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Abstract-The meta-MAC protoeol is a systematic and auto­
matie method to dynamieally eombine any set 01' existing MAC 
protoeols into a single higher layer MAC protoeoI. We present a 
proof-of-eoneept implementation 01' the meta-MAC protoeol by 
utilizing a programmable wireless MAC processor (WMP) on top 
of a eommodity wireless eard in eombination with a host-Ievel 
software module. The implementation allows us to eombine, with 
eertain eonstraints, a number of protoeols eaeh represented as 
an extended finite state maehine. To iIIustrate the eombination 
principle, we eombine protoeols of the same type but with 
varying parameters in a wireless mesh network. Specifieally, we 
eombine TDMA protoeols with all possible slot assignments. We 
demonstrate that an implementation 01' the meta-MAC protoeol 
over the WMP rapidly eonverges to non-eonflieting TDMA slot 
assignments tor the nodes. 

I. INTRODUCTION 

In order to cope with changing conditions in the network, 
arising from changes in the trafiic load or topology, most 
MAC protocols include some form of adaptation. More than a 
decade ago, a fundamentally different approach for adaptation 
was proposed in the meta-MAC framework [1]. It introduced 
a method to systematically and automatically combine any 
set of existing protocols into a single MAC protocol. Re­
cently, advances in programmable radio platforms such as the 
wireless MAC processor (WMP) [2] and the wireless open­
access research platform (WARP) [3], [4], have made the 
implementation of the meta-MAC protocol feasible . 

Some examples of implicit combination of MAC protocols 
exist. For example, slotted p-persistence with dynamically 
adjusted retransmission probabilities p may be regarded as one. 
In a slotted p-persistent protocol, whenever there is a packet 
queued, the probability of transmission in a slot is a constant 
p , independently for each slot. If we dynamically change the 
value of p then we effectively combine p-persistent protocols 
that differ in their p values. Thus, in each slot we decide to 
use one of these component protocols, namely the one with 
the appropriate p. It is not an easy question wh ich is the best 
way of adjusting the retransmission probabilities. 

A more explicit combination of protocols is the idea of 
protocol threading [5]. Here, the basic idea is to interleave 
several different schedules (wh ich may be different lengths and 
have different persistence) on a time sharing basis. In general, 
M schedules can be threaded together with each protocol 
used in every M th slot. This was first used in threading 
time spread multiple access (TSMA) protocols [6], where the 
schedules allow collisions but are carefully designed to provide 
deterministic guarantees under certain conditions. When using 
TSMA protocols as components, the advantage is that the 
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component protocols may be optimized for different densities 
of node topology. Then, the threaded protocol can handle 
situations without knowing in advance which one will occur. 

Another explicit approach combines any schedule-based 
protocol with any contention-based protocol [7], in principle. 
The ADAPT protocol uses a simple TDMA protocol as the 
base protocol and combines it with CSMAJCA [8]. If the node 
"owning" a slot does not need to use it, other nodes can con­
tend for it using CSMA/CA. Thus ADAPT can dynamically 
change its operation to reftect both the current load and node 
density. 

The learning zero collision (L-ZC) protocol uses contention 
to allocate TDMA slot assignments [9]. In this way, L-ZC is 
effectively selecting between TDMA protocols with differing 
slot assignments based on network feedback from attempted 
transmissions. 

The rest of this paper is organized as folIows. §II describes 
the meta-MAC framework, and discusses implementation re­
quirements on areal wireless card. In §III, we overview 
the Wireless MAC Processor (WMP) architecture meeting 
the meta-MAC requirements. §IV describes a firmware-level 
module for the execution of the selected protocol and the 
host-Ievel module for protocol combination. The experimental 
setup on a wireless network testbed, along with the results of 
experimentation are found in §V, demonstrating a proof-of­
concept implementation of the meta-MAC framework. Finally, 
we summarize and describe future work in §VI. 

11. THE META-MAC PROTOCOL 

As Fig. 1 shows, M MAC protocols PI , ... ,PM are com­
bined at a given node; here M is not related to the number of 
nodes in the network, N. These component protocols can be 
arbitrary different protocols or they can be the same protocol 
but based on different parameters. 

In order to simplify the presentation, time is divided into 
slots. Each protocol Pi runs locally and in each slot t produces 
adecision Di,t , 1 ~ i ~ M , where Di,t = 1 is interpreted as 
Pi transmits in slot t and Di,t = 0 is interpreted as Pi does 
not transmit in slot t. A value 0 < Di,t < 1 is interpreted as 
a probability with wh ich Pi transmits. 

The meta-MAC protocol is an algorithm that runs locally at 
each node and combines the local decisions Di,t, 1 ~ i ~ M , 
to produce a combined result D t with the same interpretation 
as Di,t. The final binary decision Dt E {O, I} is derived from 
D t by drawing a random binary value that takes the value 1 
(trans mit) with probability D t and the value 0 (do not transmit) 
with probability 1 - D t . 
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Fig. 1. Operation of the meta-MAC protocol. 

The combined decision D t is computed as a function of the 
weighted average of the Di,t values: 

Dt = F (L: JwWi,t Di,t ) . (1) 
L i=l Wi,t 

F is a function that grows Iinearly from 0 to 1 in an interval 
[ ~ - c, ~ + cl and is truncated to 0 and 1 before and after the 
interval, respectively [1]; c depends on another parameter T) 

that controls how the weights are updated. 
The meta-MAC protocol maintains the weights used in (1); 

w i,t is the weight of protocol Pi for slot t. At the end of each 
slot the weights are updated using the channel feedback. In 
a ternary feedback model, anode can determine whether a 
successful transmission occurred, a collision occurred, or the 
channel remained idle in a slot. We require information to be 
available for the meta-MAC protocol to concIude at the end 
of the slot whether the decision for the slot was correct. 

For example, from the ternary feedback we can concIude 
the correctness feedback: If we decided to transmit and the 
transmission was successful then the decision was correct. 
However, if a collision occurred then the decision was incor­
rect. If there is a packet queued for transmission but we decide 
not to trans mit there are two possibilities. If the channel was 
idle the decision was incorrect because the slot was wasted. 
However, if the channel was not idle then it was correct not to 
transmit as the channel was used by another node. If the queue 
was empty, then refraining from transmission was correct. 

Given such correctness feedback, the weights are updated 
as folIows. Let Yt denote the correctness feedback: 

Yt = { ~ if the decision in slot t was correct 
if the decision in slot t was incorrect 

Then the correct decision for slot t is Zt = DtYt+ (l - l\)(l ­
Yt ), where Dt is the final binary decision as defined earlier. 
But we cannot set the decision for slot t to Zt because Zt only 
becomes known at the end ofthe slot. Using Zt, the weights are 
updated as Wi,t+l = Wi,t . e- 7J 1D i ,t -z, I. The constant T) > 0 
controls how fast the weights change. This update rule can 
be interpreted as reftecting the "correctness his tory" of the 
component protocols. 

A. lmplementation Requirements 

Implementing the meta-MAC protocol on areal wireless 
card it is not easy because of the following requirements. 

Loading multiple programmable MAC components. Be­
cause of the strict timing constraints for accessing the wireless 
channel, MAC protocols are usually hard-coded in wireless 
cards or implemented in proprietary firmware. Assuming that 
it is possible to access and modify the firmware, such a modifi­
cation is Iimited to programming a specific new MAC protocol 
that cannot be updated at run time without writing and loading 
new firmware. In some cases, non-critical MAC operations 
(i.e., the upper-MAC) are implemented in the card driver, 
wh ich in principle can be modified more easily. However, these 
operations are related to management operations, not to the 
lower-MAC transmission decisions. 

Executing multiple MAC protocols in parallel. The MAC 
protocols defined in current standards are often based on 
a predefined combination of multiple operation modes. For 
example, in the Wi-Fi standard, a contention-based and a 
polling-based access scheme are both incIuded in the access 
protocol. Several advanced features can be activated upon re­
quest and multiple contention parameters can be configured for 
different access categories contending simultaneously on the 
medium. However, this usual combination of multiple MAC 
components is not real parallel execution of different MAC 
components. Indeed, it is achieved by exploiting time-division 
(i.e., by executing different access schemes in different time 
intervals ) with an implicit organization of the channel time 
in contention-based or contention-free intervals , or explicit 
signalling between the stations for activating/deactivating a 
specific protocol variant. Only the EDCA protocol [10] repre­
sents a combination of independent MAC entities (one for each 
access category) which implements the same protocol with 
different contention parameters. However, the MAC entities 
can only configure the parameters of each component protocol, 
rather than dynamically associating a different protocol with 
each access category. 

Combining transmission decisions. In current standards 
with multiple operation modes, the selection of a given compo­
nent protocol is not performed on the basis of programmable 
logic based on the outcomes of previous transmissions. For 
example, in the case of EDCA, the contention parameters used 
by each access category are signalIed by the access point (AP), 
while the combined transmission decision is established by the 
virtual collision mechanism and the priority of each access 
category, which cannot be set dynamically. 

Processing per-slot channel feedback. Although many 
MAC protocols are able to gather per-slot channel feedback 
(e.g., for decrementing or freezing the backoff counter or for 
updating the contention window), they cannot modify their 
operation logic as a function of this feedback. Moreover, this 
feedback cannot be exported to the driver at run time because 
of the unpredictable communication delays between the card 
and the host operating system. 



111. A MULTl-PROTOCOL EXECUTlON PLATFORM 

To implement the meta-MAC protocol on common wireless 
cards involves running multiple (modifiable) protocol com­
ponents, and switching from the decision of one protocol to 
another at run time without interrupting the card operations 
when loading and activating new firmware. Surprisingly, both 
the problems can be solved by working on the wireiess MAC 
processor (WMP) wh ich has been prototyped on top of a 
commercial wireless card. The prototype has been validated 
as a generic execution platform for MAC protocols including 
TDMA [11]. 

A. The Wireiess MAC Processor Architecture 

The WMP defines a new architecture for wireless interfaces, 
in which the medium access rules are not embedded into the 
firmware of the wireless interfaces, but can be programmed on 
the fly. For this purpose, the firmware implements the MAC 
engine, and a set of elementary actions and signal interrupts 
for interacting with the hardware transceiver. 

The MAC engine executes MAC programs specified as 
extended finite state machines (XFSMs). This permits control 
of the actions performed on the hardware, as a consequence 
of the MAC protocol logic, of events such as frame arrivals 
and timer expirations, and of conditions on the card hardware 
registers. The set of events generated by the transceiver, the 
set of actions coded in pre-defined firmware modules, and the 
set of hardware registers whose settings can be tuned and 
verified, represent the card API that cannot be modified by 
the user. The MAC program is coded as a transition table 
and loaded in a memory space on the hardware. Starting from 
an initial (default) state, the MAC engine fetches the table 
entry corresponding to the state, and loops until a triggering 
event associated with that state occurs. It then evaluates 
the associated conditions on the configuration registers, and 
triggers the associated action and register status updates (if 
any), executes the state transition, and fetches the new table 
entry for the target state. 

Since a MAC program is basically a list of labels specifying 
the events, actions, and conditions associated with each state 
transition, by defining a conunon set of labels for the API 
(i.e., a machine language), the MAC program can be coded 
into compact bytecode, so that multiple programs can be pre­
loaded onto the card. The MAC engine does not need to 
know to which MAC pro gram a newly fetched state belongs. 
Code switching is achieved by simply moving from the current 
protocol state to a target state in a different transition table, 
with a latency of a few CPU clocks of the card. The definition 
of code switching transitions are logically independent of 
the MAC program definition. Therefore, rather than adding 
them to the MAC program, the architecture exposes a control 
interface for loading new MAC protocols onto the card and 
for switching from one protocol to another. 

Fig. 2 summarizes the components of the WMP architecture 
and how it has been used to implement the meta-MAC (see 
§III-B). The MAC engine is able to respond to the hardware 
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Fig. 2. WMP and meta-MAC architecture. 

TABLE I 
WMP API: SUPPORTED EVENTS. ACTIONS A ND DATA FOR CONDITIONS. 

Events Actions Data 
CH_UP rx_headerO channeI 
CW_DOWN rx_msduO antenna 
RX]LCP_END start_timer(reg,prm) power 
RX_MAC_HEAD_END extraccbk(reg, prm) txrx_on 
RX_END tx_start(prm) backofCslot 
RX_ERROR update_cw(reg. prm) rx_checksum 
QUEUE_OUT_UP repor_to_host(prm) busy_time 
IFS_EXPlRED start_ifs(prm) backofCvalue 
TX_END set(reglvar. var/prm) bandwidth 
TIMER_EXPIRED get(reg/var, var/prm) sloctime 

write(queue, field, var/prm) + protoeol 
read(queue. field, var/prm) variables 
incr(var) + payload 
hw resetO fields 

interruptions and to trigger the hardware functionalities ac­
cording to the logic defined in a selected bytecode. 

B. Programming Component MAC Protocols 

Aversion of the API originally proposed in [11] is sum­
marized in Table I. In order to show the potential of the API 
for programming different component MAC protocols, Fig. 3 
shows a simple state machine implementing a TDMA protocol. 
MAC program states are labeled, transitions are labeled by 
their triggering events, and conditions (when associated with 
a transition) are given in square brackets. The examples 
are limited to the management of frame transmissions (i.e., 
acknowledgments and frame receptions are not included). 

In Fig. 3, a simple TDMA program for accessing the chan­
nel access at regular time intervals is modeled with two states: 
a waiting state and a transmission state. From the waiting 
state, a transmission event is scheduled on a synchronization 
signal, given by the reception of a beacon frame. The event 
is scheduled after a time interval (sIot) from the reception of 
the beacon header. When the timer expires, if the transmission 
queue is not empty, the transceiver is activated by calling the 
action start_tx( queue). At the end of the frame transmission, a 



lIMER_EXPIRED 
[read(queue)==O] 
seUimer(period) 

lX_END 
start_timer(period-busy-time) 

reset(busy-time) 

RX_MAC_HEADER_END 
[get(RX_QUEUE,type)==beacon] 

seUimer(slot) 

lIMER_EXPIRED 
[read(queue)!=O] 
start_tx(queue) 

Fig. 3. An XFSM for the WMP API as a TDMA transmission protocoI. 

timer is set for the next transmission event by considering the 
difference between the protocol variable representing the inter­
transmission period and the duration of the transmitter activity 
busy_time. When no frame is available for transmission, the 
same timer is set to the inter-transmission time. 

IV. META-MAC PROTOTYPING 

Although the WMP platform allows the component MAC 
protocols to be programmed and loaded on a COlnmon ex­
ecution platform, and to switch among components, there 
remain limitations for the implementation of the meta-MAC 
protocol. First, the MAC engine is single-threaded; i.e., it is 
able to execute only one protocol component at a time. Multi­
threaded generalizations are possible [12], e.g., by allowing 
the MAC engine to work on a vector of states (one for each 
component protocol) and to solve hardware conflicts among 
multiple components. However, this generalization requires 
more complex firmware that cannot be supported by our WMP 
prototype. Second, the CPU on the card does not support 
floating-point operations required for the weight update rule 
and combining the protocol decisions. 

To overcome these limitations, as shown in Fig. 2, we 
designed a meta-MAC architecture based on dividing function­
ality between (i) a firmware-level module for the execution of 
the selected protocol and the gathering of network feedback; 
and (ii) a host-Ievel module for protocol combination, i.e. , 
emulating decisions and outcomes of non-running protocol 
components and selecting the firmware-level protocol. 

A. Firmware-Level Protocol Execution and Network Feedback 

The firmware-level module is based on the WMP prototype, 
wh ich is able to execute a component MAC protocol selected 
from a list of pre-Ioaded MAC bytecodes. We restrict our 
attention to TDMA for the meta-MAC protocol validation. We 
use periodic beacon frames sent by the AP for synchronizing 
the stations and organizing consecutive channel slots into 
frames. We set the slot size to 2200 /-Is to accommodate a 
packet transmission and acknowledgment of 1500 bytes at 
6 Mbps. The frame size is determined by a parameter in the 
running MAC bytecode. 

The WMP firmware has also been programmed to save 
specific events in a channel trace that is periodically retrieved 
by the driver. In particular, at the end of each slot, the WMP 

TAßLE II 
F EEDBACK VARIABL ES A ND S EMANTICS. 

Variable Semantics 
packet_queued One or more packets queued for transmission. 
transmitted Transmission attempted. 
transmit success ACK received for successful transmission. -
transmit - other Any data frame or ACK received. 
bad_reception Invalid data frame received. 
busy slot More than 500us of channel activity in slot. 

firmware saves six binary feedback variables that collectively 
describe the state of the transmission queue, the protocol 
decision, the transmission outcome, and the slot state. The 
feedback variables and their semantics are described in Ta­
ble 11. In addition, the WMP firmware provides a 3-bit slot 
index counter, representing the current slot number modulo 8, 
and a value of a microsecond-precision counter which together 
are used by the host to determine the number of slots that have 
passed between consecutive reads. These records are stored in 
shared memory on the card and are accessed periodically by 
the driver. 

B. Host-Level Protocol Combination 

The host-Ievel module is a C program responsible for 
retrieving and processing the feedback provided by the card 
and selecting the MAC component protocol to be activated. 

Of these responsibilities, retrieving the feedback from the 
card is the most challenging, because the host program must 
consistently read from the shared memory at least every seven 
slots (15.4 ms) to prevent newer feedback from overwriting 
older feedback that has not yet been read. For minimizing 
the probability of missing some information, we create one 
thread dedicated to reading from the WMP, and a processing 
thread responsible for everything else. However, there are 
no scheduling guarantees for the reading process and some 
feedback slots can be missed. In the case of missed feedback, 
we do not update the protocol weights for those slots; this is 
equivalent to assuming that there were no packets queued for 
transmission. 

Once the feedback is retrieved, the host-Ievel process has 
to emulate the decisions of each component protocol for each 
of the slots that has passed. This is critical because only 
one component protocol is actually running on the WMP 
platform, yet the decisions of all component protocols are 
required in order to generate the correctness feedback for the 
meta-MAC protocol. Thus, a software representation of each 
protocol, embedded in the meta-MAC host program, must be 
able to emulate the protocol's decision for each slot using the 
feedback provided. In the next section we describe how the six 
binary feedback variables provided by the WMP are sufficient 
for emulating the decisions of TDMA. Moreover, the feedback 
must be sufficient for ca1culating the correctness feedback for 
each protocol , given its decision in a particular slol. This 
second requirement is encompassed by the first. Using the 
feedback, the host program maintains weights for each of 
the component protocols according to the model described in 



§II. Using these weights, the meta-MAC program then loads 
and activates MAC bytecode as necessary to keep the highest 
weighted component protocol running at all times. 

Fig. 2 shows an example of three TDMA protocols with a 
frame of three slots. Protocol Pi transmits in slot i, 1 :s; i :s; 3. 
In the example, the firmware-level MAC engine is executing 
protocol PI. At time t, the feedback variables of the previous 
7 slots are read by the host. The feedback is summarized as a 
label representing an aggregation of the ftags (e.g., A indicates 
that the transmitted ftag is set to 1, while I indicates an idle 
slot in wh ich the busy slot ftag and the reception ftags are 
set to 0). Assuming that the TDMA frame starts at the first 
feedback slot, the host-Ievel meta-MAC can determine that 
protocol PI performed a correct decision at slot t - 7, that 
protocol P2 would have been successful in slot t - 6 (wh ich 
is idle), while protocol P3 would have been incorrect in slot 
t - 5 where frame transmission by another node has occurred. 

C. Deviations fram the Meta-MAC Pratoeol 

The WMP architecture causes the implemented meta-MAC 
protocol to deviate from the model described in §II. In oUf 
implementation of the meta-MAC protocol, only the MAC 
bytecode associated with one component protocol (the highest 
weighted protocol) is running at any given time. FUfthermore, 
because of communication delays and the fact that feedback is 
retrieved only every 7 slots, there may be a delay of potentially 
more than 15.4 ms between an event that ultimately causes 
the highest weighted protocol to change, and the time that 
the new bytecode is actually activated and running on the 
WMP. This may cause the decisions of oUf implementation, 
in situations where two or more of the highest weighted 
protocols have weights within an order of magnitude of each 
other, to differ from the decisions produced by the theoretical 
model. As the difference in normalized weight between the 
highest and the second highest weighted protocol approaches 
one, this discrepancy disappears and the decisions of our 
implementation asymptotically approach the decisions of the 
theoretical model. 

Furthermore, the WMP architectUfe restricts the set of 
component protocols to those whose decisions can be emulated 
with only the feedback history provided by the WMP. TDMA 
protocols are possible using oUf implementation 's six feedback 
variables, as they rely entirely on the slot numbering provided 
by the host program. Our implementation also supports slotted 
Aloha. With randomized protocols such as slotted Aloha, the 
host program needs only to ca1culate the probability that the 
protocol would have transmitted in a given slot. 

V. EXPERIMENTAL R ESULTS 

A. Testbed 

We run oUf experiments in a testbed at the University of 
Palermo and in the wilab2.t testbed in Ghent, where 10 pro­
totypes of the WMP architecture built on top of a commercial 
card by Broadcom are available. 

Our implementation replaces the original card firmware 
with assembly code implementing the state machine execution 

engine, and mapping the previously described WMP program­
ming interface into aetual signals, operations, and registers 
of the card. The state of the hardware sub-systems (e.g., 
the start of frame demodulation after a valid preamble) are 
automatically tracked by the internal card registers, enabling 
the logging of the meta-MAC relevant events. To support the 
upper-MAC operations and to interact with the meta-MAC C 
program, we use the b43 soft-MAC driver, wh ich adapts the 
Linux internal mae80211 interface to the network card. 

In all the experiments, the testbed has been configured in 
infrastructure mode, in order to exploit the beacon frames sent 
by the AP as a reference synchronization signal. 

B. Optimizing TDMA Sehedules 

Simulations in [1] showed that component protocols can be 
arbitrary different protocols or they can be the same protocol 
with different parameters. In this second case, the meta-MAC 
can work as a protocol optimization framework. In particular, 
when each node runs multiple TDMA protocols differing in 
their slot assignment, the meta-MAC is able to reach a non­
confticting TDMA schedule in a distributed manner. 

We reproduced this result in oUf experiments, by consider­
ing a simple topology of 4 nodes connected to the same AP. 
Each of these participants runs the meta-MAC protocol with 
four variants of TDMA; each variant works with a frame size 
of four but with slot assignments of 0, 1, 2, and 3, respectively. 
At the beginning of the trial, all protocol weights are equal 
and the TDMA slot 0 protocol is loaded and activated on 
each of the participant nodes. As with our other testing, we 
used a 6 Mbps bitrate and a 2200 J..Is slot length. The traffk is 
generated with the iperf program; the iperf server runs on the 
AP. We used a UDP stream with a bandwidth set to 10 Mpbs to 
enSUfe that the transmission queues of all nodes were saturated 
during the experiment. The dUfation of the experiment is 30 
seconds. 

The results of the experiment are shown in Figs. 4 and 
5. Fig. 4 shows the slots on wh ich transmissions were at­
tempted and on wh ich they succeeded, while Fig. 5 shows 
the protocol weights over the period dUfing which the nodes 
were converging. It is clear that the nodes converged to a non­
confticting TDMA schedule. Specifically, it took about 19 slots 
for the nodes to converge on a non-confticting schedule in this 
particular experiment. The learning constant 7] was set to 1.0 
in this experiment; greater values do increase the speed with 
wh ich the nodes initially converge. However, greater values 
increase the rate at wh ich protocol weights both rise and 
fall , wh ich counteract each other to an extent after the initial 
convergence, so the effects of 7] after the initial convergence 
are not as c1ear and require further research. 

The slot assignments on which nodes alixlO and alix12 
stabilized appear to differ between Fig. 4 and Fig. 5. This is 
because while the slots are synchronized among the nodes, the 
TDMA frames are not. Therefore, one node's local definition 
of slot 0 may not match that of another node. The slot 
assignments displayed in Fig. 4 are relative to the local 
definitions of node alix7 , while the protocol weights displayed 
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in Fig. 5 are local to each node. This is merely an issue of 
labeling, and does not affect the ability of the meta-MAC 
protocol to converge on a non-conflicting schedule. 

In all experiments that we performed the nodes successfully 
converged to a non-conflicting schedule; all data was similar 
to that presented here. These experimental results demonstrate 
that our implementation is a successful proof-of-concept of the 
meta-MAC protocol. 

VI. CONCLUSIONS AND FUTURE WORK 

This paper presented a proof-of-concept implementation of 
the meta-MAC protocol. aur implementation uses the Wireless 
MAC Processor to execute component MAC protocols on 
commodity hardware while a host-Ievel program processes 
network feedback and selects the active protocol. We apply 

this implementation to TDMA protocol optimization and find 
that nodes converge to a non-conflicting slot assignment. 

aur future work incIudes experimenting with different com­
ponent protocols for the meta-MAC. In particular, transitioning 
between contention based and TDMA protocols in response to 
network load is an important resuIt that has been established 
in simulation but remains to be demonstrated experimentally. 
We also intend to evaluate the effect of the learning parameter 
7] on the convergence rate and stability of the meta-MAC. 

It is also worth investigating the suitability of other pro­
grammable radio platforms for meta-MAC implementation. 
FPGA-based platforms such as the WARP may present so­
lutions to constraints we faced in oUf implementation. An 
implementation of the WMP for the WARP platform has 
recently been developed, and this may prove to be a valuable 
starting point for this research. 

In the long term, it may be worth investigating how the 
meta-MAC model can be generalized to non-slotted time. A 
completely general meta-MAC capable of combining any set 
of protocols would be a decisive leap forward in dynamic 
adaptation of MAC protocols. 
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