
2016 IEEE INFOCOM International Workshop on Computer and Networking Experimental Research Using Testbeds

Testbed Implementation of the Meta-MAC Protocol
Nathaniel Flick*, Domenico Garlisit , Violet R. Syrotiuk*, Ilenia Tinnirellot,

* School of Computing, Informatics and Decision Systems, Arizona State University, Tempe, AZ, USA
t Dipartimento di Ingegneria Elettrica, Universita di Palermo, Palermo, Italy

Abstract-The meta-MAC protoeol is a systematic and auto­
matie method to dynamieally eombine any set 01' existing MAC
protoeols into a single higher layer MAC protoeoI. We present a
proof-of-eoneept implementation 01' the meta-MAC protoeol by
utilizing a programmable wireless MAC processor (WMP) on top
of a eommodity wireless eard in eombination with a host-Ievel
software module. The implementation allows us to eombine, with
eertain eonstraints, a number of protoeols eaeh represented as
an extended finite state maehine. To iIIustrate the eombination
principle, we eombine protoeols of the same type but with
varying parameters in a wireless mesh network. Specifieally, we
eombine TDMA protoeols with all possible slot assignments. We
demonstrate that an implementation 01' the meta-MAC protoeol
over the WMP rapidly eonverges to non-eonflieting TDMA slot
assignments tor the nodes.

I. INTRODUCTION

In order to cope with changing conditions in the network,
arising from changes in the trafiic load or topology, most
MAC protocols include some form of adaptation. More than a
decade ago, a fundamentally different approach for adaptation
was proposed in the meta-MAC framework [1]. It introduced
a method to systematically and automatically combine any
set of existing protocols into a single MAC protocol. Re­
cently, advances in programmable radio platforms such as the
wireless MAC processor (WMP) [2] and the wireless open­
access research platform (WARP) [3], [4], have made the
implementation of the meta-MAC protocol feasible .

Some examples of implicit combination of MAC protocols
exist. For example, slotted p-persistence with dynamically
adjusted retransmission probabilities p may be regarded as one.
In a slotted p-persistent protocol, whenever there is a packet
queued, the probability of transmission in a slot is a constant
p , independently for each slot. If we dynamically change the
value of p then we effectively combine p-persistent protocols
that differ in their p values. Thus, in each slot we decide to
use one of these component protocols, namely the one with
the appropriate p. It is not an easy question wh ich is the best
way of adjusting the retransmission probabilities.

A more explicit combination of protocols is the idea of
protocol threading [5]. Here, the basic idea is to interleave
several different schedules (wh ich may be different lengths and
have different persistence) on a time sharing basis. In general,
M schedules can be threaded together with each protocol
used in every M th slot. This was first used in threading
time spread multiple access (TSMA) protocols [6], where the
schedules allow collisions but are carefully designed to provide
deterministic guarantees under certain conditions. When using
TSMA protocols as components, the advantage is that the

978-1-4673-9955-5/16/$31 .00 ©2016 IEEE

component protocols may be optimized for different densities
of node topology. Then, the threaded protocol can handle
situations without knowing in advance which one will occur.

Another explicit approach combines any schedule-based
protocol with any contention-based protocol [7], in principle.
The ADAPT protocol uses a simple TDMA protocol as the
base protocol and combines it with CSMAJCA [8]. If the node
"owning" a slot does not need to use it, other nodes can con­
tend for it using CSMA/CA. Thus ADAPT can dynamically
change its operation to reftect both the current load and node
density.

The learning zero collision (L-ZC) protocol uses contention
to allocate TDMA slot assignments [9]. In this way, L-ZC is
effectively selecting between TDMA protocols with differing
slot assignments based on network feedback from attempted
transmissions.

The rest of this paper is organized as folIows. §II describes
the meta-MAC framework, and discusses implementation re­
quirements on areal wireless card. In §III, we overview
the Wireless MAC Processor (WMP) architecture meeting
the meta-MAC requirements. §IV describes a firmware-level
module for the execution of the selected protocol and the
host-Ievel module for protocol combination. The experimental
setup on a wireless network testbed, along with the results of
experimentation are found in §V, demonstrating a proof-of­
concept implementation of the meta-MAC framework. Finally,
we summarize and describe future work in §VI.

11. THE META-MAC PROTOCOL

As Fig. 1 shows, M MAC protocols PI , ... ,PM are com­
bined at a given node; here M is not related to the number of
nodes in the network, N. These component protocols can be
arbitrary different protocols or they can be the same protocol
but based on different parameters.

In order to simplify the presentation, time is divided into
slots. Each protocol Pi runs locally and in each slot t produces
adecision Di,t , 1 ~ i ~ M , where Di,t = 1 is interpreted as
Pi transmits in slot t and Di,t = 0 is interpreted as Pi does
not transmit in slot t. A value 0 < Di,t < 1 is interpreted as
a probability with wh ich Pi transmits.

The meta-MAC protocol is an algorithm that runs locally at
each node and combines the local decisions Di,t, 1 ~ i ~ M ,
to produce a combined result D t with the same interpretation
as Di,t. The final binary decision Dt E {O, I} is derived from
D t by drawing a random binary value that takes the value 1
(trans mit) with probability D t and the value 0 (do not transmit)
with probability 1 - D t .

slotl

time

GJ DIt

0,

~ tvlela-tvLA.C Prolocol
P2

Feedback YI

~ M

Fig. 1. Operation of the meta-MAC protocol.

The combined decision D t is computed as a function of the
weighted average of the Di,t values:

Dt = F (L: JwWi,t Di,t) . (1)
L i=l Wi,t

F is a function that grows Iinearly from 0 to 1 in an interval
[~ - c, ~ + cl and is truncated to 0 and 1 before and after the
interval, respectively [1]; c depends on another parameter T)

that controls how the weights are updated.
The meta-MAC protocol maintains the weights used in (1);

w i,t is the weight of protocol Pi for slot t. At the end of each
slot the weights are updated using the channel feedback. In
a ternary feedback model, anode can determine whether a
successful transmission occurred, a collision occurred, or the
channel remained idle in a slot. We require information to be
available for the meta-MAC protocol to concIude at the end
of the slot whether the decision for the slot was correct.

For example, from the ternary feedback we can concIude
the correctness feedback: If we decided to transmit and the
transmission was successful then the decision was correct.
However, if a collision occurred then the decision was incor­
rect. If there is a packet queued for transmission but we decide
not to trans mit there are two possibilities. If the channel was
idle the decision was incorrect because the slot was wasted.
However, if the channel was not idle then it was correct not to
transmit as the channel was used by another node. If the queue
was empty, then refraining from transmission was correct.

Given such correctness feedback, the weights are updated
as folIows. Let Yt denote the correctness feedback:

Yt = { ~ if the decision in slot t was correct
if the decision in slot t was incorrect

Then the correct decision for slot t is Zt = DtYt+ (l - l\)(l ­
Yt), where Dt is the final binary decision as defined earlier.
But we cannot set the decision for slot t to Zt because Zt only
becomes known at the end ofthe slot. Using Zt, the weights are
updated as Wi,t+l = Wi,t . e- 7J 1D i ,t -z, I. The constant T) > 0
controls how fast the weights change. This update rule can
be interpreted as reftecting the "correctness his tory" of the
component protocols.

A. lmplementation Requirements

Implementing the meta-MAC protocol on areal wireless
card it is not easy because of the following requirements.

Loading multiple programmable MAC components. Be­
cause of the strict timing constraints for accessing the wireless
channel, MAC protocols are usually hard-coded in wireless
cards or implemented in proprietary firmware. Assuming that
it is possible to access and modify the firmware, such a modifi­
cation is Iimited to programming a specific new MAC protocol
that cannot be updated at run time without writing and loading
new firmware. In some cases, non-critical MAC operations
(i.e., the upper-MAC) are implemented in the card driver,
wh ich in principle can be modified more easily. However, these
operations are related to management operations, not to the
lower-MAC transmission decisions.

Executing multiple MAC protocols in parallel. The MAC
protocols defined in current standards are often based on
a predefined combination of multiple operation modes. For
example, in the Wi-Fi standard, a contention-based and a
polling-based access scheme are both incIuded in the access
protocol. Several advanced features can be activated upon re­
quest and multiple contention parameters can be configured for
different access categories contending simultaneously on the
medium. However, this usual combination of multiple MAC
components is not real parallel execution of different MAC
components. Indeed, it is achieved by exploiting time-division
(i.e., by executing different access schemes in different time
intervals) with an implicit organization of the channel time
in contention-based or contention-free intervals , or explicit
signalling between the stations for activating/deactivating a
specific protocol variant. Only the EDCA protocol [10] repre­
sents a combination of independent MAC entities (one for each
access category) which implements the same protocol with
different contention parameters. However, the MAC entities
can only configure the parameters of each component protocol,
rather than dynamically associating a different protocol with
each access category.

Combining transmission decisions. In current standards
with multiple operation modes, the selection of a given compo­
nent protocol is not performed on the basis of programmable
logic based on the outcomes of previous transmissions. For
example, in the case of EDCA, the contention parameters used
by each access category are signalIed by the access point (AP),
while the combined transmission decision is established by the
virtual collision mechanism and the priority of each access
category, which cannot be set dynamically.

Processing per-slot channel feedback. Although many
MAC protocols are able to gather per-slot channel feedback
(e.g., for decrementing or freezing the backoff counter or for
updating the contention window), they cannot modify their
operation logic as a function of this feedback. Moreover, this
feedback cannot be exported to the driver at run time because
of the unpredictable communication delays between the card
and the host operating system.

111. A MULTl-PROTOCOL EXECUTlON PLATFORM

To implement the meta-MAC protocol on common wireless
cards involves running multiple (modifiable) protocol com­
ponents, and switching from the decision of one protocol to
another at run time without interrupting the card operations
when loading and activating new firmware. Surprisingly, both
the problems can be solved by working on the wireiess MAC
processor (WMP) wh ich has been prototyped on top of a
commercial wireless card. The prototype has been validated
as a generic execution platform for MAC protocols including
TDMA [11].

A. The Wireiess MAC Processor Architecture

The WMP defines a new architecture for wireless interfaces,
in which the medium access rules are not embedded into the
firmware of the wireless interfaces, but can be programmed on
the fly. For this purpose, the firmware implements the MAC
engine, and a set of elementary actions and signal interrupts
for interacting with the hardware transceiver.

The MAC engine executes MAC programs specified as
extended finite state machines (XFSMs). This permits control
of the actions performed on the hardware, as a consequence
of the MAC protocol logic, of events such as frame arrivals
and timer expirations, and of conditions on the card hardware
registers. The set of events generated by the transceiver, the
set of actions coded in pre-defined firmware modules, and the
set of hardware registers whose settings can be tuned and
verified, represent the card API that cannot be modified by
the user. The MAC program is coded as a transition table
and loaded in a memory space on the hardware. Starting from
an initial (default) state, the MAC engine fetches the table
entry corresponding to the state, and loops until a triggering
event associated with that state occurs. It then evaluates
the associated conditions on the configuration registers, and
triggers the associated action and register status updates (if
any), executes the state transition, and fetches the new table
entry for the target state.

Since a MAC program is basically a list of labels specifying
the events, actions, and conditions associated with each state
transition, by defining a conunon set of labels for the API
(i.e., a machine language), the MAC program can be coded
into compact bytecode, so that multiple programs can be pre­
loaded onto the card. The MAC engine does not need to
know to which MAC pro gram a newly fetched state belongs.
Code switching is achieved by simply moving from the current
protocol state to a target state in a different transition table,
with a latency of a few CPU clocks of the card. The definition
of code switching transitions are logically independent of
the MAC program definition. Therefore, rather than adding
them to the MAC program, the architecture exposes a control
interface for loading new MAC protocols onto the card and
for switching from one protocol to another.

Fig. 2 summarizes the components of the WMP architecture
and how it has been used to implement the meta-MAC (see
§III-B). The MAC engine is able to respond to the hardware

y(I)={Packel queue Q,

r Transmitted A, Transmitted

Hast-level Meta-MAC\ Success T, Transmit Other R,
Bad Reception E, Busy slot B/I} p,[ll]

Protocol
Decision P(t+l)

Wireless MAC

Processor

Micro-Instruction
memory

I BytecodeP, I

Protocol
Combination fl'IRISIRIEIAtsl'I'IRI

1-7 1

Feedback y(t-7), y(t-6), .. y(t)

XFSM
ENGINE

2,2ms

Firmware-level Meta-MAC

Registers/Memory

Interrupts

Operations

~

Fig. 2. WMP and meta-MAC architecture.

TABLE I
WMP API: SUPPORTED EVENTS. ACTIONS A ND DATA FOR CONDITIONS.

Events Actions Data
CH_UP rx_headerO channeI
CW_DOWN rx_msduO antenna
RX]LCP_END start_timer(reg,prm) power
RX_MAC_HEAD_END extraccbk(reg, prm) txrx_on
RX_END tx_start(prm) backofCslot
RX_ERROR update_cw(reg. prm) rx_checksum
QUEUE_OUT_UP repor_to_host(prm) busy_time
IFS_EXPlRED start_ifs(prm) backofCvalue
TX_END set(reglvar. var/prm) bandwidth
TIMER_EXPIRED get(reg/var, var/prm) sloctime

write(queue, field, var/prm) + protoeol
read(queue. field, var/prm) variables
incr(var) + payload
hw resetO fields

interruptions and to trigger the hardware functionalities ac­
cording to the logic defined in a selected bytecode.

B. Programming Component MAC Protocols

Aversion of the API originally proposed in [11] is sum­
marized in Table I. In order to show the potential of the API
for programming different component MAC protocols, Fig. 3
shows a simple state machine implementing a TDMA protocol.
MAC program states are labeled, transitions are labeled by
their triggering events, and conditions (when associated with
a transition) are given in square brackets. The examples
are limited to the management of frame transmissions (i.e.,
acknowledgments and frame receptions are not included).

In Fig. 3, a simple TDMA program for accessing the chan­
nel access at regular time intervals is modeled with two states:
a waiting state and a transmission state. From the waiting
state, a transmission event is scheduled on a synchronization
signal, given by the reception of a beacon frame. The event
is scheduled after a time interval (sIot) from the reception of
the beacon header. When the timer expires, if the transmission
queue is not empty, the transceiver is activated by calling the
action start_tx(queue). At the end of the frame transmission, a

lIMER_EXPIRED
[read(queue)==O]
seUimer(period)

lX_END
start_timer(period-busy-time)

reset(busy-time)

RX_MAC_HEADER_END
[get(RX_QUEUE,type)==beacon]

seUimer(slot)

lIMER_EXPIRED
[read(queue)!=O]
start_tx(queue)

Fig. 3. An XFSM for the WMP API as a TDMA transmission protocoI.

timer is set for the next transmission event by considering the
difference between the protocol variable representing the inter­
transmission period and the duration of the transmitter activity
busy_time. When no frame is available for transmission, the
same timer is set to the inter-transmission time.

IV. META-MAC PROTOTYPING

Although the WMP platform allows the component MAC
protocols to be programmed and loaded on a COlnmon ex­
ecution platform, and to switch among components, there
remain limitations for the implementation of the meta-MAC
protocol. First, the MAC engine is single-threaded; i.e., it is
able to execute only one protocol component at a time. Multi­
threaded generalizations are possible [12], e.g., by allowing
the MAC engine to work on a vector of states (one for each
component protocol) and to solve hardware conflicts among
multiple components. However, this generalization requires
more complex firmware that cannot be supported by our WMP
prototype. Second, the CPU on the card does not support
floating-point operations required for the weight update rule
and combining the protocol decisions.

To overcome these limitations, as shown in Fig. 2, we
designed a meta-MAC architecture based on dividing function­
ality between (i) a firmware-level module for the execution of
the selected protocol and the gathering of network feedback;
and (ii) a host-Ievel module for protocol combination, i.e. ,
emulating decisions and outcomes of non-running protocol
components and selecting the firmware-level protocol.

A. Firmware-Level Protocol Execution and Network Feedback

The firmware-level module is based on the WMP prototype,
wh ich is able to execute a component MAC protocol selected
from a list of pre-Ioaded MAC bytecodes. We restrict our
attention to TDMA for the meta-MAC protocol validation. We
use periodic beacon frames sent by the AP for synchronizing
the stations and organizing consecutive channel slots into
frames. We set the slot size to 2200 /-Is to accommodate a
packet transmission and acknowledgment of 1500 bytes at
6 Mbps. The frame size is determined by a parameter in the
running MAC bytecode.

The WMP firmware has also been programmed to save
specific events in a channel trace that is periodically retrieved
by the driver. In particular, at the end of each slot, the WMP

TAßLE II
F EEDBACK VARIABL ES A ND S EMANTICS.

Variable Semantics
packet_queued One or more packets queued for transmission.
transmitted Transmission attempted.
transmit success ACK received for successful transmission. -
transmit - other Any data frame or ACK received.
bad_reception Invalid data frame received.
busy slot More than 500us of channel activity in slot.

firmware saves six binary feedback variables that collectively
describe the state of the transmission queue, the protocol
decision, the transmission outcome, and the slot state. The
feedback variables and their semantics are described in Ta­
ble 11. In addition, the WMP firmware provides a 3-bit slot
index counter, representing the current slot number modulo 8,
and a value of a microsecond-precision counter which together
are used by the host to determine the number of slots that have
passed between consecutive reads. These records are stored in
shared memory on the card and are accessed periodically by
the driver.

B. Host-Level Protocol Combination

The host-Ievel module is a C program responsible for
retrieving and processing the feedback provided by the card
and selecting the MAC component protocol to be activated.

Of these responsibilities, retrieving the feedback from the
card is the most challenging, because the host program must
consistently read from the shared memory at least every seven
slots (15.4 ms) to prevent newer feedback from overwriting
older feedback that has not yet been read. For minimizing
the probability of missing some information, we create one
thread dedicated to reading from the WMP, and a processing
thread responsible for everything else. However, there are
no scheduling guarantees for the reading process and some
feedback slots can be missed. In the case of missed feedback,
we do not update the protocol weights for those slots; this is
equivalent to assuming that there were no packets queued for
transmission.

Once the feedback is retrieved, the host-Ievel process has
to emulate the decisions of each component protocol for each
of the slots that has passed. This is critical because only
one component protocol is actually running on the WMP
platform, yet the decisions of all component protocols are
required in order to generate the correctness feedback for the
meta-MAC protocol. Thus, a software representation of each
protocol, embedded in the meta-MAC host program, must be
able to emulate the protocol's decision for each slot using the
feedback provided. In the next section we describe how the six
binary feedback variables provided by the WMP are sufficient
for emulating the decisions of TDMA. Moreover, the feedback
must be sufficient for ca1culating the correctness feedback for
each protocol , given its decision in a particular slol. This
second requirement is encompassed by the first. Using the
feedback, the host program maintains weights for each of
the component protocols according to the model described in

§II. Using these weights, the meta-MAC program then loads
and activates MAC bytecode as necessary to keep the highest
weighted component protocol running at all times.

Fig. 2 shows an example of three TDMA protocols with a
frame of three slots. Protocol Pi transmits in slot i, 1 :s; i :s; 3.
In the example, the firmware-level MAC engine is executing
protocol PI. At time t, the feedback variables of the previous
7 slots are read by the host. The feedback is summarized as a
label representing an aggregation of the ftags (e.g., A indicates
that the transmitted ftag is set to 1, while I indicates an idle
slot in wh ich the busy slot ftag and the reception ftags are
set to 0). Assuming that the TDMA frame starts at the first
feedback slot, the host-Ievel meta-MAC can determine that
protocol PI performed a correct decision at slot t - 7, that
protocol P2 would have been successful in slot t - 6 (wh ich
is idle), while protocol P3 would have been incorrect in slot
t - 5 where frame transmission by another node has occurred.

C. Deviations fram the Meta-MAC Pratoeol

The WMP architecture causes the implemented meta-MAC
protocol to deviate from the model described in §II. In oUf
implementation of the meta-MAC protocol, only the MAC
bytecode associated with one component protocol (the highest
weighted protocol) is running at any given time. FUfthermore,
because of communication delays and the fact that feedback is
retrieved only every 7 slots, there may be a delay of potentially
more than 15.4 ms between an event that ultimately causes
the highest weighted protocol to change, and the time that
the new bytecode is actually activated and running on the
WMP. This may cause the decisions of oUf implementation,
in situations where two or more of the highest weighted
protocols have weights within an order of magnitude of each
other, to differ from the decisions produced by the theoretical
model. As the difference in normalized weight between the
highest and the second highest weighted protocol approaches
one, this discrepancy disappears and the decisions of our
implementation asymptotically approach the decisions of the
theoretical model.

Furthermore, the WMP architectUfe restricts the set of
component protocols to those whose decisions can be emulated
with only the feedback history provided by the WMP. TDMA
protocols are possible using oUf implementation 's six feedback
variables, as they rely entirely on the slot numbering provided
by the host program. Our implementation also supports slotted
Aloha. With randomized protocols such as slotted Aloha, the
host program needs only to ca1culate the probability that the
protocol would have transmitted in a given slot.

V. EXPERIMENTAL R ESULTS

A. Testbed

We run oUf experiments in a testbed at the University of
Palermo and in the wilab2.t testbed in Ghent, where 10 pro­
totypes of the WMP architecture built on top of a commercial
card by Broadcom are available.

Our implementation replaces the original card firmware
with assembly code implementing the state machine execution

engine, and mapping the previously described WMP program­
ming interface into aetual signals, operations, and registers
of the card. The state of the hardware sub-systems (e.g.,
the start of frame demodulation after a valid preamble) are
automatically tracked by the internal card registers, enabling
the logging of the meta-MAC relevant events. To support the
upper-MAC operations and to interact with the meta-MAC C
program, we use the b43 soft-MAC driver, wh ich adapts the
Linux internal mae80211 interface to the network card.

In all the experiments, the testbed has been configured in
infrastructure mode, in order to exploit the beacon frames sent
by the AP as a reference synchronization signal.

B. Optimizing TDMA Sehedules

Simulations in [1] showed that component protocols can be
arbitrary different protocols or they can be the same protocol
with different parameters. In this second case, the meta-MAC
can work as a protocol optimization framework. In particular,
when each node runs multiple TDMA protocols differing in
their slot assignment, the meta-MAC is able to reach a non­
confticting TDMA schedule in a distributed manner.

We reproduced this result in oUf experiments, by consider­
ing a simple topology of 4 nodes connected to the same AP.
Each of these participants runs the meta-MAC protocol with
four variants of TDMA; each variant works with a frame size
of four but with slot assignments of 0, 1, 2, and 3, respectively.
At the beginning of the trial, all protocol weights are equal
and the TDMA slot 0 protocol is loaded and activated on
each of the participant nodes. As with our other testing, we
used a 6 Mbps bitrate and a 2200 J..Is slot length. The traffk is
generated with the iperf program; the iperf server runs on the
AP. We used a UDP stream with a bandwidth set to 10 Mpbs to
enSUfe that the transmission queues of all nodes were saturated
during the experiment. The dUfation of the experiment is 30
seconds.

The results of the experiment are shown in Figs. 4 and
5. Fig. 4 shows the slots on wh ich transmissions were at­
tempted and on wh ich they succeeded, while Fig. 5 shows
the protocol weights over the period dUfing which the nodes
were converging. It is clear that the nodes converged to a non­
confticting TDMA schedule. Specifically, it took about 19 slots
for the nodes to converge on a non-confticting schedule in this
particular experiment. The learning constant 7] was set to 1.0
in this experiment; greater values do increase the speed with
wh ich the nodes initially converge. However, greater values
increase the rate at wh ich protocol weights both rise and
fall , wh ich counteract each other to an extent after the initial
convergence, so the effects of 7] after the initial convergence
are not as c1ear and require further research.

The slot assignments on which nodes alixlO and alix12
stabilized appear to differ between Fig. 4 and Fig. 5. This is
because while the slots are synchronized among the nodes, the
TDMA frames are not. Therefore, one node's local definition
of slot 0 may not match that of another node. The slot
assignments displayed in Fig. 4 are relative to the local
definitions of node alix7 , while the protocol weights displayed

· . . . · . . .
o :00 : : :

3 ~ :) •.. Q . • . • .• . '! ..• ..• . !It .• .• .• ..• .• .• .• . 0.: .• .• .•

OOO O: OO O OO~OOOOO~OO
~ ~ ~ : · . . .
: : : :
: : : : · . . .
: : : :
: : : : · . . .
: : : : · . . .

........ 99*~ ·~ •• 6~ ·~ ••• ~~~ •• ~·~~.~

O~ ····· ····· ·· ·: ···········ö d • • •

4.30 4.35

• ~ ••••• ~ •• o •• ~ •••• ~ •••

4.40 4.45
time(s)

4.50 4.55

• • alix7
• • alix13
• • alix10
o 0 alix12

Fig. 4. Transmissions by TDMA slot assignment (offset within TDMA
frame) over time for the period during which nodes converged on a non­
confticting schedule. Filled/hollow circles represent successfuVunsuccessful
transmissions. Nodes are offset from each other for clarity.

1.0 I , >"

:c 0.8
.2'
~ 0.6
Ci g 0.4 e ..
Q.O.2~

0.0' 'f-::.. ... ,

1.0 I i"'~""" 7

1: 0.8
. 2'
~ 0.6
Ci .8 0.4

~ 0.21 1I

TDMA (slot 0)
TDMA (slot 1)

TDMA (slot 2)
TDMA (slot 3)

Fig. 5. Protocol weights over time for the period during which nodes
converged on a non-confticting schedule.

in Fig. 5 are local to each node. This is merely an issue of
labeling, and does not affect the ability of the meta-MAC
protocol to converge on a non-conflicting schedule.

In all experiments that we performed the nodes successfully
converged to a non-conflicting schedule; all data was similar
to that presented here. These experimental results demonstrate
that our implementation is a successful proof-of-concept of the
meta-MAC protocol.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a proof-of-concept implementation of
the meta-MAC protocol. aur implementation uses the Wireless
MAC Processor to execute component MAC protocols on
commodity hardware while a host-Ievel program processes
network feedback and selects the active protocol. We apply

this implementation to TDMA protocol optimization and find
that nodes converge to a non-conflicting slot assignment.

aur future work incIudes experimenting with different com­
ponent protocols for the meta-MAC. In particular, transitioning
between contention based and TDMA protocols in response to
network load is an important resuIt that has been established
in simulation but remains to be demonstrated experimentally.
We also intend to evaluate the effect of the learning parameter
7] on the convergence rate and stability of the meta-MAC.

It is also worth investigating the suitability of other pro­
grammable radio platforms for meta-MAC implementation.
FPGA-based platforms such as the WARP may present so­
lutions to constraints we faced in oUf implementation. An
implementation of the WMP for the WARP platform has
recently been developed, and this may prove to be a valuable
starting point for this research.

In the long term, it may be worth investigating how the
meta-MAC model can be generalized to non-slotted time. A
completely general meta-MAC capable of combining any set
of protocols would be a decisive leap forward in dynamic
adaptation of MAC protocols.

ACKNOWLEDGEMENTS

This work has been supported in part by the EU H2020
WiSHFUL project, contract number 645274, and by the Na­
tional Science Foundation, grant number 1421058.

R EFERENCES

[I] A. Farag6, A. D. Myers, V. R. Syrotiuk, and G. Zaruba, "Meta­
MAC protocols: Automatie combination of MAC protocols to optimize
performance for unknown conditions," IEEE Journal on Selected Areas
in Communications, vol. 18, no. 9, pp. 1670- 1681 , September 2000 .

[2] I. Tinnirello, G. Bianchi, P. GaUo, D. Garlisi, F. Giuliano, and
F. Gringoli , "Wireless MAC processors: programming MAC protocols
on commodity hardware," in INFOCOM, 2012 Proceedings IEEE.
IEEE, 2012, pp. 1269- 1277.

[3] "The wireless open-access research platform (WARP) project, Rice
University," http://warp.rice.edu/trac/wiki/about.

[4] "The wireless open-access research platform (WARP), Mango Commu­
nications," http://mangocomm.com/.

[5] I. Chlamtac, A. Farag6, and H. Zhang, "Time-spread multiple-access
(TSMA) protocols for multihop networks," IEEE/ACM Transactions on
Networking , vol. 5, no. 6, pp. 804-812, 1997.

[6] I. Chlamtac and A. Farag6, "Making transmission schedules immune
to topology changes in multi-hop packet radio networks," IEEEIACM
Transactions on Networking, vol. 2, no. I , pp. 23- 29, 1994.

[7] I. Chlamtac, A. Farag6, A. Myers, V. R. Syrotiuk, and G. Zaruba,
"ADAPT: A dynamically self-adjusting media access control protocol
for ad hoc networks," in Global Telecommunications Conference (Globe­
com), vol. l a, 1999, pp. 11- 15.

[8] A. Colvin, "CSMA with collision avoidance," Computer Communica­
tions, vol. 6, no. 5, pp. 227- 235, October 1983.

[9] M. Fang, D. Malone, K. R. Duffy, and D. 1. Leith, "Decentralised
learning macs for collision-free access in wlans," Wireless Networks,
vol. 19, no. 1, pp. 83- 98, 01 2013.

[10] G. Bianchi and I. Tinnirello, "Remarks on IEEE 802.11 DCF perfor­
mance analysis," IEEE Communications Letters, vol. 9, no. 8, pp. 765-
767, August 2005.

[11] I. Tinnirello, G. Bianchi, P. Gallo, D. Garlisi , F. Giuliano, and
F. Gringoli , "Wireless MAC processors: programming MAC protocols
on commodity hardware," in INFOCOM, 2012 Proceedings IEEE.
IEEE, 2012, pp. 1269- 1277.

[12] Y. Grunenberger, I. Tinnirello, P. GaUo, E. Goma, and G. Bianchi, "Wire­
less card virtualization: From virtual NICs to virtual MAC machines,"
in Future Network Mobile Summit (FutureNetw), 2012, July 2012, pp.
1- 10.

