selected	the	neural	network	model	for	an	observation	interval	of	30s	as	an	appropriate	time	window	
for	making	accurate	future	performance	prediction.	

Figure	13	Validation	error	for	linear	regression,	regression	trees	and	neural	networks	(RMSE)	

	

	 H2020	-	GA	No.	645274	 D10.2	

 23	

In	 order	 to	 validate	 how	 well	 the	 trained	 neural	 network	 model	 generalizes	 a	 separate	 set	 of	
experiments	 has	 been	 performed	 with	 a	 shorter	 duration	 of	 monitoring	 (~8h).	 The	 new	
measurements	 have	 been	 used	 to	 derive	 a	 validation	 set.	 The	 goal	 of	 this	 dataset	 is	 to	 find	 an	
estimate	of	the	prediction	error	of	the	model	in	the	future.	

Figure	 14	 illustrates	 how	 well	 the	 model	 predicts	 𝑝𝑙𝑟	 on	 instances	 from	 the	 second	 set	 of	
experiments	 (the	 validation	 set).	 It	 can	 be	 seen	 that	 the	 predictions	 are	 good	 under	 changing	
environmental	properties:	𝑑, 𝐼𝑃𝐼,	and	interference	scenarios.	

Figure	14	Performance	of	neural	networks	predictions	vs.	actual	values	on	the	test	data	

	

3.2 MAC	optimizations	in	high-density	scenarios	(HIDE)	
In	 this	 showcase	 we	 describe	 the	 HIDE	 intelligent	 module	 (Intelligent	 Module	 for	 HIgh	 DEnsity	
networks).	The	HIDE	module	recognizes	the	presence	of	hidden	and	exposed	nodes	 in	high-density	
scenarios.	 In	 facts,	 it	 is	well	 known	 that	 in	 case	of	high-density	deployments,	WiFi	networks	 suffer	
from	serious	performance	impairments	due	to	hidden	and	exposed	nodes,	belonging	to	overlapping	
BSSs	 (OBSSs)	 that	 interfere	 each	 other	 [10].	 In	 dense	 environments,	 pathological	 topologies	 with	
hidden	and	exposed	nodes	are	more	probable	to	occur	than	in	sparse	wireless	networks.		

3.2.1 General	overview		
This	 showcase	 uses	 the	 HIDE	 intelligent	 module.	 It	 offers	 several	 capabilities	 including	 advanced	
detection	of	specific	inter-BSS	interference	conditions,	context	recognition,	focused	on	hidden	nodes	
detection,	 and	 appropriate	 actions	 about	 MAC	 adaptation.	 Currently	 the	 detection	 phase,	 the	
creation	of	 the	 classifier	 and	 its	 training	are	 run	offline,	 as	a	Matlab	 script	 trained	with	 simulation	
data.	Then,	this	provides	decisions	that	are	taken	on	nodes	in	the	testbed.	

	

Recognizing	hidden	nodes	

To	validate	hidden	node	creation	and	recognition	we	use	an	archetypal	tunable	topology	composed	
by	four	nodes:	two	APs	and	two	STAs.	

	 H2020	-	GA	No.	645274	 D10.2	

 24	

		
Figure	15	-	Archetypal	topology	for	the	hidden	node	problem	

	

Despite	the	simplicity	of	the	used	topology	with	hidden	nodes,	this	is	difficult	to	obtain	because	we	
require	for	tuning	the	distance	between	these	two	BSSs:	AP1-STA1	and	AP2-STA2,	in	order	to	show	
the	desired	phenomena.			

Our	 topology	 differs	 from	 the	 typical	 three-nodes	 topology	 that	 is	 usually	 used	 for	 explaining	 the	
hidden	node	problem.	This	 is	 because	we	aim	 to	demonstrate	 that	 the	hidden	node	phenomenon	
has	 different	 behaviour	 depending	 on	 some	 topological	 parameters	 when	 more	 BSSs	 overlap	 in	
dense	networks.	To	explain	the	hidden	node	phenomenon	arising	within	dense	networks,	we	refer	to	
the	topology	depicted	in	Figure	15.	

There	are	two	BSSs	both	with	downlink	traffic,	therefore	frames	go	from	APs	to	STAs.	The	distance	
between	the	STA	and	its	AP	is	fixed	and	they	have	an	high-SNR	link,	while	the	distance	between	the	
two	BSSs	changes.	By	tuning	the	inter-BSS	distance	we	change	the	network	density	and	it	has	been	
demonstrated	that	different	levels	of	interference	conditions	occur:	hard,	soft	and	zero	interference	
[10].	These	are	respectively	indicated	with	letters	H,	S,	and	Z	in	Figure	19,	where	distance	spans	from	
0	to	200m.	We	exploit	such	interference	classification	for	designing	the	advanced	detection	system,	
which	works	also	in	generic	topologies	and	is	therefore	able	to	classify	interference	patterns	in	multi-
hop	wireless	networks	

First,	 to	understand	the	effects	of	 interference	phenomena,	we	run	testbed	experiments	organized	
into	three	phases	lasting	120s	each,	as	reported	in	Figure	17.	

	
Figure	16-	Interference	classification	depending	on	distance	between	the	two	overlapping	BSSs	

	

	 H2020	-	GA	No.	645274	 D10.2	

 25	

	 	
	 	 (a)	

	
	 	 (b)	

	
	 	 (c)	

Figure	17	-	Throughput	in	downlink	of	the	two	BSSs	under	different	inter-BSS	interference	conditions:	soft	
(a),	hard	(b),	and	zero	interference	(c).		

	 H2020	-	GA	No.	645274	 D10.2	

 26	

These	phases	permit	to	evaluate	effects	due	to	reciprocal	interference	between	the	two	BSSs.	During	
the	 first	phase,	only	one	UDP	flow	from	AP2	 is	active,	 then	the	two	APs	run	their	 flows	 in	parallel,	
finally	only	AP1	flow	remains	active.	We	tuned	the	transmission	power	and	used	attenuators	in	order	
to	demonstrate	what	happens	at	variable	distances:	in	Figure	17a	the	APs	transmit	at	the	maximum	
transmission	power	of	20dBm	and	can	perfectly	hear	each	other;	in	these	conditions,	they	basically	
share	 the	 channel	 capacity	 and	 get	 one	half	 of	 the	 total	 throughput	 each,	 as	 expected	 in	 the	 soft	
interference	 area.	 The	 phenomenon	 gets	 worse	 in	 Figure	 17b,	 corresponding	 to	 the	 hard	
interference	area	when	the	transmission	power	is	reduced	to	1dBm	and	the	two	APs	consistently	fail	
in	sensing	each	other	and	the	hidden	node	phenomenon	completely	 ruins	performance	of	the	first	
BSS.	Finally,	in	Figure	17c	we	report	results	corresponding	to	the	no	interference	area,	obtained	using	
6dB	attenuators	 for	 further	 reducing	 the	 inter-BSS	 interference	and	we	observe	 that	 the	 two	BSSs	
work	 as	 in	 isolated	 conditions,	 because	 they	 do	 not	 interfere	with	 each	 other.	 These	 results	 have	
been	obtained	without	RTS/CTS	and	for	a	data	rate	set	to	11	Mbps.	The	effects	of	using	RTS/CTS	have	
been	verified	in	simulation	[10],	demonstrating	that	this	doesn’t	provide	much	help.	

	

Distributed	and	centralized	intelligence	

This	 showcase	 uses	 a	 twofold	 approach	 for	 recognizing	 performance	 impairments	 due	 to	
interference,	which	have	 their	 specific	data	collection	modules:	 the	centralized	and	 the	distributed	
approaches,	whose	only	difference	resides	in	the	used	features	for	the	interference	classification.	In	
the	 distributed	 case	 we	 feed	 the	 classifier	 with	 busy/idle	 data	 while	 in	 the	 centralized	 case	 we	
provide	topological	information.	

In	fact,	the	advanced	detection	capability	is	implemented	as	a	classifier	both	in	the	distributed	and	in	
the	 centralized	 cases.	 The	 classifier	 is	 trained	 with	 supervised	 learning	 and	 is	 able	 to	 predict	
interference	conditions	experienced	by	wireless	nodes.		

To	have	comparable	 results	we	operate	normalization	and	consider	 in	output	 the	 throughput	over	
the	offered	traffic.		

	

This	normalization	works	also	for	nodes	that	have	heterogeneous	traffic	requirements,	despite	in	our	
simplified	scenario	we	assume	all	nodes	with	saturated	traffic.	

The	advanced	detection	module	predicts	node	 interference	conditions,	which	we	classified	as	hard	
interference	 (H),	 soft	 interference	 (S)	 and	 zero	 interference	 (Z).	 H,	 S	 and	 Z	 interference	 zones	
correspond,	respectively	to	normalized	throughput	in	[0	;	0.25],	in]0.25	;	0.75],	and	in]0.75	;	1].		

	

Data	collection	module	for	the	distributed	approach	

In	the	distributed	approach	the	classifier	uses	 low-level	observations	given	by	busy	and	idle	traces,	
taken	 using	 WiSHFUL	 UPIs.	 These	 traces	 are	 taken	 locally	 on	 the	 nodes,	 then	 values	 taken	 in	 a	
specific	time	window	are	summarized	in	numerical	busy-idle	features	as	follows.		

First,	 the	distributed	data	collection	module	computes	the	cdf	 (cumulative	distribution	 function)	of	
buys/idle	durations,	then	it	reads	the	cdf	in	specific	points	corresponding	to	pre-defined	percentiles,	
as	shown	in	Figure	18.	In	our	showcase	we	sample	the	cdf	at	the	50th,	90th	and	100th	percentile.		

	

y(i) =
throughput

offered traffic

	 H2020	-	GA	No.	645274	 D10.2	

 27	

	
Figure	18–	Typical	cdf	for	duration	of	busy	intervals	and	how	busy_50,	busy_90	and	busy_100	are	obtained	

	

Feature	space	design	for	the	distributed	approach	

For	the	distributed	approach	we	used	raw	data	formatted	as	follows:	
x(i) = [busy50,busy90,busy100,idle50,idle90,idle100] 	

For	 the	 sake	 of	 simplification,	 we	 assume	 that	 nodes	 send	 frames	 with	 the	 same	 size,	 whose	
transmission	time	is	1ms.	Despite	it	is	unrealistic	to	have	homogeneous-sized	frames,	it	is	not	difficult	
to	 extend	 our	 results	 to	 frames	 of	 any	 length.	 In	 absence	 of	 exogenous	 sources	 of	 interference,	
durations	of	busy	time	are	due	to	transmissions,	therefore	their	length	is	exactly	long	as	the	duration	
of	 frame	 transmission.	 Busy	 intervals	 become	 longer	 than	 the	 transmission	 duration	 in	 case	 of	
collisions.	In	fact,	when	one	node	receives	more	than	one	frame	concurrently,	it	results	in	a	collision	
and	 in	 general	 the	 colliding	 frames	 are	 not	 aligned	 in	 case	 of	 hidden	 nodes.	 Moreover,	 several	
collisions	can	occur	in	a	row,	therefore	busy	intervals	become	longer	and	longer.	In	the	case	shown	in	
Figure	18	the	busy	time	is	till	16	times	longer	than	the	frame	duration.	Busy	durations	that	are	one	
hundred	 times	 longer	 than	 the	 frame	 duration	 are	 possible.	 This	 explains	 the	 importance	 of	 this	
feature	 in	predicting	node	performance	due	to	 interference.	Analogous	considerations	are	valid	for	
idle	durations.		

Nodes	are	able	to	distinguish	interference	conditions	due	to	high-density	from	weak	signals	with	low	
SNR,	and	take	the	corresponding	action.	This	distinction	is	made	possible	because	hidden	nodes	and	
flow	in	the	middle	have	specific	recognizable	‘fingerprinting’	in	busy-idle	traces.	

	

Feature	space	design	for	the	centralized	approach	

For	the	centralized	approach	we	used	raw	data	formatted	as	 x(i) = [#neigh1hop , #neigh2hops] .	

In	facts,	 interference	depends	on	network	topology	and	we	used	the	number	of	transmitting	nodes	
at	one	hop	and	at	two	hops	as	relevant	feature	to	model	interference.	In	this	case,	the	numbers	of	
nodes	at	one	hop,	as	well	as	their	unique	identifiers	are	sent	to	the	global	controller,	reporting	also	

0 2 4 6 8 10 12 14 16 18
t [ms]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F
bu

sy
 ti

m
e

busy_50

busy_90 busy_max

	 H2020	-	GA	No.	645274	 D10.2	

 28	

the	MAC	addresses	of	heard	nodes.	The	HIDE	intelligent	module	assembles	these	contributions	and	
computes	 the	 whole	 network	 topology	 by	 obtaining	 the	 adjacency	 matrix	 A.	 Given	 the	 set	 V	 of	
wireless	 nodes,	 which	 are	 the	 vertices	 of	 the	 graph,	 the	 adjacency	matrix	 is	 a	 square	 | V |	×	| V |	
matrix	 whose	 generic	 element	 aij	 is	 one	 when	 node	 i	 listens	 (and	 is	 listened	 from)	 j,	 and	 zero	
otherwise.	The	diagonal	elements	of	the	matrix	are	all	zero,	since	nodes	have	not	self-loops.		

Given	the	adjacency	matrix	the	HIDE	module	computes	the	number	of	two-hops	neighbours	for	each	
node.	 This	 is	 easily	 obtained	 from	 G2	 –	 G,	 where	 G2	 is	 the	 square	 of	 the	 graph	 G.	 These	 two	
observations,	namely	the	numbers	of	one-hop	and	two-hops	neighbours	permit	to	run	a	predictive	
analysis	about	performance,	under	the	assumption	of	all	nodes	offer	saturated	traffic.	

	

HIDE	protocol	selection	and	inter-BSS	synchronization	

HIDE	 implements	 an	 if-then-else	 logic	 for	 protocol	 selection	 based	 on	 predictions	 provided	 by	 the	
advanced	detection	model.	 The	MAC	protocol	 is	 chosen	between	CSMA	and	TDMA	and	 in	 case	of	
TDMA	the	slots	are	dynamically	assigned	per	BSS	rather	then	per	station.	TDMA	frames	are	assigned	
per	BSS.	In	order	to	align	times	slots	of	adjacent	BSSs	we	use	the	time	synchronization	function	(TSF),	
which	 is	 natively	 provided	 by	 IEEE	 802.11	 standard	 and	 that	we	 extended	 in	 a	 non-standard	way.	
More	into	detail,	we	consider	a	synchronizing	AP	that	provides	its	TSF	to	AP1	and	AP2,	which	in	turn	
adjust	 their	 internal	 TSF.	 This	 extra	 AP	 (which	 is	 not	 reported	 in	 Figure	 15)	 is	 heard	 by	 both	
transmitting	 APs,	 its	 presence	 is	 guaranteed	 by	 the	 high-density	 assumption.	 The	 comparison	
between	obtained	performance	with/without	inter-BSS	synchronization	is	schematically	reported	in	
Figure	 19.	 This	 shows	 performance	 degradation	 due	 to	 intra-BSS	 TDM	when	no	 synchronization	 is	
employed	with	overlapping	BSSs.	

In	this	showcase	we	used	the	WMP	platform,	already	discussed	in	detail	in	previous	deliverables.	We	
started	from	the	state	machine	implementing	an	intra-BSS	TDMA	protocol	and	extended	it	by	adding	
the	inter-BSS	synchronization	mechanism.	This	had	the	following	impact	on	WiSHFUL	UPIs:		

• Added	 a	 new	 action	 sync_by_ap,	 parameterized	with	 the	MAC	 address	 of	 the	 synchronizing	
AP.	 	The	synchronized	AP	adjusts	 its	 local	TSF	upon	the	reception	the	new	information	about	
channel	reservations.		

• (future	 work)	 From	 the	 adjacency	 matrix,	 APs	 in	 specific	 positions	 are	 elected	 and	 their	
beacons	are	used	for	 inter-BSS	over-the-air	synchronization.	This	common	reference	signal	 is	
then	 used	 by	 the	 TDMA	 state	 machine	 for	 setting	 the	 slots	 in	 the	 BSS	 reserved	 interval	 in	
which	the	STAs	are	allowed	to	access	the	channel.		

• Assign	 the	 interval	within	 the	 frame	to	 the	 two	BSSs,	as	a	configuration	parameter	 (e.g.	odd	
slots	are	assigned	to	AP1	and	even	slots	to	AP2).		

• Tune	the	interval	size,	which	has	been	set	to	the	minimum	interval	required	for	transmitting	a	
frame	 of	 1500	 bytes	 at	 11	 Mbps,	 in	 order	 to	 test	 our	 system	 under	 tight	 synchronization	
requirements.		

	

	 H2020	-	GA	No.	645274	 D10.2	

 29	

	
(a)	

	
(b)	

Figure	19	–	When	the	two	BSS	use	unsynchronized	TDMAs,	STA1	receives	no	frames	and	STA2	receive	two	
frames	(a).	Using	synchronized	TDMAs,	STAs	receive	two	frames	each	(b). 	

	

(a)	

	

(b)	

Figure	20	–	Real	trace	obtained	from	BSSs	with	un-synchronized	(a)	and	synchronized	TDMAs	(b)	

	

Introducing	 inter-BSSs	 synchronization	 is	 beneficial	 for	 network	 performance,	 as	 demonstrated	 in	
Figure	20,	which	reports	the	channel	occupancy	with	(b)	/without	(a)	inter-BSS	synchronization.	The	

AP1

AP2

src: AP1
dst: STA1

src: AP1
dst: STA1

src: AP2
dst: STA2

src: AP2
dst: STA2

TX

STA1

STA2
src: AP2

dst: STA2
src: AP2

dst: STA2

RX

T = 4 slots

AP1

AP2

src: AP1
dst: STA1

src: AP1
dst: STA1

src: AP2
dst: STA2

src: AP2
dst: STA2

TX

STA1

STA2

src: AP1
dst: STA1

src: AP2
dst: STA2

src: AP1
dst: STA1

src: AP2
dst: STA2

src: AP2
dst: STA2

src: AP2
dst: STA2

RX

T = 4 slots

	 H2020	-	GA	No.	645274	 D10.2	

 30	

power	 envelope	 grabbed	 with	 an	 USRP	 used	 as	 a	 PHY	 sniffer	 demonstrates	 that	 without	
synchronization	 several	 collisions	 occur,	 represented	 by	 the	 overlapped	 power	 masks.	 In	 this	
showcase	we	use	downlink	 traffic,	 therefore	 long	data	 frames	are	 sent	by	APs	and	 short	ACKs	are	
sent	by	STAs,	as	it	is	shown	in	figure	by	different	power	levels	and	durations.	

	

3.2.2 WiSHFUL	functionalities	and	showcase	phases	
In	 this	 paragraph	we	 explain	 the	 use	 of	 the	WISHFUL	 framework	 and	UPIs	 to	 implement	 the	HIDE	
intelligent	module.		

	Specifically	we	exploit	the	following	main	functionalities	supported	by	the	WiSHFUL	UPI:		

• Run	local	control	program	that	tune	and	switch	between	TDMA	and	CSMA	protocols;	
• Collect	 low	 level	 measurements	 on	 the	 busy-idle	 channel	 utilization	 (the	 busy-idle	 trace	 is	

composed	by	a	sequence	of	durations	for	the	idle	and	busy	times);	
• Compute	the	adjacency	matrix;	
• Receive	the	TSF	from	a	synchronizing	AP;	
• Adjust	the	local	TSF;	
• Select	the	radio	program	and	its	parameters	for	each	BSS;	
• Synchronize	 over	 multiple	 BSSs	 by	 the	 mean	 of	 one	 beaconing	 signal	 taken	 as	 common	

reference;	
• Select	radio	program	parameters	(the	number	of	TDMA	slots	assigned	to	each	BSS).	

The	showcase	runs	on	three	main	phases:	detection,	based	on	measurements	and	statistics,	decision	
and	action.	

	

3.2.3 New	intelligence	modules	
The	 HIDE	 intelligent	 module	 for	 advanced	 detection	 and	 interference	 classification	 exploits	 an	
ensemble	 classifier	 and	 in	 particular	 the	 bootstrap-aggregated	 (bagged)	 trees	 algorithm	 [11].	
Individual	 decision	 trees	 tend	 to	 overfit	 whereas	 bagged	 trees	 are	 more	 robust	 because	 they	
combine	 results	 of	 many	 decision	 trees.	 Bagged	 trees	 improve	 generalization	 in	 comparison	 to	
individual	decision	trees	because	they	use	bootstrap	samples	of	the	data	and	select	a	random	subset	
of	predictors	to	be	used	at	each	decision	split.	

	

3.2.4 Results	
Results	 from	 this	 showcase	 aim	 to	 evaluate	 the	 efficacy	 of	 recognition	 capabilities,	 both	 in	
centralized	and	distributed	cases,	as	well	as	the	efficacy	of	applied	MAC	countermeasures.	

To	 present	 the	 performance	 evaluation	 of	 interference	 classification	 we	 use	 confusion	 matrices.	
These	report	the	number	of	elements	and	percentages	of	nodes	that	belong	to	the	true	classes	H,	S,	
and	Z	in	rows	(hard,	soft,	and	zero	interference)	and	fall	within	the	corresponding	predicted	classes	
in	columns.	For	example,	in	Figure	21a	it	results	that	1951	observations	were	in	total	affected	by	true	
hard	interference.	The	classification	algorithm	was	able	to	rightly	predict	the	right	class	H	in	92.2%	of	
cases	(the	true	positive	rate	TPR),	while	in	7.8%	it	was	wrong	(the	false	negative	rate	FNR).	In	facts,	
143	observations	were	classified	as	S	(7%	of	cases)	and	10	as	Z	(0.1%	of	cases),	even	if	they	belonged	
to	the	H	class.	This	means	that	the	mistaken	classification	of	hard	interference	to	zero	interference	is	
quite	 improbable,	 while	 there	 is	 a	 residual	 but	 significant	 probability	 to	 be	 confused	 with	 soft	
interference.	The	same	considerations	hold	for	the	S	and	Z	rows.	

	 H2020	-	GA	No.	645274	 D10.2	

 31	

Results	 in	Figure	21a	and	b	are	related	to	decentralized	 intelligence	that	observes	busy/idle	traces.	
This	 approach	 brings	 to	 93.1%	 of	 accuracy.	 In	 Figure	 21c	 and	 d	 we	 use	 centralized	 topological	
information	exploited	by	the	global	controller	and	resulting	in	77.9%	of	accuracy.	Poorer	accuracy	in	
the	 centralized	 approach	 may	 appear	 counterintuitive,	 but	 can	 be	 explained	 by	 the	 limited	
information	provided,	composed	only	on	topological	aspects.	For	the	sake	of	completeness,	despite	
not	 relevant	 for	 this	 showcase,	 we	 also	 trained	 the	 centralized	 classifier	 with	 all	 the	 described	
features,	obtaining	96%	of	accuracy.	

In	 Figure	 21b-d	 there	 are	 shown	 the	 receiver	 operating	 characteristics	 (ROCs).	 These	 diagrams	
consider	 the	performance	of	a	binary	classifier	as	 its	discrimination	threshold	 is	varied.	 In	our	case	
the	classifier	is	not	binary,	therefore	we	assimilated	it	to	binary	by	considering	two	classes:	the	hard	
interference	class	and	another	class	containing	soft	and	zero	interference.	These	curves	are	obtained	
by	plotting	the	true	positive	rate	(TPR,	or	the	probability	of	detection)	against	the	false	positive	rate	
(FPR,	or	probability	of	false	alarm)	at	various	threshold	settings.		

	

	
(a)	 (b)	

	
(c)	 	

(d)	

Figure	21	–	Classification	results	for	interference	using	radio	features	in	the	distributed	approach	(three	
features	for	busy	and	three	for	idle)	(a,b)	and	using	only	topological	features	in	the	centralized	
approach	(neighbours	at	one	hop	and	at	two	hops)	(c,d)	

	 H2020	-	GA	No.	645274	 D10.2	

 32	

	

Finally,	we	 show	 the	 impact	of	MAC	adaptation	action	by	evaluating	 throughput	 in	 case	of	CSMA,	
static	inter-BSS	TDMA	and	dynamically	assigned	inter-BSS	TDMA.	In	static	assignment,	if	one	BSS	has	
no	 traffic	 to	 transmit,	 its	 assigned	 interval	 is	 wasted.	 With	 dynamic	 assignment,	 this	 slot	 can	 be	
reassigned	to	the	remaining	BSS.		

As	we	have	only	two	overlapping	BSSs,	we	consider	a	periodic	frame	of	two	intervals.	We	assign	odd	
intervals	 to	BSS1	and	the	even	ones	to	BSS2.	Obviously,	 this	static	assignment	 is	not	optimal	when	
only	 one	 traffic	 flow	 exists	 (see	 Figure	 22b).	 In	 the	 dynamic	 scenario,	 we	 assume	 that	 the	
assignments	of	reserved	intervals	can	vary	over	time,	according	to	the	load	experienced	in	each	BSS.	
When	only	 one	BSS	 is	 active,	 both	 reserved	 intervals	 of	 the	 frame	 are	 assigned	 to	 the	 active	 BSS;	
when	 both	 the	 BSSs	 are	 active,	 each	 BSS	 receives	 only	 one	 assignment	 according	 to	 the	 usual	
odd/even	schedule.	Fig.	7	shows	the	throughput	results	obtained	under	inter-BSS	TDMA,	in	the	static	
and	 dynamic	 case.	 Results	 are	 valid	 with	 all	 interference	 classes	 because	 the	 adoption	 of	 time-
division	makes	the	two	BSSs	completely	orthogonal.		

	

	
(a)	

	

	 H2020	-	GA	No.	645274	 D10.2	

 33	

(b)	

	
(c)	

Figure	22	-	Throughput	for	CSMA	in	case	of	hard	interference	(a),	TDMA	with	statically	assigned	slots	in	all	
interference	conditions	(b)	and	TDMA	with	dynamically	assigned	slots	in	all	interference	
conditions	(c)	

	

3.2.5 Next	steps	
This	showcase	presents	three	possible	directions	for	future	improvements.	First,	we	foresee	to	look	
for	 different	 low-level	 observations	 for	 better	 interference	 classification.	 Then,	 we	 propose	 to	
demand	to	the	intelligent	module	the	dynamic	selection	of	one	or	more	beaconing	APs	for	the	inter-
BSS	synchronization,	 through	 the	analysis	of	 the	network	adjacency	matrix.	Finally,	 the	 recognition	
phase	can	be	included	online.	

	 	

	 H2020	-	GA	No.	645274	 D10.2	

 34	

4 Intelligence	showcases	based	on	on-line	learning		

4.1 Distributed	intelligent	selection	of	MAC	protocol:	Meta-MAC	

4.1.1 General	overview	of	Meta-MAC	
In	 this	 showcase	 we	 demonstrate	 how	 learning	 mechanisms	 can	 be	 implemented	 in	 each	 node,	
based	on	channel	observations	gathered	by	means	of	UPI	functions.	In	particular,	the	general	idea	of	
the	showcase	 is	defining	a	medium	access	 logic,	which	 is	not	based	on	a	pre-defined	protocol,	but	
rather	is	given	by	a	combination	of	elementary	protocols,	which	contribute	to	a	final	medium	access	
decision	by	weighting	opportunistically	the	decisions	of	each	one.		

The	 basic	 idea	 of	MAC	 learning	 has	 been	 introduced	 some	 years	 ago,	 in	 the	 so	 called	Meta-MAC	
protocol	 [12].	Meta-MAC	 introduces	 a	method	 for	 systematically	 and	automatically	 combining	 any	
set	 of	 existing	 protocols	 into	 a	 single	 MAC	 protocol.	 Each	 protocol	 runs	 in	 parallel	 and	 takes	 a	
decision	at	each	channel	slot;	the	final	medium	access	decision	is	obtained	by	combining	the	decision	
of	each	protocol.	At	 the	end	of	 the	slot,	protocols	decisions	are	classified	as	or	not	correct	 in	case	
they	 lead	 to	 successful	 transmissions,	 collisions	 or	 wasted	 channel	 time	 and	 their	 weights	 are	
updated	accordingly.	For	implementing	such	a	scheme	in	a	real	network,	where	protocols	cannot	be	
executed	 in	 parallel,	 we	 exploit	 the	 formal	 definition	 of	 simple	 MAC	 protocol	 components	 and	
platform-independent	representation	of	channel	events	gathered	from	the	wireless	node.	The	idea	
is	 emulating	 the	 behavior	 of	 Meta-MAC	 by	 virtually	 executing	 multiple	 protocol	 components,	
learning	about	 the	performance	of	protocol	components	not	 running	 in	 the	node,	and	dynamically	
reconfiguring	the	wireless	nodes	by	loading	the	best	expected	protocol.		

MAC	 components	 can	 be	 different	 protocols	 or	 protocols	with	 different	 parameters.	 For	 example,	
slotted	 p-persistence	 protocol	 with	 dynamically	 adjusted	 retransmission	 probabilities	 p	 may	 be	
regarded	 as	 one.	 	 In	 a	 slotted	 p-persistent	 protocol,	 whenever	 there	 is	 a	 packet	 queued,	 the	
probability	of	 transmission	 in	a	 slot	 is	 a	 constant	p,	 independently	 for	each	 slot.	 If	we	dynamically	
change	the	value	of	p,	then	we	effectively	combine	p-persistent	protocols	that	differ	in	their	p	values.	
Thus,	 in	 each	 slot	we	 decide	 to	 use	 one	 of	 these	 component	 protocols,	 namely	 the	 one	with	 the	
appropriate	p.	 Conversely,	TDMA	protocols	 are	 characterized	 by	 the	 frame	 length	 and	 by	 the	 slot	
allocated	 to	 each	 node.	 For	 a	 given	 frame	 size,	 different	 allocations	 are	 mapped	 into	 different	
protocol	components.	

In	 this	 showcase	we	consider	 two	type	of	 slotted	protocols,	TDMA	and	p-persistence	protocol;	we	
also	 use	 channel	 feedback	 at	 the	 end	 of	 each	 slot,	 for	 updating	 the	weight	 of	 each	 protocol	 as	 a	
function	 of	 its	 right/wrong	 decision.	 While	 for	 protocol	 simulation	 the	 channel	 feedback	 has	 to	
specify	 many	 different	 events	 (such	 as	 the	 reception	 of	 a	 specific	 frame),	 for	 estimating	 the	
correctness	 of	 the	 protocol	 decisions	 is	 generally	 enough	 to	 consider	 a	 ternary	 feedback	
(transmission	occurred,	collision	occurred,	or	idle	slot).	

As	Figure	23	shows,	M	MAC	protocols	P1,…,PM	are	combined	at	a	given	node;	here	M	is	not	related	to	
the	number	of	nodes	 in	 the	network,	N.	 In	order	 to	 simplify	 the	presentation,	 time	 is	divided	 into	
slots.		Each	protocol	Pi	runs	locally	and	in	each	slot	t	produces	a	decision	Di,t,		1	<	i	<	M,	where	Di,t	=	1	
is	 interpreted	as	Pi	 	 transmits	 in	slot	t	and	Di,t	=	0	 is	 interpreted	as	Pi	does	not	 transmit	 in	slot	t.	A	
value	0	<	Di,t	<	1	is	interpreted	as	a	probability	with	which	Pi	transmits.	The	meta-MAC	protocol	is	an	
algorithm	that	runs	locally	at	each	node	and	combines	the	local	decisions	Di,t,	1	<	i	<	M,	to	produce	a	
combined	result	Dt	with	 the	same	 interpretation	as	Di,t.	The	 final	binary	decision	ϵ	 {0,1}	 	 is	derived	
from	Dt	by	drawing	a	random	binary	value	that	takes	the	value	1	(transmit)	with	probability	Dt	and	
the	value	0	(do	not	transmit)	with	probability	1-Dt.	

	

	 H2020	-	GA	No.	645274	 D10.2	

 35	

	
Figure	23	-	Operation	of	the	meta-MAC	protocol	

	

The	combined	decision	Dt	is	computed	as	a	function	of	the	weighted	average	of	the	Di,t	values:	

𝐷! = 𝐹
𝑤!,!𝐷!,!!

!!!

𝑤!,!!
!!!

	

F	is	a	function	that	grows	linearly	from	0	to	1	in	an	interval	[1/2-c,	1/2+c]	and	is	truncated	to	0	and	1	
before	 and	 after	 the	 interval	 c,	 which	 depends	 on	 another	 parameter	 η	 that	 controls	 how	 the	
weights	are	updated.	The	meta-MAC	protocol	maintains	the	weights	of	each	protocol	Pi	at	time	t	as	
wi,t.	 At	 the	 end	 of	 each	 slot	 the	 weights	 are	 updated	 using	 the	 channel	 feedback.	 In	 a	 ternary	
feedback	 model,	 a	 node	 can	 determine	 whether	 a	 successful	 transmission	 occurred,	 a	 collision	
occurred,	 or	 the	 channel	 	 remained	 idle	 in	 a	 slot.	We	 require	 information	 to	 be	 available	 for	 the	
meta-MAC	protocol	to	conclude	at	the	end	of	the	slot	whether	the	decision	for	the	slot	was	correct.	

For	example,	from	the	ternary	feedback	we	can	conclude	the	correctness	feedback:	If	we	decided	to	
transmit	and	the	transmission	was	successful	 then	the	decision	was	correct.	However,	 if	a	collision	
occurred	then	the	decision	was	incorrect.	If	there	is	a	packet	queued	for	transmission	but	we	decide	
not	to	transmit	there	are	two	possibilities.	If	the	channel	was	idle	the	decision	was	incorrect	because	
the	slot	was	wasted.	However,	if	the	channel	was	not	idle	then	it	was	correct	not	to	transmit	as	the	
channel	was	used	by	another	node.	If	the	queue	was	empty,	then	refraining	from	transmission	was	
correct.	 Given	 such	 correctness	 feedback,	 the	weights	 are	 updated	 as	 follows.	 Let	 y_t	 denote	 the	
correctness	feedback:	

𝑦! = 1 if the decision in slot t was correct
 0 if the decision in slot t was incorrect	

Then	 the	 correct	 decision	 for	 slot	 t	 is	 z_t	 =	 ~{D}_ty_t	 +	 (1-~{D}_t)(1-y_t).	 But	 we	 cannot	 set	 the	
decision	 for	 slot	 t	 to	 z_t	 because	 z_t	 only	 becomes	 known	 at	 the	 end	 of	 the	 slot.	 Using	 z_t,	 the	
weights	are	updated	as	:	

𝑤!,!!! = 𝑤!,! ∙ 𝑒!! !!,!!!! 	

The	 constant	η	 >	 0	 controls	 how	 fast	 the	weights	 change.	 This	 update	 rule	 can	 be	 interpreted	 as	
reflecting	the		``correctness	history''	of	the	component	protocols.	

4.1.2 WiSHFUL	functionalities	and	showcase	phases	
In	this	showcase	we	want	to	demonstrate	how	the	WISHFUL	framework	and	UPIs	can	be	exploited	for	
implementing	 the	meta-MAC	algorithm.	 In	 the	WiSHFUL	 framework,	 elementary	MAC	components	
are	 implemented	 in	 terms	of	 radio	programs,	but	only	one	 radio	program	can	be	executed	at	 run-
time.	Therefore,	the	Meta-MAC	implementation	is	based	on	the	possibility	of	virtually	executing	the	

p p p p

1 0 0 0

0 0 0 1 TDMA		
SLOT	3	

TDMA		
SLOT	0	

p-persistence	

	 H2020	-	GA	No.	645274	 D10.2	

 36	

protocols	 on	 the	 basis	 of	 their	 formal	 representation	 and	 channel	 feedback.	 To	 this	 purpose,	 we	
exploit	the	following	main	functionalities	provided	by	the	WiSHFUL	UPI:		

• Run	a	local	control	program	that	implements	the	meta-MAC	algorithm	in	each	node,	updates	
the	weights	of	the	protocol	components	and	loads	the	best	protocol	on	each	node;	

• Collect	 low	 level	channel	measurements,	 in	order	 to	get	a	 feedback	at	end	of	each	time	slot	
and	classify	protocol	decisions	are	correct	or	incorrect;	

• Tune	radio	program	parameters;	
• Switch	from	a	radio	program	to	another.		

Although	the	showcase	is	based	on	a	distributed	intelligence,	developed	within	the	local	controllers,	
we	also	use	a	global	control	program	for	 the	set-up	of	 the	network,	 the	 loading	of	 the	 intelligence	
modules	and	the	activation	of	the	traffic	streams.		

Network	scenario.	We	consider	a	wireless	network	with	5	active	nodes	under	 the	same	contention	
domain	 (where	 all	 the	nodes	 are	 in	 radio	 visibility):	 1	Access	 Point	 node	 (AP)	 and	4	 Station	nodes	
(STA1…STA4)	associated	to	the	same	AP.	A	wired	Ethernet	network	is	available	as	a	control	network	
(Figure	24).	Each	STA	node	runs	the	meta-MAC	logic	loaded	by	the	global	control	program	for	tuning	
the	current	protocol	as	a	function	of	the	network	condition.	Our	implementation	supports	4	different	
versions	 of	 a	 TDMA	 protocol	 with	 a	 frame	 size	 equal	 to	 4	 slots	 (each	 version	 corresponding	 to	 a	
different	slot	assignment)	and	one	slotted	ALOHA	protocol	with	a	tunable	persistence	probability	p.	

	

	
Figure	24	-	Network	topology	used	in	the	showcase	

	

Storyline.	 For	 demonstrating	 the	 effectiveness	 of	 the	 general	 Meta-MAC	 implementation,	 the	
showcase	generates	a	configurable	channel	occupancy	pattern	and	shows	how	a	Meta-MAC	node	is	
able	 to	 find	 automatically	 the	 best	 protocol	 that	 improves	 the	 network	 performance	 in	 dynamic	
traffic	conditions.		

Phase	1:	at	the	beginning	of	the	experiment,	the	network	works	under	sporadic	traffic.	In	this	case,	
the	meta-MAC	logic	selects	the	slotted	ALOHA	protocol	with	a	high	p-persistence	value,	 in	order	to	
optimize	the	time	delivery	of	the	frames.		

Phase	2:	as	long	as	the	traffic	rate	increases	and	the	network	load	reaches	saturation	conditions,	the	
meta-MAC	moves	from	the	slotted	ALOHA	protocol	to	the	TDMA;	moreover,	it	is	able	to	find	a	non-
conflicting	scheduled	(in	a	distributed	way)	among	all	the	contending	nodes..	

Summarizing,	 after	 the	 set-up	 of	 the	 wireless	 network,	 the	 showcase	 works	 by	 executing	 the	
following	steps	performed	by	the	experiment	controller:		

1) Sending	of	the	local	control	program	from	the	global	MCE	to	the	local	MCEs;	

	

STA
3

	

STA
4

	

STA
1

	

STA
2

	
802.11
Domain

AP
	

WiSHFUL	Control	
Program

	 H2020	-	GA	No.	645274	 D10.2	

 37	

2) Performing	a	low	network	traffic	(300kbps)	between	STAs	and	AP	(phase	1);	
3) Performing	a	saturation	network	traffic	between	STAs	and	AP	(phase	2);	

Implementation	details.	 For	 running	 this	experiment,	we	use	 two	different	python	 scripts:	 the	 first	
script	 is	 responsible	 of	 network	 configuration,	 AP	 activation	 and	 station	 associations	
(metamac_testbed_controller);	 the	 second	 script	 is	 the	 most	 relevant	 one	 and	 implements	 the	
Global	 Control	 Program	 on	 top	 of	 the	 WiSHFUL	 global	 MCE	 (metamac_experiment_controller),	
which	includes	the	metamac_local_control_program	that	is	sent	to	the	local	controller	of	each	node.	

The	showcase	code	is	available	on	Github	in	[13].	

Figure	25	shows	the	overall	software	architecture	of	the	control	modules	involved	in	this	showcase.	
The	WiSHFUL	 control	 framework	provides	 the	basic	 functionalities	 for	developing	different	 control	
programs,	such	as	the	possibility	to	discover	the	nodes,	their	capabilities	and	the	network	topology.	
These	 functionalities	are	natively	provided	by	 the	WiSHFUL	 framework	 in	 the	modules	DISCOVERY	
Nodes	 and	GET	Nodes	Capabilities,	 that	 are	 included	 in	Global	MCE.	 The	meta-MAC	Local	Control	
Program	provides	two	different	main	modules	implemented	in	two	separated	threads:	i)	Meta-MAC	
LOGIC,	 that	 implements	 the	 meta-MAC	 algorithm,	 and	 ii)	 COLLECT	 MEASURE	 responsible	 of	
gathering	the	channel	 feedback	consumed	by	the	Meta-MAC	LOGIC.	The	Meta-MAC	LOGIC	module	
includes	 the	 definition	 of	 the	 following	 functions:	 i)	 updating	 the	 weights	 of	 the	 protocol	
components,	ii)	deciding	about	protocol	switching,	iii)	tuning	protocol	parameters.				

Note	that	the	meta-MAC	local	control	program	is	defined	in	the	global	control	program	(as	indicated	
by	 the	 dashed	 lines	 in	 the	 figure),	 sent	 to	 the	 local	 MCEs	 available	 in	 each	 network	 node,	 and	
executed	 locally.	 The	 figure	 shows	 the	 flows	 of	 global	 control	messages	 in	 the	 green	 arrows,	 the	
actions	of	the	local	MCE	in	the	red	arrows	and	the	data	flows	in	the	blue	arrows.		

	
	

Figure	25	–	Module	involved	in	the	global	and	local	controllers	in	this	showcase	

	

The	 feedback	 variables	 retrieved	 by	 the	 COLLECT	 MEASURE	 module	 and	 their	 semantics	 are	
described	 in	 Table	 2.	 In	 addition,	 the	 local	 control	 program	 uses	 a	 3-bit	 slot	 index	 counter,	
representing	 the	current	slot	number	modulo	8,	and	a	 timestamp	(with	a	precision	 in	 the	order	of	
microseconds)	that	are	used	to	determine	the	number	of	channel	slots	elapsed	between	consecutive	
readings	of	the	channel	measurements.			

	

	 H2020	-	GA	No.	645274	 D10.2	

 38	

Variable	 Semantics	

packet_queued	 One	or	more	packets	queued	for	transmission.	

Transmitted	 Transmission	attempted.	

transmit_success	 ACK	received	for	successful	transmission.	

transmit_other	 Any	data	frame	or	ACK	received.	

bad_reception	 Invalid	data	frame	received.	

busy_slot	 More	than	500us	of	channel	activity	in	slot.	

Table	2	-		Feedback	variables	and	semantics	

	

In	Figure	26	we	show	the	software	architecture	used	in	the	showcase,	by	enlightening	the	separation	
between	 the	 data	 processing	 level	 (MAC	 protocol	 level)	 and	 the	 control	 layer	 (Monitoring	 and	
Configuration	Engine	 level).	 The	COLLECT	MEASURE	module	use	UPI	 to	get	 time	 slot	 feedback	and	
keep	 available	 this	 information	 to	 the	 Meta-MAC	 LOGIC	 module,	 responsible	 of	 finding	 the	 best	
protocol	component.	As	shown	in	Figure	26,	the	channel	feedback	records	are	also	stored	in	a	csv	file	
on	the	nodes,	in	order	to	perform	other	type	of	post	processing.	In	particular,	at	the	end	of	each	slot,	
the	COLLECT	MEASURE	module	saves	six	variables	with	the	binary	feedback	described	in	Table	2.		

	

	
Figure	26	-	meta-MAC	implementation	architecture	

	

On	the	basis	of	the	previous	description,	it	is	possible	to	easily	read	an	extracted	code	of	the	global	
control	program	 reported	below,	which	 is	 responsible	of	 injecting	 the	 local	 control	 logic.	 The	 local	
logic	is	implemented	in	the	metamac_local_control_program()	function,	while	mytestbed	is	the	set	of	
discovered	nodes,	and	controller	is	the	WiSHFUL	global	MCE.	After	the	local	control	program	is	sent	
to	the	nodes,	the	global	controller	keeps	receiving	messages	from	the	local	controllers	by	means	of	
the	collect_remote_message	 function,	 for	 recording	the	statistics	about	the	throughput	results	and	
the	protocol	choices	of	each	network	node.	This	 information	 is	used	 for	visualizing	 the	experiment	
results.	

	

	

	 H2020	-	GA	No.	645274	 D10.2	

 39	

…	
''' set default radio program on STA nodes '''
for node in mytestbed.wmp_nodes:
 active_ALOHA_radio_program(node, log, controller, nodes_platform_info[0])

''' start local control program on STA nodes '''
lcpDescriptor_wmp_nodes = []
reading_thread = []
for ii in range(len(mytestbed.wmp_nodes)):

lcpDescriptor_wmp_nodes.append(controller.node(mytestbed.wmp_nodes[ii]).hc.st
art_local_control_program(program=metamac_local_control_program))
 #start thread for collect measurements from nodes(THR and Active protocol)
 reading_thread.append(threading.Thread(target=collect_remote_messages,
args=(lcpDescriptor_wmp_nodes[ii], socket_visualizer,)))
 reading_thread[ii].start()
…

	

The	 code	below	 shows	 the	main	 loop	of	 the	 global	 control	 program.	 The	 showcase	phase	1	 starts	
when	the	first	traffic	stream	(300Kbps)	is	activated	on	nodes;	after	30	seconds,	the	control	program	
moves	to	phase	2	with	a	saturated	traffic	stream	for	each	nodes.	

	

…
#after 30 seconds move from showcase phase 1 to phase 2
CHANGE_TRAFFIC = 30

#SHOWCASE PHASE 1
#start server traffic
controller.delay(2).nodes(mytestbed.ap_node).net.create_packetflow_sink(port='1234'
)
for node in mytestbed.wmp_nodes:
 #start client traffic

controller.delay(4).nodes(node).net.start_packetflow(mytestbed.ap_node.ip,
 '1234', '500', '0.3M')

while do_run:
 log.warning('waiting for ... (%d sec / %d)' % (dt, EXPERIMENT_DURATION))
 # 1 second sleep
 gevent.sleep(1)
 dt += 1
 if dt == CHANGE_TRAFFIC:

#ACTIVE SHOWCASE PHASE 2
 for node in mytestbed.wmp_nodes:
 #start client traffic

 controller.delay(4).nodes(node).net.start_packetflow(mytestbed.ap_node.ip,
 '1234', '500', 'SATURATION')

…

	

4.1.3 Intelligence	composition	module:	meta-MAC	logic	
As	 already	 discussed	 in	 the	 general	 description	 of	 the	 showcase	 implementation,	 the	 meta-MAC	
algorithm	 is	performed	 independently	 and	 locally	by	each	node,	by	executing	 the	 custom	 function	
metamac_local_control_program().	This	function	implements	the	local	control	program	and	uses	two	
different	threads,	which	are	implemented	in	the	two	modules	showed	in	Figure	26.	The	main	loop	of	
the	 COLLECT	 MEASURE	 module	 is	 implemented	 in	 the	 following	 code,	 where	 the	 UPI	
get_measurements_periodic(parameters)	 is	 used	 to	 get	 the	 feedback	 of	 the	 last	 8	 time	 slots	
(reporting_period/collect_period=16ms/2ms=8	slots).	In	detail,	we	use	the	following	UPI	parameters:	

1. measurement_key_list:

• Packet queue; Transmitted; Transmitted Success; Transmit Other;
Bad Reception; Busy slot;

	 H2020	-	GA	No.	645274	 D10.2	

 40	

2. collect_period	=	2ms	

3. report_period	=	16ms	

4. num_iterations	=	1	

afterwards	the	feedbacks	are	separated	slot	by	slot	and	stored	in	the	story_channel	array	list,	where	
the	 slots	 information	 are	 organized	 in	metamac_slot()structure.	 The	module	 uses	 this	 array	 list	 to	
push	the	time	slots	feedback	to	Meta-MAC	LOGIC	and	to	CSV	file.	

	

	
collect_period = 2 #ms
report_period = 16 #ms
num_iterations = 1

while getattr(reading_thread, "do_run", True):

 last_tsf = tsf
 last_slot_index = slot_index

 UPI_myargs = {'interface' : 'wlan0', 'measurements' : [UPI_R.TSF,

 UPI_R.COUNT_SLOT, UPI_R.PACKET_TO_TRANSMIT, UPI_R.MY_TRANSMISSION,
 UPI_R.SUCCES_TRANSMISSION, UPI_R.OTHER_TRANSMISSION,

UPI_R.BAD_RECEPTION,
 UPI_R.BUSY_SLOT, UPI_R.COUNT_SLOT] }

 node_measures = controller.radio.get_measurements_periodic(UPI_myargs,
 collect_period, report_period, num_iterations, None)

 tsf =node_measures[0]
 slot_index = node_measures[1]& 0x7
 packet_queued = node_measures[2]
 transmitted = node_measures[3]
 transmit_success = node_measures[4]
 transmit_other = node_measures[5]
 bad_reception = node_measures[6]
 busy_slot = node_measures[7]

slots = [metamac_slot() for i in range(8)]
ai = 0
while slot_offset > 0 :
 slot_offset-=1
 si = slot_index - slot_offset #(int)
 if si < 0 :
 si = si + 8

 slot_num+=1
 slots[ai].slot_num = slot_num
 slots[ai].read_num = read_num
 slots[ai].tsf_time = tsf
 slots[ai].slot_index = slot_index
 slots[ai].slots_passed = slots_passed
 slots[ai].filler = 0
 slots[ai].packet_queued = (packet_queued >> si) & 1
 slots[ai].transmitted = (transmitted >> si) & 1
 slots[ai].transmit_success = (transmit_success >> si) & 1
 slots[ai].transmit_other = (transmit_other >> si) & 1
 slots[ai].bad_reception = (bad_reception >> si) & 1
 slots[ai].busy_slot = (busy_slot >> si) & 1
 ai+=1

for i in range(ai):
 story_channel.append(slots[i])

	 H2020	-	GA	No.	645274	 D10.2	

 41	

read_num+=1

After	collecting	the	time	slots	feedback,	the	module	Meta-MAC	LOGIC	is	responsible	of	retrieving	and	
processing	the	feedback	provided	by	the	story_channel	array	list,	and	selecting	the	MAC	component	
protocol	 to	 be	 activated.	 The	 module	 code	 is	 reported	 below	 and	 works	 slot	 by	 slot.	 Once	 the	
feedback	 is	 retrieved,	 the	module	evaluates	 the	decision	of	each	protocol	 component	 for	 the	next	
slot.	This	 is	critical	because	only	one	component	protocol	 is	actually	running,	while	the	decisions	of	
all	 component	protocols	are	 required	 in	order	 to	generate	 the	 correctness	 feedback	 for	 the	meta-
MAC	 protocol.	 Thus,	 a	 software	 representation	 of	 each	 protocol,	 embedded	 in	 the	 local	 control	
program,	must	be	able	to	emulate	the	protocol's	decision	for	each	slot	as	a	function	of	the	feedback	
provided.		

	

…
#Performs the computation for emulating the suite of protocols
#for a single slot, and adjusting the weights.
def update_weights(suite, current_slot, ai):
 z = 0.0
 uu = 0.0
 d = 0.0

 #If there is no packet queued for this slot, consider all protocols to be
correct
 #and thus the weights will not change
 if (current_slot.packet_queued) :
 #z represents the correct decision for this slot - transmit if the
channel
 #is idle (1.0) or defer if it is busy (0.0)
 # // transmission AND success: GOOD
 # // no trasmission AND slot busy - GOOD
 # // trasmission AND NOT success - WRONG
 # // trasmission AND slot empty - WRONG

 if (suite.protocols[suite.active_protocol].emulator == b'tdma') :
 if (not current_slot.channel_busy):
 z = 1.0

 if (suite.protocols[suite.active_protocol].emulator == b'aloha'):
 p_curr =
suite.protocols[suite.active_protocol].parameter.persistence

 if (not current_slot.channel_busy):
 z = p_curr
 else :
 z = 1-p_curr

 #evaluate protocols weights
 for p in range(suite.num_protocols) :
 # d is the decision of this component protocol - between 0 and 1
 if (suite.protocols[p].emulator == b'tdma') :

 #Protocol emulation for TDMA
 d = tdma_emulate(suite.protocols[p].parameter,
current_slot.slot_num,

 suite.slot_offset)
 else :

 #Protocol emulation for ALOHA slotted
 d = aloha_emulate(suite.protocols[p].parameter,
current_slot.slot_num,

 suite.slot_offset)

 #evaluate weight
 exponent = suite.eta * math.fabs(d - z)

	 H2020	-	GA	No.	645274	 D10.2	

 42	

 suite.weights[p] *= math.exp(-exponent)

 if suite.weights[p]<0.01:
 suite.weights[p]=0.01

 # Normalize the weights
 s = 0
 for p in range(suite.num_protocols):
 s += suite.weights[p]
 for p in range(suite.num_protocols):
 suite.weights[p] /= s
…

Using	the	feedback,	the	module	maintains	weights	for	each	of	the	component	protocols	according	to	
the	model	described	in	Figure	23.	The	meta-MAC	LOGIC	module	then	actives	the	radio	program	and	
modifies	 the	 radio	program	parameters	as	necessary	 to	execute	 the	highest	weighted	 component.	
Finally,	 the	extracted	code	below	shows	how	UPI	 functions	are	used	 to	enforce	protocol	 switching	
when	 the	 protocol	 with	 the	 highest	 weight	 is	 different	 from	 the	 one	 under	 execution.	 The	 radio	
program	 is	 activated	 by	 calling	 the	 UPI	 function	 activate_radio_program(),	 and	 the	 protocol	
configuration	 is	 specified	 by	 the	 UPI	 function	 set_parameters(UPIargs)	 (responsible	 of	 configuring	
radio	program	parameters).		

	
…	
if (protocol == suite.slots[active]) :
 #This protocol is already running.
 pass

elif (protocol.type == suite.slots[active].type) :
 #Protocol active match with the type of best, but is not the same protocol
 #Write the parameters for this protocol.
 UPIargs = { 'interface' : 'wlan0', ‘params’:
suite.protocols[protocol].params }
 rvalue = controller.radio.set_parameters(UPIargs)
 if rvalue[0] == SUCCESS:
 log.warning('Parameter writing successful')
 else :
 log.warning('Error in parameter writing')
 suite.slots[active] = protocol

elif (protocol != suite.slots[active]):
 #Switch to other Protocol.
 if active == ‘TDMA’:
 protocol = 'ALOHA'
 else:
 protocol = 'TDMA'

 UPIargs = {'Protocol' : protocol, 'interface' : 'wlan0' }
 rvalue = controller.radio.activate_radio_program(UPIargs)
 if rvalue == SUCCESS:
 log.warning('Radio program activation successful')
 else :
 log.warning('Error in radio program activation')
 suite.slots[suite.active_slot] = protocol
…

4.1.4 Results	
To	 evaluate	 the	 capabilities	 of	 our	meta-MAC	 implementation,	we	 run	 an	 experiment	 in	 a	 simple	
topology	 of	 4	 nodes	 connected	 to	 the	 same	 AP.	 Each	 of	 these	 participants	 runs	 the	 meta-MAC	
protocol	with	four	variants	of	TDMA	and	one	slotted-ALOHA	protocol.	Each	TDMA	variant	works	with	
a	 frame	 size	 of	 four	 slots	 but	 with	 different	 assignments	 in	 slot	 0,	 1,	 2	 o	 3,	 respectively.	 At	 the	
beginning	of	the	experiment,	all	protocol	weights	are	equal	and	the	TDMA	slot	0	protocol	is	loaded	

	 H2020	-	GA	No.	645274	 D10.2	

 43	

and	activated	on	each	of	the	participant	node.	All	the	nodes	transmit	at	6	Mbps	frames	of	1500	bytes	
in	a	slot	of	2.2ms.	The	duration	of	the	experiment	is	120	seconds.	The	results	of	the	experiment	are	
shown	in	Figure	27	and	Figure	28.		

Figure	27	shows	the	protocol	selected	by	each	node	at	run	time	in	terms	of	protocol	label.	After	two	
second,	 the	 traffic	 is	 activated	 in	 the	 low-rate	 conditions	 (i.e.	 300Kbps)	 and	 the	meta-MAC	 LOGIC	
selects	 the	 slotted	 ALOHA	 protocol	 with	 0.9	 persistent	 probability	 as	 the	 best	 protocol.	 After	 50	
seconds,	 the	 experiment	 controller	 changes	 the	 traffic	 conditions	 of	 the	 network,	 by	 activating	
greedy	 traffic	 sources	 in	 each	 node	 and	 by	 saturating	 all	 the	 transmissions	 queues.	 In	 these	
conditions,	 all	 the	 nodes	 switch	 to	 TDMA	 protocols	 and	 find	 a	 non-conflicting	 assignment	 after	 a	
transient	 phase	 of	 a	 few	 seconds.	 Figure	 28	 shows	 the	 throughput	 results	 achieved	 by	 each	 node	
under	the	time-varying	protocol	execution.			

	
Figure	27	-		Selected	protocol	by	each	nodes	

	

	
Figure	28	-	Throughput	performance	of	4	wireless	nodes	executing	meta-MAC	logic	

	

Finally,	 Figure	 29	 shows	 a	 channel	 activity	 trace	 acquired	by	 a	USRP	monitoring	 node,	 in	 terms	of	
received	RSSI	samples,	 in	which	we	can	easily	recognize	data	transmissions	and	acknowledgements	
performed	by	different	nodes	(with	different	RSSI	values;	the	best	one,	with	the	shorted	duration,	is	
the	ACK	sent	by	the	AP),	according	to	a	TDMA	scheme	with	four	slots.		

	 H2020	-	GA	No.	645274	 D10.2	

 44	

	
Figure	29	–	Channel	acquiring	when	the	saturated	traffic	is	present	in	the	network	

	

Figure	30	shows	an	extract	of	the	CSV	file,	 in	which	we	can	read	the	slots	feedback	for	all	the	slots	
between	the	36580	and	36596	slot	number.	

	
Figure	30	-	Store	channel	information	in	a	local	CSV	file	

4.1.5 Next	Steps	
In	 the	 future,	 it	may	be	worth	 investigating	how	 the	meta-MAC	model	 can	be	generalized	 to	non-
slotted	time.	We	also	intend	to	evaluate	the	effect	of	the	learning	parameter	η	on	the	convergence	
rate	and	stability	of	the	meta-MAC.	A	completely	general	meta-MAC	capable	of	combining	any	set	of	
protocols	would	be	a	decisive	leap	forward	in	dynamic	adaptation	of	MAC	protocols.	

	

4.2 Monitoring,	Reasoning	and	Decision	using	Markov	Chains	

4.2.1 General	Overview	
In	 spectrum	 sharing	 scenarios,	 secondary	 users	 (SUs)	 avoid	 causing	 interference	 to	 primary	 users	
(PUs)	 through	 the	 configuration	 of	 multiple	 operating	 parameters,	 such	 as	 transmit	 power,	
frequency,	 waveforms,	 scheduling,	 coding,	 and	 antenna	 patterns.	 This	 adaptation	 to	 the	
environment	can	be	performed	based	on	 information	gathered	and	decisions	 taken	 locally	at	each	
node,	 or	 can	 be	 managed	 through	 spectrum-aware	 network-wide	 control	 entities,	 such	 as	 an	
Spectrum	Access	System	(SAS),	geo-location	databases,	or	radio	environment	maps	(REM).	The	first	

	 H2020	-	GA	No.	645274	 D10.2	

 45	

approach,	 followed	 in	 the	 traditional	 cognitive	 radio	 literature,	 raises	 many	 implementation	
challenges,	 namely	 in	 the	 design	 of	 power	 efficient	 local	 sensing	 mechanisms	 that	 can	 provide	 a	
wideband,	 long	 term	 statistical	 view	of	 spectrum	occupancy,	without	draining	 SUs’	 limited	battery	
resources.	 As	 a	way	 to	 circumvent	 the	 limitations	 of	 local	 sensing,	 regulators	 and	 industry	 bodies	
have	generally	shifted	their	focus	towards	the	use	of	network-wide	spectrum	management	systems	
(e.g.	SAS	in	US,	and	LSA	in	Europe)	that	hold	a	more	global	and	long	term	view	of	spectrum	utilisation	
across	space	and	frequency,	and	can	be	used	to	manage	SUs’	access	to	the	spectrum.	On	the	other	
hand,	 there	are	 still	 several	 questions	 and	 challenges	 regarding	 the	use	of	 these	 systems	 	 in	 radio	
environments	where	the	PUs	display	a	highly	dynamic	channel	access	behavior.	

In	 this	 showcase,	 we	 focus	 on	 the	 study	 of	 learning	 and	 agile	 channel	 access/decision	 making	
techniques	 that	SUs	 can	employ	 to	 tackle	 the	aforementioned	 issue	of	PU’s	dynamics,	while	being	
supervised	 and	 informed	 regarding	 their	 radio	 environment	 by	 a	 centralized	 intelligence	 spectrum	
management	 entity.	 Our	 vision	 is	 to	 assess	 the	 adequacy	 of	 representational	 statistical	 models,	
dimensionality	 reduction	 and	 learning	 algorithms	whose	output	 results	 efficiently	 characterize	 and	
reliably	predict	PUs’	behavior,	are	easily	transferable/shared	across	different	network	elements	(e.g.	
spectrum	management	system,	sensors	and	SUs),	and	which	SUs	can	leverage	for	effective	decision	
making.	 Examples	 of	 such	 representational	 models	 may	 include	 tables	 of	 observed	 PU-specific	
relevant	 features,	 and	 state-transition	 models,	 such	 as	 Markov	 Chains	 (MCs).	 These	 features	 and	
models	 can	 be	 extracted	 by	 a	 dedicated	 sensor	 network	 or	 SUs	 with	 less	 restrictive	 power	
consumption	 limits	 (e.g.	 base	 stations),	 and	 shared	with	 spectrum	management	 systems	 that	 use	
them	 as	 input	 during	 intelligence	 decisions	 to	 configure	 SUs’	 operational	 parameters	 and	 channel	
access	 strategies.	 The	 several	 stages	 associated	 to	 the	 setup	 and	 utilization	 of	 this	 framework	 are	
displayed	in	Figure	31.	

	
Figure	31	–	Transfer	of	learned	features	and	model	across	different	network	elements	

	

For	 a	 PU’s	 behaviour	 to	 be	 efficiently	 reduced	 to	 a	 small	 set	 of	 features	 or	 parameters,	 it	 has	 to	
follow	some	specific	channel	access	pattern.	Some	examples	of	such	patterns	may	 include	channel	
hopping	 sequences,	back-off	period	protocols,	 and	 received	power	variations	 for	 the	 case	of	 radar	
systems	with	mechanically	rotating	antennas.	In	this	work,	we	focus	on	the	particular	scenario	of	PUs	
with	 non-arbitrary	 channel	 hopping	 sequences.	 In	 particular,	 we	 implemented	 in	 SDR	 several	
algorithms	and	functionalities	that	can	support	SUs	in	their	decision	making	and	that	allow	them	to	
reduce	 interference	 by	 avoiding	minimizing	 the	 probability	 of	 accessing	 the	 same	 channels	 of	 the	
frequency	agile	PU.	In	our	approach,	SUs	do	not	need	accurate	synchronization	with	the	instants	of	
PU's	channel	 transition	 (tk).	Whenever	SUs	detect	 the	PU's	current	channel	"i",	either	 through	out-

	 H2020	-	GA	No.	645274	 D10.2	

 46	

band	 or	 in-band	 sensing,	 they	 will	 hop	 to	 the	 channel	 with	 highest	 availability	 expected	 time	 j	
provided	by	a	network-wide	control	system.	Thus,	overall	interference	will	decrease,	but	will	not	be	
fully	avoided.	

In	 this	 framework,	 sensing-capable	 devices	 collect	 raw	 wideband	 sensing	 samples	 from	 the	 radio	
environment,	 derive	 channel	 availability,	 and	 estimate	 several	 PU	 parameters	 and	 a	 MC	 channel	
transition	 probability	matrix	 based	 on	 the	 PU	 hopping	 pattern.	 The	 obtained	 parameters	 and	MC	
matrix	are	shared	with	the	network-wide	management	system,	which	will	analyse	 the	adequacy	of	
the	Markov-chain	assumption,	and	compute	a	list	of	actions/commands	the	nodes	in	the	SU	network	
should	follow	for	each	different	event.	More	specifically,	when	aware	of	the	current	PU	channel	of	
operation	 (e.g.	 when	 the	 PU	 moves	 to	 the	 current	 SU	 channel),	 the	 SU	 will	 consult	 the	 list	 of	
commands	provided	by	 the	management	 system,	which	will	 tell	 the	optimal	 channel	 to	hop	 to,	 so	
that	the	probability	of	interference	in	the	future	is	minimized.	

	

	
Figure	32	–	Markov	Chain-based	Channel	Hopping	Framework.	The	set	of	channel	hopping	commands	are	

only	derived	from	the	MC	transition	matrix.	Hence,	the	management	system	does	not	need	
information	regarding	the	current	PU's	channel	in	a	timely	manner.	

	

4.2.2 Markov	chain	transition	matrix	estimation	
Assume	a	 PU	with	 instantaneous	 bandwidth	of	 BW	 that	 hops	 across	Nch	 contiguous	 channels.	 The	
decision	 to	 hop	 or	 stay	 in	 the	 same	 channel,	 which	 we	 denote	 as	 dwell	 time,	 happens	 every	 TD	
seconds.	Sensing	capable	devices,	unaware	of	both	the	BW,	TD,	and	hopping	transition	probabilities,	
try	 to	 estimate	 these	 parameters	 through	 their	 collected	 samples.	 To	 achieve	 these	 tasks,	 the	
following	components	were	designed:	

• Energy	Detector	–	The	raw	IQ	samples	received	by	sensing	devices	are	converted	to	frequency	
domain,	magnitude	squared,	and	grouped	into	Nch	values,	each	corresponding	to	the	average	
power	 of	 each	 channel.	 These	 values	 are	 further	 smoothed	 out	 along	 the	 time	 axis	 using	 a	
moving	 average,	 and	 compared	 to	 an	 adaptive	 threshold	 to	 assess	 the	 availability	 of	 their	
respective	channels.	The	energy	detector	will	output	every	TED	seconds	a	binary	array	of	size	
Nch,	where	channel	busy	and	free	correspond	to	the	values	1	and	0,	respectively.	

• Dwell	 Time	 Estimator	 –	 Before	 being	 able	 to	 record	 the	 PU	 channel	 transitions,	 the	 sensing	
device	has	to	estimate	the	dwell	time	of	the	PU	TD.	This	procedure	can	be	carried	out	through	
observation	 of	 the	 time	 differences	 between	 PU	 channel	 transitions.	 In	 a	 noise-less	

	 H2020	-	GA	No.	645274	 D10.2	

 47	

environment,	the	period	per	channel	transition	will	be	∆𝑡 = 𝑚𝑇! ,𝑚 ∈ ℕ,	where	𝑚 > 1	when	
the	 PU	 stays	 in	 the	 same	 channel	 for	multiple	 dwell	 times.	 The	 sensing	 device	 can	 find	 the	
fundamental	 dwell	 time	 by	 finding	 the	 highest	 peak	 in	 a	 histogram	 of	 registered	 time	
differences	∆𝑡.	

• Transition	Matrix	Estimator	–	The	sensor	registers	the	PU	activity	through	a	transition	matrix	
M,	where	 each	 entry	𝑀(𝑖, 𝑗)	 corresponds	 to	 the	 number	 of	 times	 the	 PU	 transitioned	 from	
channel/state	𝑖	to	𝑗 ∈ {1,… ,𝑁!!}.	The	division	of	𝑀(𝑖, 𝑗)		by	the	total	number	of	transitions	NT	
observed	will	converge	assymptotically	to	the	PU	channel	transition	probabilities	𝑝!".	Once	NT	
surpasses	 a	 stop	 criterion,	 the	 sensing	 device	 interrupts	 its	 transition	 matrix	 estimation	
procedure,	and	sends	the	obtained	𝑝!",	in	combination	with	other	PU-specific	parameters	such	
as	BW	and		TD	to	the	network-wide	control	entity.	

	

4.2.3 Generation	of	SUs’	channel	access	commands	
From	the	received	transition	probability	matrix	𝑝!",	the	intelligence	network-wide	control	system	will	
compute	the	set	of	actions/commands	an	SU	should	take	to	minimize	the	chances	of	interference	to	
the	PU.	In	this	work,	we	propose	that	SUs,	when	they	are	aware	of	the	current	PU	channel,	move	to	
the	 channel	 with	 the	 highest	 expected	 availability	 time;	 that	 is,	 given	 a	 PU	 operating	 in	 channel	
𝑥! = 𝑖,	 and	 the	channel	availability	 time	operator	𝑇!|! = min 𝑛 ≥ 1: 𝑥! = 𝑗 𝑥! = 𝑖}	 for	 channel	 𝑗,	
the	SU	should	move	to	the	channel	𝑗max|𝑖 = max!!! 𝔼{𝑇!|!}.	Under	our	framework,	the	network-wide	
control	system	will	compute	𝑗max|𝑖	for	all	possible	𝑖 = 1,… ,𝑁!!,	store	them	in	an	array	and	forward	
it	to	the	SUs	to	configure	their	hopping	patterns.	

Unfortunately,	 the	 value	 𝔼{𝑇!|!} is	 not	 trivial	 to	 compute,	 unless	 the	 Markov	 Chain	 has	 some	
particular	 properties.	 We	 circumvented	 this	 issue	 by	 relying	 on	 approximate	 solutions	 𝑇!|!

(!) =
min 𝑚 ≥ 𝑛 ≥ 1: 𝑥! = 𝑗 𝑥! = 𝑖},	to	obtain	the	solution	set	{𝑗max|𝑖 ∀𝑖 = 1,… ,𝑁!!}.	

	

4.2.4 General	Demonstration	Details	
Our	 demonstration	 setup	 comprises	 five	 radio	 nodes	 with	 different	 roles,	 which	 are	 illustrated	 in	
Figure	33.	The	used	PU-Tx	and	PU-Rx	were	ZigBee-like	dongle	 radios	 that	 transmit/receive	over	an	
instantaneous	 bandwidth	 of	 BW=5	 MHz,	 and	 hop	 between	 Nch=4	 separate	 channels.	 The	 SU-Tx	
transmits	 OFDM	 packets	 to	 the	 SU-Rx	 with	 an	 instantaneous	 bandwidth	 of	 5	 MHz,	 and	
simultaneously	senses	the	environment	to	detect	whether	it	is	currently	causing	interference	to	the	
PU	network.	Every	time	the	PU-Tx	hops	to	its	current	channel,	the	SU-Tx	needs	to	move	to	a	different	
channel,	whose	index	𝑗max|𝑖	is	derived	from	the	Markov	Chain	according	to	Section	4.2.3.	Finally,	the	
sensor	is	responsible	for	estimating	the	PU’s	parameters,	namely	BW	and	dwell	time,	and	computing	
the	Markov	Chain	of	the	PU’s	channel	transitions.	These	parameters	can	then	be	exposed	to	other	SU	
network	elements	through,	for	instance,	the	WiSHFUL	UPI.	

	 H2020	-	GA	No.	645274	 D10.2	

 48	

	
Figure	33	–	Markov	Chain-based	Hopping	Demonstration	Setup	

	

We	developed	the	several	functionalities	of	the	SU-Tx,	SU-Rx,	and	sensor	in	C++,	so	they	can	be	easily	
integrated	in	both	Iris	and	GNU	Radio	frameworks,	both	of	which	are	supported	by	WiSHFUL	UPIs.	In	
the	 repository	 made	 available,	 all	 of	 these	 network	 elements	 can	 be	 run	 through	 the	 simple	
“markov_radio”	script.	To	select	which	of	the	network	elements	to	run	(SU-Tx,	SU-Rx	or	sensor),	the	
user	of	 the	demo	can	set	 the	 flags	“has_learning”	and	“tx_opt”	over	 the	command	 line.	When	the	
flag	“has_learning”	 is	 set	on,	 the	SDR	node	will	estimate	 the	PU’s	parameters	and	Markov	channel	
transition	 matrix.	 If	 the	 “tx_opt”	 flag	 is	 on,	 the	 SDR	 node	 will	 act	 as	 SU-Tx	 and	 will	 start	 the	
transmission	of	packets	over	the	air.	The	channel	hopping	strategy	of	the	SU-Tx	is	undefined	until	the	
channel	 transition	commands	 (𝑗max|𝑖)	derived	 from	 the	Markov	Chain	are	available	 to	 it.	 Finally,	 in	
case	 of	 no	 “has_learning”	 and	 no	 “tx_opt”,	 the	 SDR	 node	 will	 behave	 as	 a	 SU-Rx	 and	 waits	 for	
incoming	packets	from	the	SU-Tx.	

To	provide	the	sufficient	separation	and	modularity	of	the	SU-Tx,	SU-Rx,	and	sensor	functionalities,	
the	implemented	algorithms	and	techniques,	namely	the	energy	detector,	dwell	time	estimator,	and	
MC	 generator	 were	 separated	 into	 independent	 C++	 classes	 that	 the	 experimenter	 can	 use	
independently.	

	

4.2.5 Next	Steps	
As	a	next	step,	we	plan	to	further	 integrate	the	described	demo	with	the	WiSHFUL	framework	and	
UPIs.	 In	particular,	we	 intend	to	provide	the	functionality	of	configuring	the	sensor,	SU-Tx,	and	SU-
Rx’s	bandwidth	and	centre	 frequencies	remotely,	using	the	already	made	available	 Iris/GNU	Radio-
WiSHFUL	 controller	 interface.	 Additionally,	 we	 plan	 to	 extend	 the	 WiSHFUL	 UPI	 to	 support	
configuration	file	exchange	between	Iris/GNU	Radio	nodes.	This	functionality	is	required	so	that	the	
exchange	of	the	Markov	Chain	and	list	of	action/commands	can	take	place	via	the	WiSHFUL	UPI.	

We	 also	 plan	 to	 improve	 the	 current	 intelligence	 capabilities	 of	 the	 sensor	 node	 and	 SU-Tx.	 In	 its	
current	state,	our	implementation	does	not	support	PUs	that	alter	their	patterns/MCs	over	time.	To	
overcome	this	limitation,	we	will	increase	the	number	of	features	the	sensor	and	SU-Tx	can	estimate	
from	the	 radio	environment,	and	 implement	a	hidden	Markov	model-based	 inference	algorithm	at	
the	 SU-Tx	 that	 can	 detect	 the	 current	 pattern	 used	 by	 the	 PU-Tx.	 Finally,	we	 plan	 to	 improve	 the	
sensor’s	 capabilities	 to	discriminate	between	SU-Tx	and	PU-Tx	 transmissions.	 This	 can	be	achieved	
either	through	matched	filter,	feature	detection	algorithms,	or	more	advanced	classification/learning	
techniques..	

	 	

	 H2020	-	GA	No.	645274	 D10.2	

 49	

5 Conclusions	
The	design	and	the	implementation	of	the	intelligence	showcases,	considered	during	Y2,	allowed		to	
validate	 the	 effectiveness	 of	 the	 approaches	 and	 tools	 envisioned	 for	 supporting	 intelligence	 in	
WiSHFUL,	 and	 to	populate	 the	WiSHFUL	 intelligence	 repository	with	an	 initial	 set	of	 components,	
available	to	other	experimenters	for	facilitating	the	definition	of	new	intelligent	control	programs.		

We	 consider	 two	 main	 contributions	 for	 other	 experimenters,	 in	 terms	 of	 components	 for	 data	
collections	and	aggregation,	which	allow	to	collect	basic	network	measurements	from	independent	
nodes	and	build	global	network	views,	and	in	terms	of	components	for	estimating	the	consequence	
of	 adaptation	actions	 on	performance	metrics.	 In	 turns,	 this	 second	group	of	 components	 include	
data-driven	 models	 and	 on-line	 learning	 engines,	 that	 have	 been	 designed	 and	 used	 for	 solving	
specific	 network	 problems,	 but	 can	 be	 potentially	 re-used	 in	 completely	 different	 contexts.	 In	
particular,	we	developed:	

- a	WSN	performance	model:	 this	 data-driven	model	 is	 devised	 to	estimate	performance	of	
WSNs	 under	 different	 MAC	 protocols,	 as	 a	 function	 of	 node	 density	 and	 interference	
conditions;	

- a	WiFi	 performance	model	 for	multi-cell	 scenarios:	 	 this	 data-driven	model	 is	 devised	 to	
classify	 interference	 conditions	 experienced	 in	 different	 cells	 as	 hard,	 soft	 or	 zero	
interference	and	identify	blocked	cells;		

- a	Meta-MAC	engine,	for	dynamically	learning	about	the	best	medium	access	decision	among	
a	 set	 of	 elementary	 protocol	 components,	 in	WiFi	 fully-connected	 networks	 under	 varying	
traffic	conditions;	

- a	markov-chain	based	decision	engine,	for	inferring	about	the	primary	user	channel	with	will	
remain	 available	 for	 longer	 time	 intervals	 in	 cognitive	 networks,	 in	 case	 of	 predictable	
behaviours.	

These	 modules	 and	 the	 exemplary	 composition	 of	 these	 modules	 considered	 in	 Y2	 showcases	
provide	an	initial	entry	in	the	catalogue	of	the	intelligence	utilities	of	the	WiSHFUL	framework.	
	 	

	 H2020	-	GA	No.	645274	 D10.2	

 50	

6 References	
	

[1]	 Peng	W.	 et	 al.	 Cogmac+:	 A	 decentralized	 mac	 protocol	 for	 opportunistic	 spectrum	 access	 in	 cognitive	
wireless	networks.	Elsevier	Journal	of	Computer	Communications,	2015.	

[2]	 Jerry	 Z.	 et	 al.	 Understanding	 packet	 delivery	 performance	 in	 dense	 wireless	 sensor	 networks.	 In	
Proceedings	 of	 the	 1st	 international	 conference	 on	 Embedded	 networked	 sensor	 systems,	 pages	 1–13.	
ACM,	2003.	

[3]	 Kulin,	Merima,	et	al.	"Towards	a	cognitive	MAC	layer:	Predicting	the	MAC-level	performance	in	Dynamic		
WSN	using	Machine	learning",	(2016)		arXiv:1612.03932	

[4]	 Kulin,	Merima,	 et	 al.	 "Data-Driven	 Design	 of	 Intelligent	Wireless	 Networks:	 An	Overview	 and	 Tutorial."	
Sensors	16.6	(2016):	790.	

[5]	 Bart	Jooris,	Jan	Bauwens,	Peter	Ruckebusch,	Peter	De	Valck,	Christophe	Van	Praet,	Ingrid	Moerman,	Eli	De	
Poorter,	 "TAISC:	 a	 cross-platform	MAC	 protocol	 compiler	 and	 execution	 engine",	 Computer	 Networks,	
Volume	107,	Part	2,	9	October	2016	

[6]	 Peter	R.	et	al.	A	unified	radio	control	architecture	for	prototyping	adaptive	wireless	protocols.	In	Networks	
and	Communications	(EuCNC),	2016	European	Conference	on,	pages	58–63.	IEEE,	2016.	

[7]	 Eibe	 Frank,	Mark	 A.	 Hall,	 and	 Ian	 H.	Witten	 (2016).	 The	WEKA	Workbench.	 Online	 Appendix	 for	 "Data	
Mining:	Practical	Machine	Learning	Tools	and	Techniques",	Morgan	Kaufmann,	Fourth	Edition,	2016.	

[8]	 http://www.cs.waikato.ac.nz/ml/weka/	

[9]	 http://scikit-learn.org/stable/	

[10]	 E.	 Khorov,	 A.	 Kiryanov,	 A.	 Krotov,	 P.	 Gallo,	 D.	 Garlisi,	 I.	 Tinnirello,	 “Joint	 Usage	 of	 Dynamic	 Sensitivity	
Control	and	Time	Division	Multiple	Access	in	Dense	802.11ax	Networks”,	Multiple	Access	Communications	
MACOM	2016	

[11]	 Caruana,	R.	and	A.	Niculescu-Mizil	(2006).	An	empirical	comparison	of	supervised	learning	algorithms.	In	
Proceedings	of	the	23rd	international	conference	on	Machine	learning,	pp.	161–168.	ACM.		

[12]	 Faragó,	A.	D.	Myers,	V.	R.	Syrotiuk,	and	G.	Záruba,	“Meta-MAC	protocols:	Automatic	combination	of	MAC	
protocols	 to	 optimize	 performance	 for	 unknown	 conditions,”	 IEEE	 Journal	 on	 Selected	 Areas	 in	
Communications,	vol.	18,	no.	9,	pp.	1670–1681,	September	2000.	

[13]	 Meta-MAC	-	https://github.com/wishful-project/examples/tree/master/wmp/wmp_metamac	

	

